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Abstract
Aims/hypothesis Glycerophospholipid (GPL) perturbance was linked to the pathogenesis of diabetes in animal studies but
prospective studies in humans are rare, particularly in Asians. We aimed to investigate the associations between plasma GPLs
and incident diabetes and to explore effects of lifestyle on the associations in a Chinese population.
Methods The study included 1877 community-dwelling Chinese individuals aged 50–70 years (751 men and 1126 women), free
of diabetes at baseline and followed for 6 years. A total of 160 GPL species were quantified in plasma at baseline by using high-
throughput targeted lipidomics. Log-Poisson regression was used to assess the associations between GPLs and incidence of
diabetes.
Results Over the 6 years of follow-up, 499 participants (26.6%) developed diabetes. After multivariable adjustment, eight GPLs were
positively associated with incident diabetes (RRper SD 1.13–1.25; all false-discovery rate [FDR]-corrected p < 0.05), including five
novel GLPs, namely phosphatidylcholines (PCs; 16:0/18:1, 18:0/16:1, 18:1/20:3), lysophosphatidylcholine (LPC; 20:3) and phospha-
tidylethanolamine (PE; 16:0/16:1), and three reported GPLs (PCs 16:0/16:1, 16:0/20:3 and 18:0/20:3). In network analysis, a PC-
containing module was positively associated with incident diabetes (RRper SD 1.16 [95% CI 1.06, 1.26]; FDR-corrected p < 0.05).
Notably, three of the diabetes-associated PCs (16:0/16:1, 16:0/18:1 and 18:0/16:1) and PE (16:0/16:1) were associated not only with
fatty acids in the de novo lipogenesis (DNL) pathway, especially 16:1n-7 (Spearman correlation coefficients = 0.35–0.62, p < 0.001),
but also with an unhealthy dietary pattern high in refined grains and low in fish, dairy and soy products (|factor loadings| ≥0.2). When
stratified by physical activity levels, the associations of the eight GPLs and the PC module with incident diabetes were stronger in
participants with lower physical activity (RRper SD 1.24–1.49, FDR-corrected p < 0.05) than in those with the median and higher
physical activity levels (RRper SD 1.03–1.12, FDR-corrected p ≥ 0.05; FDR-corrected pinteraction < 0.05).
Conclusions/interpretation Eight GPLs, especially PCs associated with the DNL pathway, were positively associated with
incident diabetes in a cohort of Chinese men and women. The associations were most prominent in participants with a low level
of physical activity.
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Abbreviations
DAG Directed acyclic graph
DNL De novo lipogenesis
EPIC European Prospective Investigation

into Cancer and Nutrition
ER Endoplasmic reticulum
FDR False-discovery rate
GPL Glycerophospholipid
HDL-c HDL-cholesterol
LC-ESI-MS/MS Liquid chromatography electrospray

ionisation mass spectrometry
LDL-c LDL-cholesterol
LPC Lysophosphatidylcholine
MDC-CC Malmö Diet and Cancer Cohort
ME Module eigenvalue
MET Metabolic equivalent
NHAPC Nutrition and Health of Aging

Population in China
PC Phosphatidylcholine
PE Phosphatidylethanolamine
PE(O) Alkylphosphatidylethanolamine
PE(P) Alkenylphosphatidylethanolamine
PLS Partial least squares regression
RRR Reduced rank regression
TCH Total cholesterol
TG Triacylglycerol

WC Waist circumference
WGCNA Weighted gene co-expression

network analysis

Introduction

Diabetes now affects approximately 9.3% of the population
worldwide [1]. Elevated prevalence is more evident in coun-
tries undergoing rapid nutrition transition, including China
where estimated prevalence of diabetes and prediabetes in
2017 was 12.8% and 35.2%, respectively [2]. Compelling
evidence shows that healthy dietary patterns and high physical
activity can prevent or delay the onset of diabetes [3].
However, the complex effects of lifestyle modification on this
disease remain to be elucidated. Recent advances in metabo-
lomics, including lipidomics, provide a powerful tool with
which to identify early biomarkers and specific metabolic
disturbance(s) in the pathogenesis of diabetes, potentially
facilitating the development of more precise prevention and
therapeutic strategies.

Glycerophospholipids (GPLs) are the major lipids of cellu-
lar membranes, with phosphatidylcholines (PCs) and phos-
phatidylethanolamines (PEs) accounting for greater than
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50% of the composition [4]. Accumulating evidence from
animal studies indicate that disturbances of PCs and/or PEs,
as well as their ratio, could contribute to a number of well-
established risk factors of diabetes, including insulin resis-
tance and glucose tolerance [5, 6], endoplasmic reticulum
(ER) stress [7] and obesity [6]. However, only a handful
prospective studies have investigated the associations between
GPLs and risk of diabetes, with controversial findings from
western populations [8–11]. For instance, the association
between PC(36:4) and incident diabetes was positive in the
European Prospective Investigation into Cancer and Nutrition
(EPIC)-Potsdam study [9] but was negative in the
Framingham Heart Study Offspring cohort [8]. To date, only
one nested case–control study (n = 100 pairs) [12] has been
conducted in a Chinese population and the diabetes-associated
GPL varieties differed from those found in western studies
[8–11]. Owing to the possibility that circulating GPL concen-
trations and their associated cardiometabolic diseases might
vary among populations with different ethnic backgrounds
and lifestyles, it is important to study the associations among
Asian people, who have different genetic predisposition and
dietary habits.

Previously, several intervention studies showed that a
Mediterranean diet, low-glycaemic-index diet, or foods such
as fish, dairy produce and soybean oil could alter circulating
GPL profiles and/or concentrations of specific lipid metabo-
lites [13–17]. A Mediterranean diet intervention reduced
levels of PCs containing fatty acids with long chains (C16–
20) and less double bonds, but increased PCs [13] containing
fatty acids with very long chains (C20–22) and more double
bonds. Moreover, existing clinical trials also reported that
both aerobic and acute exercise could lower the PC/PE ratio
and remodel skeletal muscle levels of PC and/or PE [18–20].
Nevertheless, little is known about whether, or to what degree,
dietary factors or physical activity influence the associations
between GPLs and diabetes.

By applying a targeted high-coverage lipidomics approach,
the current study aimed to investigate the following: (1) the
associations of 160 plasma GPLs with incident diabetes; (2)
the relations between dietary patterns and physical activity
and diabetes-associated GPLs; and (3) the potential modifying
effects of dietary patterns and physical activity on the associ-
ations in a well-established Chinese cohort study.

Methods

Study population The study was based on the population from
the Nutrition and Health of Aging Population in China
(NHAPC) study, a prospective study among community-
dwelling Chinese individuals, aged 50–70 years, in Beijing
and Shanghai. The details of the study have been previously
reported [21]. Briefly, participants were recruited fromBeijing

and Shanghai (megacities representing the north and the south
of China) by a multistage sampling method in 2005. In both
Beijing and Shanghai, two urban districts and one rural district
were chosen to represent people with high and low socioeco-
nomic status based on the residential registration record. The
eligibility of the candidates was defined as those who were
stable residents for at least 20 years in the areas and were free
from the following conditions: (1) severe psychological disor-
ders, physical disabilities, cancer, CVD, Alzheimer’s disease
or dementia, within 6 months; or (2) a current diagnosis of
tuberculosis, acquired immune deficiency syndrome and other
communicable diseases. In 2005, 3289 eligible participants
(1458 men, 1831 women) were recruited and in 2011, 2529
participants completed a 6-year follow-up survey. Of these,
plasma samples for lipidome analysis were available for 2248
participants. Finally, after further excluding 274 individuals
with prevalent diabetes at baseline and 97 individuals with
extreme total energy intake (<3347 or >16,736 kJ/day for
men and <2092 or >14,644 kJ/day for women), 1877 partic-
ipants were included in the current analysis (ESM Fig. 1).

The study protocol of baseline survey (grant no. E-2005-
01) and 6-year follow-up survey (grant no. E-2011-12) were
approved by the Institutional Review Board of the Institute for
Nutritional Sciences, Chinese Academy of Sciences and abid-
ed by the Declaration of Helsinki principles. Written informed
consent was obtained from all participants.

Data collection At both baseline and 6-year follow-up visits,
information on demographic variables, health status, lifestyle
factors and medical history was obtained during a face-to-face
interview by trained health professionals with standard ques-
tionnaires. Alcohol drinking was grouped into ‘yes’ or ‘no’
[21]. Family history of diabetes was defined as parent(s) or
sibling(s) with diabetes. Physical activity was assessed by a
modified International Physical Activity Questionnaire (short
last 7 day format; www.physio-pedia.com/images/c/c7/
Quidelines_for_interpreting_the_IPAQ.pdf), and the level
for each individual was calculated as the sum of metabolic
equivalent (MET)-min/week score. Dietary information was
collected using a 74-item food-frequency questionnaire modi-
fied from a validated questionnaire used in the 2002 National
Nutrition and Health Survey in China [22]. Food intake was
adjusted for total energy intake by using the residual model.
Food items (g/day) were classified into 18 groups for further
analysis [22]. After fasting overnight, all participants were
invited to undergo a physical examination. Body weight,
height, waist circumference (WC) and BP were measured by
trained medical professionals following a standard protocol.
BMI was calculated as weight (kg) divided by the square of
height (m2).

Laboratory measurements After participants had fasted over-
night, venous blood samples were collected in tubes
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containing EDTA as anticoagulant at baseline and follow-up
surveys [21]. Blood samples were centrifuged at 2400 g for
15 min and stored at −80°C before analyses. Fasting blood
glucose, HbA1c, insulin, total cholesterol (TCH), HDL-
cholesterol (HDL-c), LDL-cholesterol (LDL-c) and triacyl-
glycerols (TGs) were measured as previously described [23].
The HOMA-IR index was calculated as previously reported
[24].

Erythrocyte fatty acid measurement Baseline erythrocyte
fatty acids were measured by GC coupled with positive chem-
ical ionisation (Agilent 6890 N-5975B; Agilent Technologies,
USA) [25]. Among 28 measured fatty acids, seven fatty acids
in the de novo lipogenesis pathway (DNL) associated with
carbohydrate intake [22], namely, myristic acid (14:0),
palmitic acid (16:0), palmitoleic acid (16:1n-7), hexadecenoic
acid (16:1n-9), stearic acid (18:0), vaccenic acid (18:1n-7) and
oleic acid (18:1n-9), were included in the present analyses.

Lipidomics measurement Baseline plasma lipid profiles were
quantified by a targeted, high-coverage lipidomics approach
constructed principally on liquid chromatography electrospray
ionisation mass spectrometry (LC-ESI-MS/MS). Details on lipid
extraction, chromatographic separation, MS analysis, data quan-
tification and quality control processes are described elsewhere
[24, 26]. Briefly, lipids were extracted from 10 μl plasma with a
modified methyl tert-butyl ether protocol and then analysed by
LC on a Shimadzu Nexera X2 LC-30AD system (Shimadzu
Scientific Instruments, Japan) coupled with a Sciex 5500
QTRAP Triple Quadrupole Mass Spectrometer (Applied
Biosystems/Sciex, Foster City, CA, USA). ACQUITY UPLC
BEH HILIC Column (130 Å, 2.1 × 100 mm, 1.7 μm; Waters
Corp Micromass UK, UK) was used for chromatographic sepa-
ration, with the mobile phases for eluting lipids including 50:50
(vol./vol.) acetonitrile–water with 10 mmol/l ammonium acetate
(A) and pure acetonitrile (B). Analyst 1.6.3 software (Applied
Biosystems/Sciex) was applied for data acquisition in multiple
reaction monitoring mode. Lipid species were quantified relative-
ly according to their corresponding stable isotope-labelled stan-
dards. Plasma samples were analysed randomly and quality
control samples were placed every ten samples to monitor the
repeatability of the data. The specific transitions and experimental
conditions of MS for analysing individual lipid species are
presented in ESM Table 1. Finally, a total of 728 lipids were
quantified, of which 160 GPLs (ten lysophosphatidylcholines
[LPCs], one lysophosphatidylinositol, 54 PCs, 48 PEs, 14
a l ky l pho spha t i dy l e t h ano l am ine s [PE (O) s ] , 30
alkenylphosphatidylethanolamines [PE(P)s] and three
phosphatidylserines [PSs]) were included in the current analyses
after excluding lipids with missing rate >20% and/or CV >30%.
Individual fatty acid moieties of GPLs at sn-1 and sn-2 positions
were defined by their length (the first number) and degree of
saturation (the second number), with the absence of a prefix

implying an acyl linkage; the O and P prefixes indicate alkyl
and vinyl linkages according to the LIPID MAPS consortium
[27].

Definition of diabetes Diabetes was defined by the following
criteria, as previously described [28]: (1) fasting plasma
glucose ≥7.0 mmol/l; (2) self-reported physician’s diagnosis
of diabetes; or (3) taking any oral glucose-lowering medica-
tion or insulin.

Statistical analysis Descriptive statistics for the study popula-
tion were obtained by calculating mean ± SD or median
(IQR) for continuous variables, and count (%) for categorical
variables. Missing values for GPLs were imputed with half of
the minimum detectable values, due to their concentrations
being below the detection limit [29]. Spearman correlation
coefficients (rs) among GPLs and of GPLs with cardiometa-
bolic traits as well as erythrocyte fatty acids were calculated
after adjustment for age, sex, region (Beijing or Shanghai) and
residence (urban or rural). GPLs were log-transformed and
scaled to SD of 1 before further analysis. Associations of total
physical activity (MET-min/week) with GPLs were evaluated
by linear regression, after adjustment for age, sex, region
(Beijing or Shanghai), residence (urban or rural), education
level (0–6 years, 7–9 years or ≥10 years), current smoking
(yes or no), alcohol drinking (yes or no), family history of
diabetes (yes or no), use of lipid-lowering medication (yes
or no), and BMI. The levels of physical activity were
categorised as low or high by the sex-specific totalMETmedi-
an [30]. Because of the high incidence of diabetes (26.6%) in
our cohort [31], the RRs of developing diabetes were estimat-
ed by using log-Poisson regression models. Potential
confounding variables in regression models were selected by
directed acyclic graph (DAG), helping to elucidate the under-
lying causal structure among variables and to choose a mini-
mal sufficient adjustment set of covariates [32], including age,
sex, region (Beijing or Shanghai), residence (urban or rural),
education level (0–6 years, 7–9 years, or ≥10 years), current
smoking (yes or no), alcohol drinking (yes or no), physical
activity (low or high), TG and HOMA-IR (ESM Fig. 2). In
addition to the multivariable model, exploratory analyses were
performed to include other conventional variables such as
family history of diabetes (yes or no), use of lipid-lowering
medication (yes or no), BMI, systolic BP and HDL-c; p values
were corrected for multiple testing via the false-discovery rate
(FDR) by using the Benjamini–Hochberg method [33].
Sensitivity analysis was performed by the inclusion of
HbA1c ≥48 mmol/mol (6.5%) as a further criterion to define
diabetes. Stratified analysis was conducted according to age
(<60 or ≥60 years), sex (male or female), region (Beijing or
Shanghai), residence (urban or rural), education level (0–
6 years, 7–9 years or ≥10 years), smoking (yes or no), alcohol
(yes or no), physical activity (low or high), and BMI (<24 kg/
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Table 1 Baseline characteristics
of participants who did not
develop diabetes (n = 1378) or
did develop diabetes (n = 499)
during 6 years of follow-up

Characteristic Incident diabetes

No Yes

Age, years 58.1±6.01 58.5±5.98

Male sex, n (%) 545 (40) 206 (41)

Beijing resident, n (%) 561 (41) 291 (58)

Urban resident, n (%) 579 (42) 216 (43)

Education level, n (%)

0–6 years 656 (48) 237 (47)

7–9 years 463 (34) 157 (31)

≥10 years 256 (19) 104 (21)

Current smoking, n (%) 367 (27) 126 (25)

Alcohol drinking, n (%) 356 (26) 136 (26)

Physical activity level, n (%)

Low 599 (43) 204 (41)

High 799 (58) 295 (59)

Family history of diabetes, n (%)a 132 (10) 64 (13)

Use of lipid-lowering medication, n (%) 60 (4) 36 (7)

BMI, kg/m2 23.9±3.33 25.5±3.69

WC, cm 81.6±9.88 86.4±11.1

Systolic BP, mmHg 136±21.3 145±22.9

Diastolic BP, mmHg 78.7±10.5 81.9±10.8

Fasting glucose, mmol/l 5.24±0.52 5.64±0.57

Erythrocyte HbA1c, mmol/mol 38.20±4.20 40.52±5.07

Erythrocyte HbA1c, % 5.65±0.38 5.86±0.46

Fasting insulin, pmol/l 91.7 (66.7–126) 99.3 (72.9–138)

HOMA-IR 3.05 (2.21–4.23) 3.52 (2.64–4.88)

TCH, mmol/l 4.59±0.92 4.75±0.96

HDL-c, mmol/l 1.30±0.34 1.25±0.31

LDL-c, mmol/l 3.16±0.91 3.32±0.96

TG, mmol/l 0.99 (0.7–1.49) 1.16 (0.81–1.79)

14:0b, % 0.38±0.35 0.39±0.38

16:0b, % 22.1±2.66 22.1±2.57

16:1n-9b, % 0.13±0.04 0.14±0.04

16:1n-7b, % 0.4±0.19 0.43±0.22

18:0b, % 14.7±1.7 14.6±1.74

18:1n-9b, % 11±1.34 11±1.31

18:1n-7b, % 1.03±0.17 1.02±0.17

Energy intake, kJ/day 8983 (7427–11,142) 9247 (7368–11,410)

Carbohydrate, % of energy 61 (55–67) 60 (53–67)

Fat, % of energy 27 (22–33) 27 (23–34)

Protein, % of energy 0.12 (0.10–0.14) 0.12 (0.11–0.14)

Carbohydrate/fat ratio 2.19 (1.66–3.03) 2.21 (1.59–2.89)

Refined grain intake, g/day 302 (236–450) 300 (229–450)

Data are presented as mean ± SD or median (IQR) for continuous variables, and as count (%) for categorical
variables; percentages may not add up to 100% because of rounding
a Family history of diabetes was defined as parent(s) or sibling(s) having diabetes
b There were 17 missing values for erythrocyte fatty acids
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m2 or ≥24 kg/m2) at baseline. A likelihood ratio test was
applied to examine the significance of interactions [34].

Weighted gene co-expression network analysis (WGCNA)
was used to construct modules based on GPLs that were log-

transformed and standardised to z scores before analysis (R
package WGCNA version 1.51; https://cran.r-project.org/
web/packages/WGCNA/index.html) [35]. Module eigengene
(ME) derived from the first principal component of an

Table 2 RRs (95% CIs) of diabetes after 6 years of follow-up according to quartile and per SD increment of GPLs (N = 1877)

Lipid RR (95% CI) according to GPL quartile ptrend
a RR (95% CI) per SD increment p valueb

Q1 Q2 Q3 Q4

LPC(20:3)

Model 1c 1 1.30 (1.03, 1.65) 1.34 (1.06, 1.70) 1.51 (1.20, 1.90) 0.001 1.16 (1.08, 1.26) <0.001

Model 2d 1 1.26 (0.99, 1.59) 1.26 (1.00, 1.60) 1.43 (1.14, 1.81) 0.003 1.13 (1.05, 1.23) 0.003

Model 3e 1 1.20 (0.95, 1.51) 1.24 (0.98, 1.56) 1.42 (1.13, 1.79) 0.002 1.14 (1.05, 1.23) 0.002

PC(16:0/16:1)

Model 1c 1 1.30 (1.02, 1.67) 1.51 (1.19, 1.91) 1.89 (1.50, 2.37) <0.001 1.24 (1.15, 1.33) <0.001

Model 2d 1 1.28 (1.00, 1.64) 1.47 (1.16, 1.87) 1.78 (1.40, 2.26) <0.001 1.21 (1.12, 1.31) <0.001

Model 3e 1 1.28 (1.00, 1.64) 1.41 (1.11, 1.79) 1.71 (1.35, 2.17) <0.001 1.20 (1.10, 1.29) <0.001

PC(16:0/18:1)

Model 1c 1 1.11 (0.88, 1.41) 1.36 (1.09, 1.70) 1.57 (1.26, 1.96) <0.001 1.18 (1.10, 1.27) <0.001

Model 2d 1 1.09 (0.86, 1.38) 1.32 (1.05, 1.65) 1.50 (1.19, 1.88) <0.001 1.16 (1.07, 1.25) <0.001

Model 3e 1 1.07 (0.84, 1.35) 1.33 (1.06, 1.67) 1.53 (1.21, 1.92) <0.001 1.17 (1.08, 1.27) <0.001

PC(16:0/20:3)

Model 1c 1 1.34 (1.03, 1.74) 1.55 (1.20, 2.00) 1.94 (1.52, 2.48) <0.001 1.28 (1.19, 1.39) <0.001

Model 2d 1 1.31 (1.01, 1.70) 1.46 (1.12, 1.89) 1.79 (1.38, 2.32) <0.001 1.25 (1.14, 1.36) <0.001

Model 3e 1 1.21 (0.93, 1.57) 1.33 (1.03, 1.73) 1.58 (1.21, 2.06) <0.001 1.20 (1.10, 1.31) <0.001

PC(18:0/16:1)

Model 1c 1 1.60 (1.25, 2.05) 1.49 (1.16, 1.92) 2.08 (1.64, 2.63) <0.001 1.23 (1.15, 1.32) <0.001

Model 2d 1 1.57 (1.22, 2.00) 1.46 (1.13, 1.88) 1.94 (1.51, 2.48) <0.001 1.20 (1.11, 1.30) <0.001

Model 3e 1 1.53 (1.20, 1.95) 1.41 (1.10, 1.80) 1.84 (1.44, 2.36) <0.001 1.19 (1.10, 1.29) <0.001

PC(18:0/20:3)

Model 1c 1 1.24 (0.97, 1.60) 1.48 (1.16, 1.90) 1.86 (1.47, 2.35) <0.001 1.25 (1.16, 1.36) <0.001

Model 2d 1 1.18 (0.92, 1.53) 1.38 (1.08, 1.78) 1.69 (1.31, 2.17) <0.001 1.21 (1.10, 1.32) <0.001

Model 3e 1 1.12 (0.86, 1.44) 1.26 (0.98, 1.63) 1.49 (1.15, 1.93) 0.001 1.16 (1.06, 1.27) 0.002

PC(18:1/20:3)

Model 1c 1 1.38 (1.07, 1.78) 1.44 (1.12, 1.87) 1.85 (1.43, 2.38) <0.001 1.25 (1.15, 1.36) <0.001

Model 2d 1 1.31 (1.01, 1.70) 1.34 (1.03, 1.73) 1.65 (1.26, 2.15) <0.001 1.19 (1.09, 1.31) <0.001

Model 3e 1 1.25 (0.96, 1.61) 1.27 (0.97, 1.64) 1.53 (1.17, 2.02) 0.002 1.17 (1.06, 1.28) 0.002

PE(16:0/16:1)

Model 1c 1 1.36 (1.06, 1.74) 1.53 (1.21, 1.95) 1.79 (1.42, 2.25) <0.001 1.22 (1.14, 1.31) <0.001

Model 2d 1 1.34 (1.04, 1.71) 1.48 (1.16, 1.89) 1.65 (1.29, 2.11) <0.001 1.19 (1.10, 1.29) <0.001

Model 3e 1 1.26 (0.98, 1.61) 1.35 (1.06, 1.71) 1.54 (1.21, 1.97) 0.001 1.17 (1.08, 1.28) <0.001

RRs (95% CIs) of incident diabetes according to quartiles and per SD increment of GPL were calculated by log-Poisson models
a ptrend was for RRs (95%CIs) of incident diabetes according to GPL quartile derived from log-Poissonmodels; all ptrend values remained significant after
multiple testing with FDR method
b p values were for RRs (95%CIs) of incident diabetes per SD increment in GPL derived from log-Poissonmodels; all p values remained significant after
multiple testing with FDR method
cModel 1: adjusted for age, sex, region (Beijing or Shanghai) and residence (urban or rural)
dModel 2: further adjusted for education level (0–6 years, 7–9 years, or ≥10 years), current smoking (yes or no), alcohol drinking (yes or no), physical
activity (low or high), TGs and HOMA-IR based on model 1
eModel 3: further adjusted for family history of diabetes (yes or no), use of lipid-lowering medication (yes or no), BMI, systolic BP and HDL-c based on
model 2
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identified module was representative of the module. Log-
Poisson regression models were applied to evaluate the asso-
ciations of lipid modules with risk of incident diabetes. The
correlation networks were plotted in Cytoscape (v 3.7.1;
https://cytoscape.org/release_notes_3_7_1.html).

For each GPL and module that were associated with inci-
dent diabetes, reduced rank regression (RRR) was performed
along with the PLS (partial least squares regression) procedure
in SAS v 9.2 (SAS Institute, Cary, NC, USA) to identify a
dietary pattern based on 18 predefined food groups that could
best explain its variation, following adjustment for age, sex,
region and residence [36]. Before the analysis, GPLs and
modules were normalised and scaled to SD of 1. Major foods
constituting a given dietary pattern were defined as those with
absolute values of factor loadings ≥0.20. The first factor
obtained by RRR was representative of a dietary pattern score
[36]. Stratified analysis of associations of GPL and/or module
with diabetes was implemented based on levels of the dietary
pattern score for corresponding GPLs or modules (≥ median
value, or < median value). Distributions of GPLs and/or
modules according to quartiles of macronutrient intake were
compared by ANCOVA, with adjustment for age, sex, region
and residence.

Analyses were performed with Statistical Analysis
Software (SAS) (SAS Institute), SPSS version 25.0 (IBM
Corporation, Armonk, NY, USA) and R version 3.4.4

(http://www.R-project.org). A two-sided p value <0.05 was
considered statistically significant unless specified otherwise.

Results

Baseline characteristics of participants During the 6 years of
follow-up, 499 (26.6%) participants developed diabetes.
Compared with individuals who did not develop diabetes,
those who did develop diabetes were more likely to be
Beijing residents and have a family history of diabetes. They
also had higher baseline values for BMI, WC, BP, fasting
glucose, HbA1c, fasting insulin, HOMA-IR, TCH, LDL-c
and TG, and lower values of HDL-c (Table 1).

Glycerophospholipids and incident diabetes As shown in
ESM Table 2 (Model 1), 73 of 160 GPLs were significantly
associated with incident diabetes (RRs ranged from 0.89 to
1.28 per SD increment; FDR-corrected p < 0.05), after adjust-
ment for age, sex, region and residence. When additionally
adjusted for other covariates selected by DAG, including educa-
tion level, current smoking, alcohol drinking, physical activity,
TG and HOMA-IR, the associations remained significant for
eight GPLs, namely LPC(20:3), PC(16:0/16:1, 16:0/18:1, 16:0/
20:3, 18:0/16:1, 18:0/20:3, 18:1/20:3) and PE(16:0/16:1) (RRs
ranged from 1.13 to 1.25 per SD increment; FDR-corrected p <

Table 3 RRs (95% CIs) of diabetes after 6 years of follow-up according to quartile and per SD increment of MEs

Module RR (95% CI) according to eigenvalue quartile ptrend
a RR (95%CI) per

SD
p
valueb

Q1 Q2 Q3 Q4

Black (PCs/PEs with C18:3 at sn-2 position, n=9
molecules)

1 1.15 (0.92, 1.43) 0.98 (0.78, 1.23) 1.20 (0.95, 1.51) 0.271 1.04 (0.96, 1.13) 0.318

Blue (PCs, n=22 molecules) 1 1.34 (1.05, 1.70) 1.39 (1.09, 1.78) 1.55 (1.21, 1.99) 0.001c 1.16 (1.06, 1.26) 0.001c

Brown (PEs, n=23 molecules) 1 1.02 (0.81, 1.29) 1.04 (0.82, 1.31) 1.28 (1.01, 1.63) 0.042 1.07 (0.98, 1.17) 0.139

Pink (PCs/PEs with C20:5 at sn-2 position, n=7
molecules)

1 1.06 (0.85, 1.32) 1.25 (1.01, 1.55) 1.32 (1.04, 1.66) 0.018 1.11 (1.02, 1.20) 0.019

Red (PEs with C22:6 at sn-2 position and PSs, n=10
molecules)

1 1.28 (1.02, 1.59) 1.18 (0.93, 1.50) 1.41 (1.11, 1.80) 0.020 1.11 (1.01, 1.22) 0.029

Green (PE(O)s/PE(P)s with C20:5/C22:6 at sn-2
position, n=11 molecules)

1 0.98 (0.79, 1.22) 1.22 (0.99, 1.50) 0.93 (0.72, 1.19) 0.905 1.03 (0.94, 1.12) 0.532

Turquoise (PE(O)s/PE(P)s, n=35 molecules) 1 1.09 (0.86, 1.37) 1.02 (0.81, 1.30) 1.09 (0.86, 1.40) 0.579 1.02 (0.94, 1.11) 0.691

Magenta (PCs with C20:4 at sn-2 position, n=4
molecules)

1 1.27 (1.00, 1.60) 1.11 (0.87, 1.42) 1.27 (0.99, 1.63) 0.130 1.08 (1.00, 1.18) 0.064

Yellow (PEs/PE(O)s/PE(P)s with C22:4 at sn-2
position, n=11 molecules)

1 1.13 (0.88, 1.45) 0.97 (0.74, 1.27) 1.18 (0.89, 1.57) 0.332 1.07 (0.97, 1.18) 0.167

RRs (95% CIs) of incident diabetes according to quartile and per SD increment of MEs were calculated by log-Poisson models

Model 1 was used for this analysis (adjusted for age, sex, region [Beijing or Shanghai], residence [urban or rural], education level [0–6 years, 7–9 years
or ≥10 years], current smoking [yes or no], alcohol drinking [yes or no], physical activity [low or high], TGs and HOMA-IR)
a ptrend was for RRs (95% CIs) of incident diabetes according to quartile of MEs derived from log-Poisson models
b p values were for RRs (95% CIs) of incident diabetes per SD increment in MEs derived from log-Poisson models
c p values that remained significant after multiple testing with FDR method

PS, phosphatidylserine
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0.05; Table 2 and ESM Table 2, Model 2). In exploratory anal-
yses, the eight aforementioned associations were unchanged
when further controlled for other conventional variables, includ-
ing family history of diabetes, use of lipid-lowering medication,
BMI, systolic BP and HDL-c (FDR-corrected p < 0.05; Table 2
and ESM Table 2, Model 3). Of note, four of these eight GPLs
contained saturated and monounsaturated fatty acyl chains. In
sensitivity analysis, the associations remained similar when
HbA1c ≥48mmol/mol (6.5%) was further added to define diabe-
tes (ESM Table 3). In the stratified analysis, most of the GPL–
diabetes associations did not differ substantially according to age,

sex, region, residence, education, smoking, alcohol, or BMI
status (FDR-corrected pinteraction > 0.05; ESM Table 4).

The diabetes-associated GPLs were correlated with estab-
lished diabetes biomarkers, particularly baseline TG (rs =
0.27–0.55), fasting glucose (rs = 0.17–0.30) and TCH (rs =
0.17–0.37 (all p < 0.001), after adjustment for age, sex, region
and residence (ESM Fig. 3).

Network analysis In the WGCNA analysis, nine modules based
on the 160 plasma GPLs were identified (each indicated by a
different colour in Fig. 1a). Generally, each subnetwork module
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Fig. 1 WGCNA analysis of GPL profiles. The nodes represent individual
lipid species and the edges indicate the weighted correlation coefficients
between each of lipid species. (a) A total of nine lipid subnetwork
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contained GPLs within the same subclass, and with similar acyl
chain length and number of double bonds at the sn-2 position. Of
the nine modules, the blue module composed of most PCs (Fig.

1b) was positively associated with the risk of incident diabetes,
with an RR (95% CI) of 1.16 (1.06, 1.26) per SD increment of
the module score (FDR-corrected p < 0.05; Table 3). Similar to
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Fig. 2 Food loadings were
derived by RRR as follows:
PC(16:0/16:1) (a), PC(16:0/18:1)
(b), PC(18:0/16:1) (c) and
PE(16:0/16:1) (d). The x-axis
represents food groups, and the y-
axis suggests the loadings of
corresponding food groups by
RRR. Food groups with |factor
loading| ≥0.20 (dashed line) were
components of dietary patterns
related to a given lipid species/
module
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the results for individual GPLs, the association of the blue
module with diabetes did not differ significantly between
subgroups stratified by age, sex, region, residence, education,
smoking, alcohol or BMI status (FDR-corrected pinteraction >
0.05; ESMTable 4).Moreover, the bluemodulewas alsomoder-
ately correlated with TG (rs = 0.51, p < 0.001), TCH (rs = 0.36,
p < 0.001) and fasting glucose (rs = 0.22, p < 0.001) (Fig. 1c).

Dietary factors, fatty acids in de novo lipogenesis pathway,
glycerophospholipids and incident diabetes Four of the
eight significant GPLs, namely, PC(16:0/16:1), PC(16:0/
18:1), PC(18:0/16:1) and PE(16:0/16:1), which contained
saturated and monounsaturated fatty acyl chains, were
positively correlated with carbohydrate intake and
carbohydrate/fat ratio but negatively correlated with fat
intake (FDR-corrected ptrend < 0.05; ESM Table 5).
Moreover, all the significant GPLs and modules were
moderately correlated with fatty acids in the DNL path-
way, especially 16:1n-7 (rs = 0.35–0.62), and stearoyl-
CoA desaturase activity reflected by 16:1n-7/16:0 ratio
(rs = 0.33–0.59) (ESM Fig. 4).

In RRR analysis, the four diabetes-associated GPLs carry-
ing DNL fatty acyl chains were correlated with dietary
patterns characterised by high portions of refined grains
(noodles and rice) but low portions of fish, dairy and soy
products (|loading factors| ≥0.2; Fig. 2 and ESM Table 6).
However, the other four significant GPLs that contained
C20:3, namely, LPC(20:3), PC(16:0/20:3, 18:0/20:3, 18:1/
20:3), as well as the blue module, were only correlated with

low intake of fish, dairy or soy products (|loading factors|
≥0.2, p < 0.001; ESM Fig. 5). Nevertheless, all the significant
associations between GPLs and risks of incident diabetes were
generally consistent among participants with different levels
of dietary pattern score (FDR-corrected pinteraction > 0.05;
ESM Table 4).

Physical activity, GPLs and incident diabetes Total physical
activity (MET-min/week) was inversely associated with
concentrations of the diabetes-associated GPLs/module,
though only the associations for LPC(20:3), PC(16:0/20:3),
PC(18:0/20:3) and PC(18:1/20:3) reached statistical signifi-
cance (FDR-corrected p < 0.05; ESM Table 7). Notably,
when the level of physical activity was stratified as low or
high (<2226 vs ≥2226 MET-min/week in men; or <2079 vs
≥2079MET-min/week in women), the aforementioned signif-
icant associations between GPLs/module and diabetes were
primarily observed in participants with low, but not high,
physical activity (all FDR-corrected pinteraction < 0.05;
Table 4).

Discussion

With high-coverage targeted lipidomics, eight GPLs (five
novel and three reported previously), mainly PCs, were found
to be positively associated with incident diabetes over a period
of 6 years in a community-dwelling Chinese population. Four
of the GLPs related to DNL were correlated to unhealthy

Table 4 RRs (95% CIs) of
diabetes after 6 years of follow-up
per SD increment of GPLs/MEs
among subgroups stratified by
physical activity status

Lipid Low physical activitya

(n=803)

High physical activityb

(n=1074)

pinteraction
c

RR (95% CI) p value RR (95% CI) p value

LPC(20:3) 1.24 (1.10, 1.40) <0.001d 1.06 (0.96, 1.18) 0.252 0.020

PC(16:0/16:1) 1.37 (1.21, 1.55) <0.001d 1.11 (1.00, 1.23) 0.047 0.002

PC(16:0/18:1) 1.28 (1.15, 1.44) <0.001d 1.08 (0.98, 1.20) 0.136 0.005

PC(16:0/20:3) 1.49 (1.30, 1.71) <0.001d 1.12 (1.00, 1.25) 0.041 0.001

PC(18:0/16:1) 1.38 (1.22, 1.55) <0.001d 1.09 (0.98, 1.21) 0.104 <0.001

PC(18:0/20:3) 1.44 (1.25, 1.66) <0.001d 1.08 (0.97, 1.21) 0.167 0.001

PC(18:1/20:3) 1.44 (1.25, 1.65) <0.001d 1.07 (0.95, 1.20) 0.242 0.002

PE(16:0/16:1) 1.35 (1.19, 1.52) <0.001d 1.09 (0.99, 1.21) 0.085 0.003

Blue module 1.37 (1.21, 1.56) <0.001d 1.03 (0.92, 1.14) 0.625 <0.001

RRs (95% CIs) of incident diabetes per SD increment of exposures were calculated by log-Poisson regression
adjusted for age, sex, region (Beijing or Shanghai), residence (urban or rural), education level (0–6 years, 7–
9 years or ≥10 years), current smoking (yes or no), alcohol drinking (yes or no), physical activity (low or high),
TGs and HOMA-IR
a Physical activity <2226 MET-min/week for male participants or <2079 MET-min/week for female participants
b Physical activity ≥2226 MET-min/week for male participants or ≥2079 MET-min/week for female participants
c pinteraction was derived from log-Poisson regression adjusted as above, including an interaction term between the
physical activity status and exposures; all values remained significant after multiple testing with FDR method
d p values that remained significant after multiple testing with FDR method
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dietary patterns, while the significant associations were only
observed in those with a low, but not high, level of physical
activity.

To the best of our knowledge, this is the first relatively
large-scale Asian prospective cohort study investigating the
associations between GPLs and incident diabetes. We identi-
fied three novel PCs (16:0/18:1, 18:0/16:1, 18:1/20:3) and
confirmed three diabetes-associated PCs (16:0/16:1, 16:0/
20:3, 18:0/20:3) previously reported by the EPIC-Potsdam
and Malmö Diet and Cancer Cohort (MDC-CC) studies
[9–11]. In the network analysis, the significant associations
of individual PCs were further supported by the collective
effects of the PC-containing module. Meanwhile, we also
documented novel diabetes-associated LPC(20:3) and
PE(16:0/16:1), somewhat similar to the positive associations
of LPC(14:0) and PE score with diabetes incidence observed
in the MDC-CC [11] and Prevención con Dieta Mediterránea
study [37]. Since we measured HbA1c using frozen erythro-
cytes rather than fresh blood samples, as required by NGSP
(http://www.ngsp.org/docs/methods.pdf), HbA1c ≥48 mmol/
mol (6.5%) was not included as a diagnostic criterion for
diabetes in the main analysis but was included in the
sensitivity analysis to support the robustness of our findings.
However, different GPL varieties, namely LPC(16:1),
PE(P-18:0/20:4) and PC(34:3), were suggested to be
significantly associated with diabetes incidence in a previous
Chinese nested case–control study including 100 case–control
pairs [12]. The discrepancies between that study and the
current one, as well as western studies, could be ascribed to
differences in study design, participant characteristics and
analytical platforms. Notably, in the current study, almost all
the diabetes-associated GPLs exclusively belonged to the PC
subclass (six PCs out of eight GPLs). By contrast, PE was the
predominant GPL subclass that showed a positive association
with incidence of the metabolic syndrome [26] in the same
cohort population. It is unclear whether there are preferable
links of specific GPL subclasses with certain cardiometabolic
outcome(s), although human studies showed associations
between PCs or the PC/PE ratio with some established diabe-
tes risk factors, such as obesity [38, 39] and insulin resistance
[38]. In fact, it was demonstrated that suppressing PC biosyn-
thesis via a diet deficient in choline or deleting PE N-methyl-
transferase could improve insulin resistance, glucose toler-
ance, fasting glucose, insulin and weight gain in high-fat-
diet-fed mice [5, 6, 40], and may partially underpin the
observed GPL–diabetes associations.

Notably, four of the diabetes-associated GPLs, namely
PC(16:0/16:1), PC(16:0/18:1) PC(18:0/16:1) and PE(16:0/
16:1), with saturated and monounsaturated fatty acyl chains
were associated not only with erythrocyte fatty acids in the
DNL pathway (particularly 16:1n-7 [rs = 0.35–0.62, p <
0.001]) but also with unhealthy dietary patterns comprising a
high proportion of refined grains but low proportions of fish,

dairy and soy products. Low fish intake in the EPIC-Potsdam
study was also associated with monounsaturated PCs, such as
PC(34:1), equivalent to PC(16:0/18:1) and PC(18:0/16:1) in
our study [41]. Similarly, our prior study in the same cohort
populations documented that diabetes-associated monounsat-
urated sphingolipids were significantly associated with DNL
fatty acids [24]. Indeed, the unique DNL fatty acyl chains
might reflect the abundant substrates for GPL biosynthesis,
when DNL was upregulated by a high carbohydrate diet [9].
Previously, a trans-ethnic meta-analysis including four west-
ern and three Asian cohort studies demonstrated that Asians
(Chinese and Japanese) with the highest white rice intake had
a 55% higher risk of diabetes than those with lowest intake
[42]. Moreover, our earlier study in the same cohort also
showed that erythrocyte DNL fatty acids were associated with
high carbohydrate/fat ratio (60.8%:27.0%) as well as elevated
incidence of diabetes [43]. Although the underlying mecha-
nisms linking high levels of DNL fatty acids with pathogene-
sis of diabetes are not well understood, animal model studies
revealed that high levels of DNL fatty acids could be involved
in ER stress, endothelial dysfunction, activation of an inflam-
matory response, and insulin resistance [44, 45]. Likewise,
these mechanisms might also partially underpin our observed
positive associations between GPLs with DNL fatty acyl
chains and incidence of diabetes. Collectively, our findings
suggested that specific structures in GPLsmight reflect certain
dietary exposures linking certain metabolic pathway(s) with
diabetes risks.

It is worth noting that when physical activity was consid-
ered, the positive GPL–diabetes associations for the eight GPLs
were only significant in the participants with low physical activ-
ity. Though all these eight GPLs were correlated inversely with
physical activity, only the correlations for LPC(20:3), PC(16:0/
20:3), PC(18:0/20:3) and PC(18:1/20:3), but not the four DNL
PCs and PE, reached statistical significance. Consistent with
our findings, an inverse association between PC(36:3), equiva-
lent to PC(16:0/20:3) in our study, and physical activity was
also indicated in the EPIC-Potsdam study [46]. However, it
remains unclear whether the significant associations between
the DNL GPLs and physical activity were masked by
unfavourable effects of fatty acids in the DNL pathway among
those consuming unhealthy dietary patterns. As a well-
established prevention strategy for diabetes, physical activity
has been shown to improve glucose and lipid metabolism and
insulin sensitivity and to suppress adiposity [47–49].
Nevertheless, little is known about whether or to what degree
physical activity could modify GPL metabolism and the asso-
ciations with diabetes. Data from RCTs suggest that both aero-
bic and acute exercise can reduce the PC/PE ratio and remodel
PC and/or PE in skeletal muscle, which consequently improves
insulin sensitivity and whole-body glucose tolerance [18–20].
In addition, studies in knockout mouse models also revealed
that a lower PC/PE ratio could enhance mitochondrial
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biogenesis, oxidative metabolism and insulin sensitivity [19].
Thus, our study supports the notion that physical activity can
modify the GPL–diabetes associations, independent of BMI
(see Table 3). Of course, further studies are warranted to
confirm our findings and to illuminate underlying mechanisms.

Our study had the following strengths: (1) the associations
between GPLs and risks of incident diabetes, and the modify-
ing effects of lifestyle on the associations were investigated
simultaneously; and (2) the broader spectrum of GPLs in the
well-established cohort study allowed us to discover novel
biomarkers and to explore comprehensively the relationships
of GPLs with unhealthy lifestyles and associated metabolic
pathways. Admittedly, our study also had some limitations.
First, the findings from the middle-aged and elderly Chinese
population may not be generalisable to other ethnic or youn-
ger populations. Second, physical activity and dietary intake
was assessed by questionnaires, therefore measurement errors
and/or recall bias could not be avoided. Third, given the obser-
vational nature of the study, we cannot fully rule out residual
confounding, despite extensive adjustments and prospective
study design.

In conclusion, the current study found that eight GPLs,
particularly PCs correlated with DNL, were associated with
high 6-year incidence of diabetes in a Chinese population. The
unfavourable associations might be worsened in people with
low physical activity. Further studies are warranted to validate
our findings and address underlying mechanism(s).
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