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Abstract
Hundreds of millions of people are affected by hyperinsulinaemia, insulin resistance, obesity and the dysglycaemia that mark a
common progression from metabolic health to type 2 diabetes. Although the relative contribution of these features and the order
in which they appear may differ between individuals, the common clustering and seemingly progressive nature of type 2 diabetes
aetiology has guided research and clinical practice in this area for decades. At the same time, lively debate around the causal
relationships between these features has continued, as new data from human trials and highly controlled animal studies are
presented. This ‘For debate’ article was prompted by the review in Diabetologia by Esser, Utzschneider and Kahn (https://doi.
org/10.1007/s00125-020-05245-x), with the purpose of reviewing established and emerging data that provide insight into the
relative contributions of hyperinsulinaemia and impaired glucose-stimulated insulin secretion in progressive stages between
health, obesity and diabetes. It is concluded that these beta cell defects are not mutually exclusive and that they are both
important, but at different stages.
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Introduction and scope of response

The review by Esser, Utzschneider and Kahn is a thorough
treatment of a complicated subject [1]. Although the role of
beta cells in type 2 diabetes was doubted in the past, truly
elegant work by Kahn and his contemporaries put this to rest
conclusively years ago. Today, we are left to debate when,
how and why beta cells ‘fail’ along the progression to type 2
diabetes. Their review starts from the viewpoint that there are
two opposing models of type 2 diabetes progression. In one

model, which they refer to as ‘prevailing’, the authors state
that ‘in the presence of insulin resistance, beta cell dysfunction
that occurs early in the course of the disease process is the
critical abnormality’. In another model, labelled as ‘alterna-
tive’, ‘primary beta cell overstimulation results in insulin
hypersecretion that then leads to the development of obesity
and insulin resistance, and ultimately to beta cell exhaustion’
[1]. These statements deserve careful parsing and reflection as
to whether the models are mutually exclusive. I believe they
are not. In this article I will comment on and debate the follow-
ing questions, derived from these stated models:

1. Both statements above imply that reduced glucose-
stimulated insulin secretion is the primary (or only) rele-
vant beta cell defect. What other beta cell differences are
found in obesity, prediabetes, diabetes? Are these differ-
ences good or bad, or does it depend on the context?

2. What is the evidence that hyperinsulinaemia can drive
the earliest stages of disease susceptibility? Beyond
correlations, determining causality requires specific
types of loss-of-function and gain-of-function experi-
ments. What have we learned from the specific manip-
ulation of insulin?
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3. What is the role of insulin resistance in obesity, prediabe-
tes, diabetes? Is insulin resistance the primary defect,
preceding beta cell dysfunction: broadly defined

Before delving into questions of primacy, causality and
specific defects, it is important to acknowledge that the
aetiology of type 2 diabetes, including the order in which each
pathological stage occurs, may not be the same for each indi-
vidual or genetically distinct human population [2] and, as the
authors point out, is understudied in young people [1]. I hope
to convey the range of pathophysiological mechanisms that
can contribute to dysglycaemia, rather than prescribe a single,
firm pathophysiological pathway to disease. It is also impor-
tant to acknowledge the work of others who have thoughtfully
considered the relative importance of hyperinsulinaemia in the
progression towards type 2 diabetes. Here I will try to avoid
duplicating the arguments of Jessie Roth, Barbara Corkey,
Walter Pories, Marc Prentki, Christopher Nolan, David
Ludwig and many others [3–8].

What are the beta cell defects in obesity,
insulin resistance and type 2 diabetes?

It is established that differences in beta cell function are funda-
mental to the pathogenesis of diabetes in populations with and
without obesity and ectopic lipid accumulation [9]. Now it
remains to be determined what the specific ‘dysfunctions’
are at the various stages of type 2 diabetes aetiology. First,
let us define dysfunction, and let us acknowledge that physi-
ological systems can both adapt and mal-adapt to stresses in
ways that may appear similar. The title of the article by Esser
et al frames a false dichotomy, as if hyperinsulinaemia is not
itself, in large part, a beta cell dysfunction (see below). I there-
fore suggest using the broadest definition of beta cell dysfunc-
tion that includes inappropriate insulin secretion, excessive or
insufficient, either in the fed or fasted state, in response to
glucose or any other nutrient. We would expect different
consequences of elevated insulin in distinct nutrient contexts.
Second, let us consider the stages of the progression to diabe-
tes, acknowledging the likelihood that these may differ in
different individuals (Fig. 1). We have learned from deep
phenotyping and human genetics that there are multiple sub-
types of obesity, prediabetes and type 2 diabetes [2].

The most prevalent feature of beta cell dysfunction found in
obesity is reflected in an approximately twofold increase in insu-
lin levels that can include changes in both the fasting and fed
states, prior to insulin resistance, andwell before relative glucose-
stimulated insulin secretion is reduced [10–13]. For example,
Hamley et al showed that ‘primary’ hyperinsulinaemia, resulting
from a combination of insulin hypersecretion and reduced clear-
ance, can be found in non-obese young adults, representing a
precursor stage to impaired glucose tolerance and impaired

fasting glucose [14]. Trico et al studied >1300 adolescents or
adults, revealing a tertile of insulin hypersecretors who did not
have clamp-measured insulin resistance but who exhibited
increased incidence of impaired glucose tolerance and type 2
diabetes after 3 years of follow-up [15]. These studies, and
others, illustrate that hyperinsulinaemia can be found prior to
insulin resistance and/or obesity.

Many discussions of this topic do not distinguish between
basal hyperinsulinaemia vs hyper-responsiveness to glucose
stimulation. Interestingly, in mouse models with reduced insu-
lin gene dosage, fasting insulin is reduced while glucose-
stimulated insulin responsiveness remains relatively intact
[16–18].While the two types of hyperinsulinaemia can be sepa-
rated experimentally, it remains unclear whether these
(mal)adaptations are mechanistically distinct. Theoretically,
fasting or fed hyperinsulinaemia can have multiple molecular
mechanisms, including simple beta cell overstimulation driven
by increased nutrient intake. Any modulation in the gain (e.g. a
right-shift in the nutrient dose–response curve) would also
change the efficiency of the insulin secretion in response to
constant nutrient exposure. Similarly, basal hyperinsulinaemia
can result from the inability to restrain constitutive insulin
secretion in low glucose conditions, a cardinal feature of imma-
ture beta cells and insulinomas [3, 19]. Additional proposed
molecular mechanisms of insulin hypersecretion include inap-
propriate redox signalling and/or mitochondrial proton leak,
exposure to environmental toxins, disrupted circadian rhythm,
and altered lipid metabolism related to local lipid accumulation
in the pancreas [20–24]. It should also be noted that sustained
insulin elevation occurs when the normal oscillatory pattern is
disrupted, a process that can lead to liver insulin resistance and
predisposition to type 2 diabetes [25]. The lower limit of insulin
secretion is also related to the number of beta cells. We and
others have shown that cell autonomous mechanisms link
workload to beta cell proliferation and survival depending on
the life stage [26, 27]. Finally, reduced insulin clearance plays a
major role in hyperinsulinaemia [14, 28] and has been proposed
as a significant driver of type 2 diabetes [29].

In those who progress to the early stages of impaired
glucose tolerance, multiple beta cell dysfunctions can be
identified. Cited by Esser, the seminal paper by Mitrakou
et al describes ‘diminished early insulin release’ in indi-
viduals with impaired glucose tolerance, regardless of
obesity; in fact, this paper shows that only the first phase
(~0–60 min) was reduced, while all subsequent insulin
measurements, and fasting insulin, were higher in the
glucose-intolerant individuals (Fig. 2) [30]. We are in full
agreement that a reduction in the first phase of glucose-
stimulated insulin release must precede the development
of dysglycaemia and eventual frank diabetes (Fig. 3). The
question at hand concerns whether fasting or fed
hyperinsulinaemia can have maladaptive consequences
prior to the impairment of glucose tolerance.
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Physiological and pathophysiological
consequences of hyperinsulinaemia

Can hyperinsulinaemia play a causal role in obesity and ectopic
lipid deposition? We are delighted that Esser et al chose to high-
light some of our pre-clinical studies using mice with genetically
engineered specific reductions in circulating insulin, although
some questions were raised. Several additional key papers from
our laboratory, when considered, may address the concerns
brought up by Esser et al (Table 1). Our initial work showing
that reducing hyperinsulinaemia prevented diet-induced obesity,
fatty liver and inflammation [16], rather than being built on the
premise that hyperinsulinaemia is deleterious, took us by surprise
and was originally designed to test the role of insulin in beta cell
mass regulation. Subsequent studies extended these findings past

the first year of life to the full murine lifespan [18], to the Lepob/ob

background [31], and to correlations within genotypes [32]. We
have also replicated the relationship between insulin gene dosage
in body-weight tracking data frommice used to examine the role
of hyperinsulinaemia in pancreatic cancer initiation [33], as well
as mice missing only a single allele of Ins1 (supplemental data in
[34]). This last study compares mice having the full complement
of insulin alleles (Ins1+/+;Ins2+/+) with littermates lacking only a
single Ins1 allele (Ins1+/−;Ins2+/+) (the smallest genetic insulin
manipulation possible) and still finds small but significant differ-
ences in body weight in young mice [34]. Moreover, Dionne
et al. found that the effects of reduced insulin gene and restriction
of energy intake on adiposity were not additive [35]. Page et al
used a model of inducible insulin reduction to demonstrate fat
loss in mice that had already been made obese [36]. While some
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Fig. 1 Amulti-stage and individualised natural history of type 2 diabetes.
Thick lines represent an approximate average of the latency of a key
(patho)physiological variable associated with the progression to type 2
diabetes. Thinner lines represent a range of these phenotypic variables
reflected in various sub-types of the disease. This is not an exhaustive set;

for example, visceral adiposity is coincident with lipid accumulation in
the liver, pancreas and other ectopic sites. Thin arrows denote highlighted
effects of specific variables on each other. IFG, impaired fasting glucose;
IGT, impaired glucose tolerance
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insulin gene configurations do not result in robust differences in
circulating insulin [32], due to gene compensation [37], we have
observed reduced adiposity in every model where we were able

to reduce circulating insulin. Our results are consistent with other
models in which insulin secretion has been suppressed and
weight gain blunted [38].

The work of Templeman using mice with reduced insulin
production also demonstrated a causal role for hyperinsulinaemia
in age-associated insulin resistance [18]. Our work is consistent
with another study that mildly blunted insulin secretion indirectly
[39] and with experiments by Czech and co-workers showing
that abrogating hyperinsulinaemia in a variety of models
improved insulin sensitivity and reduced associated inflamma-
tion [40], a topic we have recently reviewed [41]. Moreover,
chronic insulin infusion is sufficient to cause weight gain and
glucose intolerance in lean rats [42]. The molecular mechanisms
by which hyperinsulinaemia and sustained insulin receptor
(INSR) activation (i.e. loss of insulin oscillations) could induce
insulin resistance are known, including both INSR and post-
receptor desensitisation [43]. Improved insulin sensitivity in
models with reduced insulin production likely accounts for the
maintenance of normoglycaemia. It is important to recognise that
there is a narrow concentration range of insulin that canmodulate
lipid homeostasis without affecting glucose tolerance. This fits
with the mechanistically independent effects of insulin on
glucose uptake and on lipid storage, active at different insulin
concentrations, with the later process’s enzymatic pathways
sensitive to much smaller changes in insulin levels. For example,
while 1 nmol/l insulin is sufficient for near maximal adipocyte
differentiation [44], that dose (already in the high physiological
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range) does not stimulate glucose uptake in vitro [45]. In vivo
human studies consistently show that while insulin’s effects on
glucose disposal are relatively insensitive and linear across a
range spanning 350–900 pmol/l, lipolysis is more highly sensi-
tive to insulin, with a non-linear dose response [46]. In our
animalmodels, we expect that once blood glucose is significantly
affected by unphysiological shifts in circulating insulin, multiple
counter-regulatory systems come into play.

Human clinical studies where insulin is directly modulated up
or down confirm the causal relationship between
hyperinsulinaemia and obesity/insulin resistance, as reviewed
elsewhere [47, 48]. Despite improving glycaemic control and
cardiovascular outcomes, and despite confounders present in
these patient populations, clinical trials of insulins consistently
demonstrate weight gain [49]. Gregory et al inferred the ability of
chronic exogenous insulin to induce insulin resistance, indepen-
dently of mild hyperglycaemia, by conducting parallel clamp
studies on individuals with type 1 diabetes and MODY2 [50].
Meta-analysis confirms that suppression of insulin secretion
alone is sufficient to treat obesity [51], consistent with our studies
using mice with inducible partial insulin gene deletion [36, 52].
Esser also considered these studies and seemingly dismissed one
study employing the somatostatin analogue octreotide because
weight loss correlated with improved insulin sensitivity [53].
These findings are entirely consistent with the concept that
hyperinsulinaemia is upstream of both obesity and insulin resis-
tance, at least in some individuals. However, I do agree that
further refinement of insulin inhibition therapies will be required
before they can be recommended instead of lifestyle approaches
to achieve the same goal.

Esser et al highlight several lines of clinical investigation that
they suggest fail to support a causal role for insulin hypersecre-
tion in the pathogenesis of dysglycaemia, including insights from
interventional studies in animals and humans involving lifestyle,
pharmacological inhibition of insulin secretion, insulin

sensitisers, insulin secretagogues and bariatric surgery. While
noting that many dietary weight-loss interventions also suppress
insulin hypersecretion, the authors suggest an apparent paradox:
‘if hyperinsulinaemia was primary, one may have expected that
the ‘fixed’ insulin hypersecretion, at least initially, would not
have been able to adapt to the reduced energy intake or weight
loss so that hypoglycaemia would have been reported, which
was not the case’. As noted above, insulin sensitivity in periph-
eral tissues can rapidly adapt to changes in ambient insulin. In
fact, muscle insulin receptor mRNA expression is significantly
downregulated by hyperinsulinaemia within hours, and restored
just as quickly upon removal of the desensitising stimulus [54].
The absence of hypoglycaemia, which is vigorously defended
against by multiple redundant mechanisms, both central and
peripheral, does in no way negate the more direct evidence for
a causal pathological contribution from hyperinsulinaemia.
Together, multiple lines of evidence, from exquisitely controlled
animal models to clinical studies, support the assertion that
hyperinsulinaemia is a contributor to obesity and insulin resis-
tance (Fig. 3). Hyperinsulinaemia may eventually play a role in
dysglycaemia through a combination of indirect and directmech-
anisms. Hyperinsulinaemia need not be the only contributor to be
critical and uniquely actionable.

What is the role of insulin resistance in type 2
diabetes?

Many investigators still believe that type 2 diabetes starts with
primary insulin resistance. In the first model, the phrase ‘in the
presence of insulin resistance’ points to a requirement for
insulin resistance to ‘unmask’ underlying beta cell pathology.
It is also commonly held that insulin resistance is pathological,
even in its mildest forms, a concept that has been elegantly
debated elsewhere [7, 55, 56]. While the idea that insulin

Table 1 Direct genetic evidence in mice demonstrating a causal role for hyperinsulinaemia in obesity and age-related insulin resistance (diet-induced
obesity is suppressed by all insulin-lowering manipulations)

Genotype comparison Sex Ref Fasting insulin Diet-induced obesity

Ins1+/+;Ins2−/− vs Ins1+/−;Ins2−/− M [16] Reduced Reduced

[33] Insufficient Unable to test hypothesis

Ins1+/+;Ins2−/− vs Ins1+/−;Ins2−/− F [16] Unchanged Unable to test hypothesis

[33] Reduced Reduced

Ins1−/−;Ins2+/+ vs Ins1−/−;Ins2+/− M [32] Unchanged Unable to test hypothesis

Ins1−/−;Ins2+/+ vs Ins1−/−;Ins2+/− F [17] Reduced Reduced

[18] Reduced Reduced (improved insulin sensitivity)

Ins1+/+;Ins2+/−;Lepob/ob vs Ins1+/+;Ins2−/−;Lepob/ob vs Ins1+/−;Ins2−/−;Lepob/ob M [31] Insufficient Reduced

Ins1+/+;Ins2+/−;Lepob/ob vs Ins1+/+;Ins2−/−;Lepob/ob vs Ins1+/−;Ins2−/−;Lepob/ob F [31] Insufficient Reduced

Ins1+/−;Ins2fl/fl;Pdx1CreERT vs Ins1+/−;Ins2fl/fl;Pdx1CreERT + tamoxifen M [36] Reduced Reduced

The age range for all studies is 3–12 months, except reference [18] which reports on mice from 12 months onward F, Female; M, Male
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resistance precedes and causes hyperinsulinaemia has long
been held as dogma, attempting to define what comes first is
critically dependent on technology and ease of tissue access. It
is no surprise that early studies in adults identified alterations
in glucose uptake in skeletal muscle prior to defects in
glucose-stimulated insulin secretion. Skeletal muscle is easily
accessible, while islets are buried within the pancreas and
insulin secretion partially obscured by variation in insulin
clearance [28]. Moreover, clamp studies can employ
supraphysiological insulin levels and exaggerate the contribu-
tion of skeletal muscle glucose clearance [57]. Nevertheless,
recent large studies challenge this order of events, identifying
people with primary hyperinsulinaemia [14, 15]. Most
population-wide studies are unable to distinguish primary
hyperinsulinaemia from insulin resistance because insulin
resistance is inferred from unexplained hyperinsulinaemia
(e.g. HOMA-IR, etc.), rather than measured directly. The
challenges of such a circular definition of insulin resistance
for large-scale studies have recently been illuminated by
mathematical modelling [58].

It is now broadly agreed that beta cell ‘failure’ is the critical
event in the progression to diabetes but it remains possible that
pathological insulin resistance may be an initial causal factor in
some individuals (Figs 1, 3). To address this question we must
consider the consequences of insulin resistance on its own. The
most specific way to study insulin resistance is to examine genet-
ic reduction or specific pharmacological inhibition of insulin’s
cognate receptor. Secondary signalling mediators, such as
IRS1/2, phosphoinositide 3 (PI3)-kinases and Akt1/2/3, are less
informative for this question because they integrate multiple
signals beyond insulin, including the insulin-like growth factors,
other tyrosine kinase receptors and possibility glucose itself [59].
While individuals with heterozygous INSR mutations exhibit
insulin resistance on a par with that found in some people with
type 2 diabetes and significant hyperinsulinaemia, they tend to
exhibit only mild glucose intolerance; frank diabetes is either not
observed or is delayed by decades [60, 61]. According to the
T2D Knowledge Portal (t2d.hugeamp.org, accessed 1 January
2021), common variation near INSR is more closely associated
with blood pressure, height, adjusted waist/hip ratio, serum urate,
triacylglycerols and adjusted hip circumference than with type 2
diabetes. Insr heterozygous mice exhibit hyperinsulinaemia and
normal glucose tolerance [62, 63]. Blockade of insulin receptor
signalling using a specific monoclonal antibody results in tran-
sient hyperglycaemia at high doses but lowers fasting glucose
after 3 weeks of treatment in mice. Pharmacological modulation
of INSR in rodents, using the mixed agonist/antagonist S961,
leads to hyperinsulinaemia and glucose intolerance but not diabe-
tes [64]. S961 can increase beta cell proliferation in the
normoglycaemic state but the molecular mechanisms remain
unclear. In mice, high-fat-diet-induced beta cell proliferation
precedes insulin resistance [65] and requires hyperinsulinaemia
[16]. Thus, global insulin resistance, defined in the purest

molecular terms, alone does not lead to diabetes under most
conditions tested, in the absence of beta cell impairment [66].
Esser et al have done an excellent job of reviewing results from
mouse models of tissue-specific insulin resistance and
summarising that frank diabetes has not been found, except for
the reported effects of Insr loss in beta cells [1]. In our hands,
even beta cell-specific Insr loss does not lead to diabetes but,
rather, mild hyperinsulinaemia [34]. Muscle Insr knockout alone
is not sufficient to cause insulin resistance or glucose intolerance,
although lipids are shunted to other tissues [67]. Adipose Insr
knockout mice are protected from obesity and diabetes, and live
longer than control mice [68].

Inferring the causal components along the progression
from obesity to type 2 diabetes from the effects of medications
is complicated. Metformin and thiazolidinediones are not
useful tools for directly testing the role of general insulin
sensitivity, since these drugs have multiple known modes of
action, have insulin-sensitising actions that are dependent on
tissue type, and affect beta cell function indirectly and directly
[69]. Notably, metformin and pioglitazone reverse
hyperinsulinaemia in isolated non-diabetic human islets [70,
71]. Sulfonylureas increase body weight, likely because the
induced insulin secretion is not glucose dependent and can
therefore be inappropriately timed. The effect of glucagon-
like peptide-1 (GLP1) receptor agonists, on the other hand,
is meal-dependent, ensuring that insulin release is appropri-
ately timed, and they do not cause weight gain [72]. Insulin
resistance is a ‘concept’ based on differences between what
would be expected from a simple model and what is observed.
Many hypotheses around insulin resistance are currently
untestable in the absence of specific approaches to manipulate
it. Experimentally and specifically manipulating ‘insulin resis-
tance’ in humans is difficult and will necessarily affect differ-
ent aspects of insulin signalling, perhaps in distinct ways
between key tissues.

Clinical translation and unanswered
questions

There are several open questions that should be discussed:

1. When is the best time to intervene to prevent and reverse
obesity and/or type 2 diabetes? There is still a paucity of
longitudinal studies of large human cohorts starting in or
before childhood, where most of the risk of type 2 diabe-
tes is set [73]. We agree with Esser et al that it will be
critical to conduct more studies in youth to investigate the
early events that ultimately lead to type 2 diabetes. The
authors review several studies on the progression to type 2
diabetes in youth, which largely confirm the loss of beta
cell responsiveness to glucose as a prerequisite for
disease.
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2. Is there a genetic basis for hyperinsulinaemia and its
sequelae in humans? The genetics of common type 2
diabetes are complex. While it is clear that most of the
hundreds of genes near genome-wide association study
(GWAS) signals are enriched for islet expression, the
specific effects of most of these SNPs on basal insulin,
stimulated insulin, and beta cell mass, as well as the direc-
tionality of these effects, remains to be studied [74].
Mendelian randomisation has been used to infer that
hyperinsulinaemia causes obesity [75] and insulin resis-
tance [76], depending on the tool SNPs employed. We
await the complete genetic dissection of signals within
the insulin locus that are associated with anthropomorphic
traits. It will also be important to understand the epigenet-
ic control of insulin and its mediators.

3. Does assigning primary defects and causality matter clinical-
ly? For the last few decades, the prevailing view of type 2
diabetes pathogenesis has guided therapeutic approaches
and drug development. Most drugs are designed to combat
hyperglycaemia, counteract the deficiency in glucose-
stimulated insulin secretion, and increase insulin sensitivity
in the context of frank diabetes. A compelling case can be
made that much of the important pathobiology has already
occurred by the time glucose homeostasis is deranged and
that some of these approaches may be double-edged swords.
We now appreciate, through bariatric surgery and dietary
intervention data, that type 2 diabetes is much more revers-
ible than was once thought [77–79].

In conclusion, there is still much left to learn about the causal
relationships between the different forms of hyperinsulinaemia,
the different forms of insulin resistance, and the multiple
(patho)physiological metabolic changes that occur along a path
from health to obesity to diabetes. The field has come to consen-
sus around the central role of dysfunctional beta cells in diabetes,
and this author finds a majority of common ground with Drs
Esser, Utzschneider, and Kahn. With this article, there is sincere
hope to continue a conversation about causality that will ulti-
mately improve treatment and the lives of people living with
diabetes and those who are at risk.
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