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Abstract
Aims/hypothesis Islets are thought to be stably present in the adult human pancreas to maintain glucose homeostasis. However,
identification of the pancreatic intraepithelial neoplasia (PanIN)–islet complex in mice and the presence of PanIN lesions in adult
humans suggest that similar remodelling of islet structure and environment may occur in the human pancreas. To identify islet
remodelling in a clinically related setting, we examine human donor pancreases with 3D histology to detect and characterise the
human PanIN–islet complex.
Methods Cadaveric donor pancreases (26–65 years old, n = 10) were fixed and sectioned (350 μm) for tissue labelling, clearing
and microscopy to detect local islet remodelling for 3D analysis of the microenvironment. The remodelled microenvironment
was subsequently examined via microtome-based histology for clinical assessment.
Results In nine pancreases, we identified the unique peri-lobular islet aggregation associated with the PanIN lesion (16 lesion–
islet complexes detected; size: 3.18 ± 1.34 mm). Important features of the lesion–islet microenvironment include: (1) formation
of intra-islet ducts, (2) acinar atrophy, (3) adipocyte association, (4) inflammation (CD45+), (5) stromal accumulation (α-SMA+),
(6) increase in Ki-67 proliferation index but absence of Ki-67+ alpha/beta cells and (7) in-depth and continuous duct–islet cell
contacts, forming a cluster. The duct–islet cell cluster and intra-islet ducts suggest likely islet cell neogenesis but not replication.
Conclusions/interpretation We identify local islet remodelling associated with PanIN–islet complex in the adult human pancre-
as. The tissue remodelling and the evidence of inflammation and stromal accumulation suggest that the PanIN–islet complex is
derived from tissue repair after a local injury.

Keywords 3D pancreatic histology . Human islet . Intra-islet duct . Islet aggregation . Islet cell neogenesis . Pancreatic
intraepithelial neoplasia

Abbreviations
α-SMA α-Smooth muscle actin
CK7 Cytokeratin 7
EUS Endoscopic ultrasound
PanIN Pancreatic intraepithelial neoplasia

Introduction

The bifunctional pancreas consists of both the exocrine
parenchyma (acini and ducts) and endocrine islets to facil-
itate and modulate digestive and metabolic activities. In
humans, islets are mostly intra-lobular and surrounded by
the acini and ducts, with which the islets have direct
contact and indirect neurovascular association to integrate
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pancreatic structures and functions. In healthy adults, islets
are thought to be stably present in the lobules of the
pancreas to maintain glucose homeostasis. For example,
Saisho et al. examined autopsy pancreases and reported
that islet beta cells are well preserved in the adult humans
when donors have no history of diabetes or pancreatic
diseases [1]. However, local changes in human pancreases
are frequently seen in the form of pancreatic intraepithelial
neoplasia (PanIN) [2–5]. Importantly, in a mouse model of
PanIN, cerulein-induced pancreatic injury leads to the
formation of a PanIN–islet complex with intra-islet ducts
[6]. This experimental outcome suggests that the associat-
ed changes to ducts and islets may be present in the human
pancreas, which could affect local islet homeostasis.

Clinically, although PanIN is linked to cancer [3], the
overwhelming majority of PanIN lesions are stable. The
origin of PanIN in humans is still under debate but has
been linked to acinar-to-ductal metaplasia (with Kras
mutation) and/or local pancreatic injury (e.g. pancreatitis
induced by local duct obstruction) [3–5, 7–10]. In mice,
duct obstruction induced by partial duct ligation leads to
lobular injury, inflammation and tissue regeneration, in
which evidence of islet alpha and beta cell regeneration,
including beta cell neogenesis, has been reported [11–13].

Yet, conflicting results showing no beta cell neogenesis
have also been reported ([14, 15], via lineage tracing anal-
ysis), creating controversy on the intricate processes of
pancreatic and islet regeneration after injury. In humans,
the situation is further complicated by significant differ-
ences between the mouse and human pancreases in
macrostructure (assembly of soft lobules vs solid organ),
islet cytoarchitecture and islet cell physiology to extrapo-
late likely human islet regeneration from experimental
conditions [16–18]. Thus, to investigate islet remodelling
in the human PanIN microenvironment, careful examina-
tion of islets and ducts with multiplex and multi-
dimensional signals is crucial to identify and confirm the
associated tissue remodelling in a novel environment.

Recent advances in modern 3D histology with tissue
clearing and its application to characterise the islet
neurovascular connections in mouse and human pancreases
[19–26] provide an enabling approach to simultaneously
detect and characterise the PanIN and islet microenviron-
ment with high definition. Microscopically, when the
human pancreas becomes transparent, the acinar, duct and
islet structures and neurovascular networks are visualised
in a 3D space continuum, providing details of the exocrine–
endocrine integration [22–25]. In this research we prepared
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transparent cadaveric donor pancreases for panoramic and
in-depth imaging of duct and islet remodelling to investi-
gate the human PanIN–islet complex. The results of
morphological and quantitative analyses of the human
PanIN–islet complex are presented and discussed in this
report.

Methods

Human pancreatic specimensHuman pancreases were obtain-
ed from ten cadaveric donors with normal HbA1c, amylase
and lipase levels. Collection and use of human tissues were
approved by the Institutional Review Board of National
Taiwan University Hospital. Donor pancreases were first cut
to separate the head, body and tail of the organ and then into
strips (~1.5 cm in width) before being fixed in 4% (vol./vol.)
formaldehyde for 2 days (4°C). The fixed tissues were washed
in PBS for 4 days (4°C) and then sectioned to 350 μm spec-
imens by vibratome before being transferred to 0.1% (vol./
vol.) paraformaldehyde for preservation (4°C) [22]. The head,
body and tail of each pancreas were individually analysed
(1.5–2 cm3 of each region). Table 1 lists the sex, age, BMI,
HbA1c level and cause of death of the donors, and location of
the detected peri-lobular islet aggregation.

Pancreatic tissue labelling Before immunolabelling, the
specimens were immersed in 2% Triton X-100 solution
for 2 h at 15°C for permeabilisation. Eleven different
primary antibodies were used to immunolabel the pancre-
atic tissues. The following antibodies were used: mouse
anti-insulin (sc-8033_AF488, Santa Cruz, Dallas, TX,
USA) , mouse an t i -g lucagon (ab10988 , Abcam,
Cambridge, MA, USA), rabbit anti-glucagon (ab92517,
Abcam), rabbit anti-cytokeratin 7 (CK7; ab68459,

Abcam), mouse anti-α-smooth muscle actin (α-SMA;
MS-113-P1, Thermo, Fremont, CA, USA), rabbit anti-
PGP9.5 (ab108986, Abcam), mouse anti-CD31 (MS-353-
S1, Thermo), mouse anti-podoplanin (clone D2-40;
916602, BioLegend, San Diego, CA, USA), rabbit anti-
Ki-67 (ab15580, Abcam), mouse anti-Ki-67 (61-0078,
Genemed, Torrance, CA, USA) and mouse anti-CD45
(NCL-L-LCA, Leica Biosystems, Buffalo Grove, IL,
USA). Before applying the antibodies, tissue sections were
rinsed in PBS. This was followed by a blocking step, incu-
bating the tissue with blocking buffer (2% Triton X-100,
10% normal goat serum, and 0.02% sodium azide in PBS).
The primary antibody was then diluted in dilution buffer
(1:100, 0.25% Triton X-100, 1% normal goat serum, and
0.02% sodium azide in PBS) to replace the blocking buffer
and incubated for 2 days at 15°C to label tissue or cellular
structures. Electronic supplementary material (ESM)
Table 1 summarises the immunostaining reagents/
dilutions used in the figures and ESM figures.

Alexa Fluor (AF)-488, -546, and -647 conjugated second-
ary antibodies (raised in goat; 1:200, Thermo) were used in
combination to reveal the immunostained structures. Negative
staining controls were prepared by omitting the primary anti-
body in the staining reagent. DAPI or SYTO 16 (Thermo)
staining was performed to reveal nuclei. To maximise photon
penetration in deep-tissue fluorescence imaging, the labelled
specimens were transferred to an aqueous tissue-clearing solu-
tion with high refractive index (RapiClear 1.52 solution,
SunJin Lab, Hsinchu, Taiwan) overnight and then immersed
in fresh RapiClear solution for one day before being imaged
via transmitted light and confocal microscopy.

Deep-tissue 3D confocal microscopy Imaging of the tissue
structure was performed with a Zeiss LSM 800 confocal
microscope (Carl Zeiss, Jena, Germany) using a tile-scan

Table 1 Donor information
Donor Sex Age

(years)
BMI HbA1c,%

(mmol/mol)
Cause of death Location of detected peri-

lobular islet aggregation

1 Female 26 22.2 5.2 (33) Cerebral hypoxia Tail

2 Male 37 26.3 5.5 (37) Traumatic brain injury Head and body

3 Female 40 23.8 5.6 (38) Cerebrovascular/stroke Head and tail

4 Male 50 20.3 5.6 (38) Brain tumour Tail

5 Female 51 19.8 5.3 (34) Cerebrovascular/stroke Head (two locations)
and body

6 Female 51 22.8 5.4 (36) Cerebrovascular/stroke Head, body and tail

7 Male 53 28.0 6.0 (42) Subarachnoid
haemorrhage

Tail

8a Male 54 23.2 5.4 (36) Cerebral hypoxia None

9 Female 64 27.1 5.4 (36) Cerebrovascular/stroke Head and tail

10 Female 65 18.2 6.0 (42) Cerebrovascular/stroke Body

a Peri-lobular islet aggregation and formation of PanIN–islet complex are identified in all donors except donor 8
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mode with automatic image stitching. The laser-scanning
process was operated using the multi-track scanning mode to
acquire signals, including transmitted light signals, which
reveal the pancreatic lobules and infiltrated adipocytes. The
AF-647-labelled structures were excited at 633 nm and the
fluorescence was collected by a 650–710 nm filter. The AF-
546-labelled structures were excited at 543 nm and the signals
were collected by a 560–615 nm filter. The AF-488-labelled
structures were excited at 488 nm and the fluorescence was
collected by a 500–550 nm filter. Fluorescence signals in the
figures are pseudo-coloured. ESM Table 2 summarises the
colour codes for different markers in the figures and ESM
figures.

3D/2D integrative histologyWhen a duct lesion–islet complex
was detected in a 350 μm tissue section via 3D imaging, the
section was next processed by dehydration, embedding and
microtome sectioning to generate 4 μm paraffin slices for
H&E staining (Leica Autostainer XL). H&E-stained speci-
mens were examined using the same Zeiss microscope for
side-by-side comparison of the 3D fluorescence and 2D
H&E micrographs to confirm the PanIN lesion (e.g. Fig. 1d–
f). Once confirmed, multiplex signals from the same microen-
vironment were further acquired from adjacent tissue sections
via standard immunohistochemistry (4 μm sections; Bond
Polymer detection kit, Leica Biosystems, DS9800/DS9390)
and 3D histology (350 μm sections) with the markers
summarised in ESM Table 1 to analyse the PanIN–islet
microenvironment.

Image projection and analysis Avizo 6.2 image reconstruc-
tion software (VSG, Burlington, MA, USA), Zen software
(Carl Zeiss) and LSM 510 software (Carl Zeiss) were used
for projection, signal segmentation, noise reduction and
analysis of the confocal images. Signal segmentation for
quantification of tissue density is illustrated in Juang et al.
[27]. Briefly, feature extraction and image segmentation
for calculation of the alpha cell (or lymphatic vessel) densi-
ty were performed using the Label Field function of Avizo
to collect the pixels in the area of interest (lesion–islet
complex; e.g. the arbitrary oval in Fig. 1a) and the associ-
ated glucagon (or D2–40) signals. Areas in the same tissue
map but >1 mm away from the lesion–islet complex were
used as the control (normal pancreas). Pixels with the
glucagon (or D2–40) signals were divided by those of the
area of interest ×100% to estimate the alpha cell (or
lymphatic vessel) density. The Ki-67 proliferation index
(%) was defined as the percentage of nuclei in the area of
interest (lesion–islet complex or normal pancreatic lobule)
labelled with Ki-67. The same tissue labelling, imaging
and quantification processes were conducted on the
comparable pancreatic sections to compare the tissue
densities and proliferation indexes on the same basis.

Statistical analysis Quantitative values are presented as means
± SD with the distribution of data points. Statistical differ-
ences were determined by the unpaired Student’s t test.
Differences between groups were considered statistically
significant when p < 0.05.

Results

Peri-lobular islet aggregation and duct lesion–islet complex
in human pancreas Human islets are primarily intra-lobular
and scattered in the pancreatic parenchyma. However, in
our scanning of the transparent donor pancreas labelled
with ductal (CK7) and islet (glucagon) markers (Fig. 1a
and ESM Fig. 1; optically cleared specimen [22]), the
unique peri-lobular islet aggregation around the duct lesion
caught our attention for detailed investigation. Among the
ten analysed donor pancreases (Table 1; age: 26–65 years
old; BMI: 18.2–28.0), nine (90%) were detected to have
local islet aggregation and all of the aggregations (100%)
were associated with the PanIN-1A/B lesions (confirmed
by H&E images; see [2] for details). Note that, for morpho-
logical and quantitative analyses of the lesion–islet
complex, an arbitrary boundary (e.g. an oval in Fig. 1a
and ESM Fig. 1) was used to enclose the aggregated islets
and the PanIN lesion for illustration and to quantify the
tissue components. Overall, 16 duct lesion–islet complexes
(size: 3.18 ± 1.34 mm) were detected in the ten pancreases.

Compared with the normal pancreas (normal lobular
architecture; >1 mm away from the lesion–islet complex),
the lesion–islet complex had an 8.9-fold (p < 0.001)
increase in islet density (Fig. 1b; inside the arbitrary oval
boundary in Fig. 1a and ESM Fig. 1; major axis at 1.5–
5 mm). From the transmitted light signals (Fig. 1a), we also
identified that 88% of the lesion–islet complexes were
associated with adipocytes, either inside the complex or
at the periphery or both (Fig. 1c).

To confirm the lesion–islet complex, a parallel presentation
of the high-resolution 2D image (Fig. 1d), 3D projection (Fig.
1e), and clinical H&E micrograph (Fig. 1f) was used to illus-
trate and cross-validate the tissue remodelling. In addition to
islet aggregation, Fig. 1d–f also reveals the loss of acini (or
acinar atrophy) in the microenvironment, which is similar to
the lobular atrophy previously reported around PanIN [28]. In
quantification, while only a small percentage of the analysed
pancreas (0.32 ± 0.30%) was found with the lesion–islet
complex, a marked 2.32 ± 1.90% of the observed islets were
inside the complex (Fig. 1g). The result reflects that the
complex disproportionately includes more endocrine islets
than exocrine tissues owing to islet aggregation.

It is worthwhile noting that cross-validation of lesion–islet
complexes was made possible by the integration of 3D confo-
cal imaging with microtome-based H&E histology (Fig. 1d–
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f). The z-axis alignment between the confocal image stack and
the microtome sections provides a side-by-side comparison of
the multiplex signals (ESM Video 1), including the

transmitted light, multi-channel fluorescence and H&E
(ground truth tissue information for PanIN identification [2])
signals, to depict and confirm a complex environment.
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Fig. 1 Peri-lobular islet
aggregation and duct lesion–islet
complex in human pancreas. (a)
Map of pancreas revealing islet
aggregation and lesion–islet
complex (representative image).
Tile scanning and image stitching
were used to generate the tissue
map (overlay of fluorescence and
transmitted light signals; the latter
was used to identify fatty
infiltration in the transparent
specimen [22]). Magenta,
glucagon staining of islets; green,
CK7 staining of duct epithelium;
white, nuclear staining; scale bar,
2 mm. (b) Increase in islet density
in the lesion–islet complex (vs
normal pancreas). Pixels
occupied by glucagon+ alpha cells
divided by pixels (area) of interest
(e.g. arbitrary oval in a) ×100%
was used to estimate the islet
density. Areas in the same tissue
map but >1 mm away from the
lesion–islet complex were used as
the control (normal pancreas).
***p < 0.001. (c) Percentage of
lesion–islet complexes associated
with adipocytes. All 16 lesion–
islet complexes identified in the
ten donors were used in the
analysis. (d–f) PanIN
confirmation and cross-validation
of PanIN–islet complex via
parallel presentation of
fluorescence, transmitted light
and H&E signals. Oval, PanIN–
islet complex; asterisks,
adipocytes; P, parenchyma; blue,
insulin; magenta, glucagon;
green, CK7; white, nuclei; scale
bar, 500 μm. (g) Percentage of
analysed pancreas with PanIN–
islet complex and percentage of
observed islets inside the PanIN–
islet complex. All ten donor
pancreases were used in the
analysis, including donor 8
(Table 1)
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Associated changes of islet and duct in lesion–islet microen-
vironment We next zoomed into the lesion–islet micro-
environment to reveal details of islet and duct remodel-
ling. First, using quadruple staining of glucagon, insu-
lin, CK7 and nuclei, we detected the localised formation
of intra-islet ducts (Fig. 2a–c and ESM Fig. 2). In addi-
tion, high-resolution images of the microenvironment
reveal: (1) the alpha and beta cells attaching to the
basal domain of the duct epithelium; and (2) the duct
epithelium expressing the islet cell markers glucagon
and insulin (Fig. 2d). In addition, strips of glucagon+

and insulin+ cells can be identified along the longitudi-
nal direction of the tubular epithelium (Fig. 2e), differ-
ing from the normal spherical structure of the islet.

In quantification, 7.6% of the islets (size >100 μm)
observed in the lesion–islet complex were identified as
having intra-islet ducts (Fig. 2f; 22 of 288 islets with
CK7+ epithelium reaching the core), while no intra-islet
ducts were identified in the normal pancreatic lobules
(1150 islets examined). In the same microenvironment, we
detected a 6.2-fold (p < 0.001) increase in the percentage of
ductal cells labelled with insulin or glucagon compared
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Blue, insulin; magenta, glucagon;
green, CK7; white, nuclei. (f)
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with that of the normal pancreas (Fig. 2g). Overall, these
results indicate a locally diminished tissue boundary
between ducts and islets in the lesion–islet complex.

Stromal cell accumulation associated with PanIN–islet
complex The stromal cells of fibroblasts and myofibroblasts
(stellate cells) are sparse and quiescent in the normal pancreas;
however, they become activated and proliferative in pancreat-
ic injury and inflammation (e.g. pancreatitis), causing fibrosis
[29, 30]. In Fig. 3a–f and ESM Fig. 3, we integrate 3D fluo-
rescence and 2DH&E signals to reveal that a similar phenom-
enon of fibrosis (or stromal cell accumulation) occurs in the
PanIN–islet complex. Quadruple staining of α-SMA (fibrosis
marker), CK7, insulin and nuclei identifies a prominent pres-
ence of α-SMA+ myofibroblasts around both the duct lesion
and the aggregated islets, forming a triad of stroma, PanIN and
islet to replace the normal pancreatic components of acinus,
duct and islet in the lobule.

The enlarged images of themicroenvironment further show
that the cell bodies and processes of α-SMA+ myofibroblasts
embrace the basal domain of the duct lesion and islet (Fig.
3g,h), which is confirmed by the elongated nuclei in the
H&E micrograph (Fig. 3i). The result indicates the change in
the immediate microenvironment of the aggregated islets
compared with that of the normal islets, in which the islets

are scattered in the parenchyma and surrounded by acini (Fig.
3j; note that, unlike mouse islets, human islets do not have a
glial sheath [22]). Quantitative analysis of the H&E images in
the lesion–islet microenvironment shows a 1.9-fold
(p < 0.001) increase in the number of fibroblast-like cells at
the islet boundary compared with that of the normal pancreas
(Fig. 3k), confirming the peri-islet stromal cell accumulation.
However, because H&E staining is nonspecific, this analysis
cannot distinguish between fibroblasts, myofibroblasts, glia
and peri-arteriolar smooth muscle cells in the microenviron-
ment to specify the cellular response.

Evidence of tissue injury and regeneration in lesion–islet
microenvironment Both the intra-islet ducts identified in Fig.
2a–c and the peri-PanIN fibrosis revealed in Fig. 3 suggest that
a local pancreatic injury could have occurred, leading to tissue
remodelling and regeneration after the injury. To support this
concept of pancreatic injury and regeneration, we used the
signals of lymphatic vessels (D2–40+), leucocyte (CD45+),
and Ki-67 to investigate the inflammatory response and cellular
replication in the lesion–islet complex (Fig. 4a–f). Three
features of the microenvironment are revealed in the analysis:
(1) increase in lymphatic vessel density (or lymphangiogenesis)
in the lesion–islet complex vs the normal pancreas (3.2-fold,
p < 0.01; Fig. 4a–c and ESM Video 2); (2) peri-lesional
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complex. (a–f) α-SMA staining reveals stromal accumulation in lesion–
islet microenvironment. (a) Map of pancreas (representative image; scale
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leucocyte infiltration (inflammation, aggregation of CD45
signals; identified in all nine analysed lesion–islet complexes)

(Fig. 4d,e); and (3) prominent Ki-67+ cell proliferation in the
lesion–islet microenvironment (Fig. 4f).
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We also assessed the neurovascular networks in this micro-
environment via paired PGP9.5 (neuroendocrine marker) and
CD31 (endothelial marker) staining. Figure 4g,h shows that
the lesion–islet complex is surrounded by condensed nerve
fibres and blood vessels (note that PGP9.5 staining also labels
islets), confirming islet aggregation and a rich neurovascular
supply to this proliferative environment.

Absence of islet alpha and beta cell proliferation in lesion–
islet complex The tissue inflammation and marked cell prolif-
eration in the lesion–islet microenvironment (Fig. 4a–f) raise a
critical question: does islet cell replication and/or neogenesis
occur in this environment? To address the first part of this
question, we applied quadruple staining using Ki-67, gluca-
gon, insulin and nuclei to investigate the identity of prolifer-
ating cells. As can be seen in Fig. 5a–e, the Ki-67+ cells are
both inside and around the aggregated islets and ducts. The
high-resolution images (Fig. 5b–e) and videos (ESM Video 3
and 4) show that, although the Ki-67+ nuclei are adjacent to
the alpha and beta cells, they are not enclosed by glucagon or
insulin signals, indicating the absence of alpha and beta cell
replication.

Next, using the Ki-67 proliferation index (% of cells in
proliferation), we identified a 3.5-fold (p < 0.001) increase in
cell replication in the lesion–islet complex vs the normal
pancreatic lobule (Fig. 5f). Among the proliferating cells in
the lesion–islet complex, 7.2% and 21.3% of them were asso-
ciated with the islet and duct, respectively (Fig. 5g). In the
duct, a subgroup of the proliferating cells (2.1%) was residing
next to the glucagon+ or insulin+ cells. Overall, 9.3% of prolif-
erating cells in the lesion–islet complex were adjacent to the
immunoreactive alpha or beta cells, while no Ki-67+ alpha or
beta cells were identified.

In-depth and continuous duct–islet cell contacts and integra-
tion in lesion–islet complexRegarding the second part of the
above question, in mice beta cell neogenesis has been iden-
tified by lineage tracing analysis of the injured pancreas
induced by partial duct ligation [12]. Interestingly, despite
the experimental nature of this tracing analysis, the pancre-
atic injury led to the formation of duct (cytokeratin+)–islet
(insulin+) cell clusters, which in humans are notably iden-
tified in the PanIN–islet complex. As can be seen in Fig.
6a–e, we used the pancreas map to specify the location of
the duct lesion–islet complex in the donor pancreas.
Zooming into the area of interest, the multiplex (CK7,
glucagon, insulin and nuclear) and in-depth signals identi-
fy the formation of duct (CK7+)–islet (glucagon+ and/or
insulin+) cell clusters associated with the duct epithelium
(Fig. 6f–g and Fig. 6h–i; size of cell cluster: 76 ± 20 μm,
n = 12). ESM Figs 4–6 provide additional examples of the
continuous duct–islet cell contacts and integration in the
lesion–islet complex. The duct–islet cell clusters, together

with the islet aggregation (Fig. 1) and intra-islet ducts (Fig.
2), highlight the histological features of PanIN–islet
complexes in the adult human pancreas.

Discussion

Although islets are thought to be stably present in the
adult human pancreas to maintain glucose homeostasis,
in this research we identify local islet remodelling in the
PanIN–islet complex via high-resolution tissue imaging.
Histologically, PanIN is a well-defined duct lesion and
commonly seen in the human pancreas [3–5]. However,
prior to this research, PanIN-associated islet remodelling
could not be globally examined in a clinically related
setting owing to the technical constraint of microtome-
based 2D histology. Here, using the transparent pancre-
as [22], we combine modern 3D and classic 2D histol-
ogy to examine the human PanIN–islet complex in a
global and integrated fashion.

Using high-resolution images, we identified peri-
lobular islet aggregation associated with PanIN, which
contributes to a local increase in islet density (Fig. 1a,b).
This phenomenon appears to be caused in part by acinar
atrophy around PanIN (Fig. 1d–f and [28]). However,
acinar atrophy cannot explain the formation of intra-islet
ducts (Fig. 2a–c) and duct–islet (alpha/beta) cell clusters
(Fig. 6) in the lesion–islet complex. These two unique
forms of duct–islet cell integration suggest that islet cell
neogenesis (not replication, as we can see from absence of
Ki-67+ alpha and beta cells, Fig. 5) may have contributed
to the increase in islet density, although lineage-tracing
analysis would be needed to demonstrate the neogenic
process more definitely.

Previously, the formation of intra-islet ducts has been
detected in rodent models, children, and pancreatic cancer
patients [6, 20, 31–33]. In mice, intra-islet ducts have
been reported to give rise to insulin+ cells [33]. In this
study, the epithelial ingrowth to islets is particularly simi-
lar to that found in KrasG12D mutant mice when treated
with cerulein to induce pancreatitis and PanIN [6]. Taking
together these developmental and injury conditions and
the trophic effect of insulin [34], we suspect that the local
increase in islet density (Fig. 1a,b) and the intimate islet–
duct contacts (Fig. 2a-d and Fig. 6) are intrinsic responses
of human pancreas to facilitate tissue repair after a PanIN-
associated injury. This concept of tissue injury, inflamma-
tion and repair is also supported by the findings of stro-
mal cell accumulation (Fig. 3), increase in lymphatic
vessel density (Fig. 4a–c), leucocyte infiltration (Fig. 4e)
and cellular replication (Fig. 4f) in the lesion–islet
microenvironment.
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Pancreatic remodelling in the lesion–islet microenviron-
ment is also reflected by adipocyte association with the
lesion–islet complex (Fig. 1a and c). Insulin promotes adipo-
genesis, in which pre-adipocytes (e.g. stromal cells such as
fibroblasts and myofibroblasts) differentiate into adipocytes
[35, 36], and stimulates adipocyte proliferation [37]. In Fig.
3, the co-localisation of stromal cells and islets around the
PanIN lesion creates favourable conditions to facilitate ectopic
fat deposition (also described as pancreatic steatosis or fatty
infiltration in the literature [38]). Clinically, both fibrosis and
fat replacement of parenchyma are abundant in surgical biop-
sies for pancreatic cancer [39]. In Figs 1, 3 and 4, we show that
the associations among inflammation, fibrosis and fatty infil-
tration has already manifested in the PanIN–islet microenvi-
ronment, highlighting the correlation between the early and
late stages of duct lesion progression and the potential patho-
physiological impact of the aggregated islets on the peri-
lesional stroma. Regarding the bidirectional relationship
between pancreatic cancer and diabetes [40], clinically the

correlation between pancreatic ductal adenocarcinoma and
hyperinsulinaemia has long been recognised [41–43]. In our
work, the local increase in islet density (Fig. 1a–b) supports
the concept that the relationship may have started at the early
(PanIN) stage due to the trophic effect of insulin on the
exocrine pancreas [44].

In mice, researchers have used the cell tracing technique
to investigate beta cell neogenesis in partial duct ligation
[12–15]; however, genetic- or chemical-based cell analysis
cannot be applied to examine the human pancreas for obvi-
ous reasons. Clinically, MRI and endoscopic ultrasound
(EUS) are the preferred imaging modalities to detect
pancreatic lesions in cancer screening and/or biopsy (e.g.
EUS-guided fine-needle aspiration [45]). However,
because the two methods cannot resolve cellular structure
and identity, their reliability to detect and distinguish
PanIN lesions remains questionable [46]. In this research,
our measurement of PanIN–islet complexes with an aver-
age size at ~3 mm confirms that the associated duct and
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islet remodelling at the early stage (i.e. without clinical
symptoms) is too small to be resolved by MRI or EUS
(resolution at ~1 cm or larger) and thus requires micro-
scopic imaging to detect and confirm pancreatic tissue
remodelling. At the microscopic level (100–1000 μm),
the PanIN–islet complex, which consists of deformed
ducts, aggregated islets and rich stroma (Figs 1, 2 and 3),
provides a clear target for detection and immunohisto-
chemical confirmation. This avoids the uncertainty of
studying islet remodelling in an undefined environment.
However, it should be noted that in 3D human pancreatic
histology, false positive and false negative results have
both been observed with suboptimal specimens [47].
Artifacts are derived from the residual blood in lobular
microvessels (false positive) and light scattering in deep-
tissue microscopy (false negative). Therefore, we empha-
sise the importance of using multiplex signals, including
transmitted light (identification of pancreatic lobular struc-
ture and fatty infiltration), multi-channel fluorescence
(alpha, beta and ductal cell labelling) and H&E staining
(PanIN and stroma confirmation) signals, to cross-
validate the imaging results acquired from the novel
human PanIN–islet microenvironment.

In conclusion, usingmultiplex signals,we identify and confirm
the PanIN–islet complex with intra-islet ducts and duct–islet
(alpha/beta) cell clusters in the adult human pancreas. Tissue
remodelling and evidence of inflammation, stromal accumulation,
and increase in cell replication suggest that the PanIN–islet
complex is derived from tissue repair after a local injury. The
human PanIN–islet complex thus provides the morphological
context for future genetic and/or molecular marker analyses to
investigate local islet remodelling involving probable alpha and
beta cell neogenesis in a clinically related setting.
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