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the effects of genetic variants on fasting glucose
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Abstract
Aims/hypothesis An elevated fasting glucose level in non-diabetic individuals is a key predictor of type 2 diabetes. Genome-
wide association studies (GWAS) have identified hundreds of SNPs for fasting glucose but most of their functional roles in
influencing the trait are unclear. This study aimed to identify the mediation effects of DNAmethylation between SNPs identified
as significant from GWAS and fasting glucose using Mendelian randomisation (MR) analyses.
Methods We first performed GWAS analyses for three cohorts (Taiwan Biobank with 18,122 individuals, the Healthy Aging
Longitudinal Study in Taiwan with 1989 individuals and the Stanford Asia-Pacific Program for Hypertension and Insulin
Resistance with 416 individuals) with individuals of Han Chinese ancestry in Taiwan, followed by a meta-analysis for combining
the three GWAS analysis results to identify significant and independent SNPs for fasting glucose. We determined whether these
SNPs weremethylation quantitative trait loci (meQTLs) by testing their associations with DNAmethylation levels at nearby CpG
sites using a subsample of 1775 individuals from the Taiwan Biobank. The MR analysis was performed to identify DNA
methylation with causal effects on fasting glucose using meQTLs as instrumental variables based on the 1775 individuals. We
also used a two-sample MR strategy to perform replication analysis for CpG sites with significant MR effects based on literature
data.
Results Our meta-analysis identified 18 significant (p < 5 × 10−8) and independent SNPs for fasting glucose. Interestingly, all 18
SNPs were meQTLs. TheMR analysis identified seven CpGs near theG6PC2 gene that mediated the effects of a significant SNP
(rs2232326) in the gene on fasting glucose. The MR effects for two CpGs were replicated using summary data based on the
European population, using an exonic SNP rs2232328 in G6PC2 as the instrument.
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Conclusions/interpretation Our analysis results suggest that rs2232326 and rs2232328 in G6PC2 may affect DNA methylation
at CpGs near the gene and that the methylation may have downstream effects on fasting glucose. Therefore, SNPs inG6PC2 and
CpGs nearG6PC2may reside along the pathway that influences fasting glucose levels. This is the first study to report CpGs near
G6PC2, an important gene for regulating insulin secretion, mediating the effects of GWAS-significant SNPs on fasting glucose.
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Abbreviations
G6PC2 Glucose 6-phosphatase catalytic subunit 2
GRS Genetic risk score
GWAS Genome-wide association studies
HALST Healthy Aging Longitudinal Study in Taiwan
LD Linkage disequilibrium
MAF Minor allele frequency
meQTL Methylation quantitative trait locus
MR Mendelian randomisation
SAPPHIRe Stanford Asia-Pacific Program

for Hypertension and Insulin Resistance
SMR Summary data based on MR
TWB Taiwan Biobank

Introduction

Fasting glucose level is a glycaemic trait that when elevated in
non-diabetic individuals can be a strong predictor for type 2
diabetes [1]. Several genome-wide association studies
(GWAS) have been performed for fasting glucose in non-
diabetic individuals with predominantly European ancestry
[2–7]. These studies have identified SNPs in over 40 genetic

loci that have implications in fasting glucose and many of
these SNPs are also risk variants for type 2 diabetes. Hence,
understanding the genetic factors that influence fasting
glucose can help identify risk loci for type 2 diabetes and
pathways implicated in glucose homeostasis [4, 8].

Many genetic risk models have been created for type 2
diabetes. However, due to the small effect sizes of the current-
ly identified type 2 diabetes variants, these genetic models add
little prediction value to the clinical models considering vari-
ables such as age, sex, BMI and family history [9]. One possi-
ble improvement in the prediction accuracy of the genetic risk
model is to include new genetic variants relevant to type 2
diabetes identified in non-European ancestry populations [9].
Moreover, differential DNA methylation at CpG sites associ-
ated with genetic variants have been shown to affect the risk of
type 2 diabetes [10–12]. Therefore, an integrative analysis of
GWAS and epigenetics data may provide further insight into
the pathogenesis of type 2 diabetes and improve current genet-
ic risk models [9]. To our knowledge, only a few GWAS for
blood glucose have been performed in East Asians [13–16].
Furthermore, several epigenome-wide association
studies (EWAS) have been performed to examine the associ-
ations between DNA methylation levels at genome-wide
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CpGs and fasting glucose [17–20]. However, the causal rela-
tionships between the CpGs and fasting glucose have not been
fully investigated.

Mendelian randomisation (MR) has become a popular
approach to investigate whether DNA methylation acts as a
mediator between genetic variants and the complex trait in a
causal pathway [21]. For example, MR was used to identify
the mediation effects of CpGs on type 2 diabetes and CVD
using the complex trait as the outcome, DNA methylation as
the risk factor, and SNPs as instrumental variables [22, 23].
Recently, Liu et al [24] performed a cross-omics analysis for
fasting glucose and usedMR to identify a CpG at the SLAMF1
gene nominally associated with fasting glucose using the
genetic risk score as the instrumental variable in samples of
European ancestry. However, to our knowledge, no similar
analysis that integrates GWAS and epigenetics data to inves-
tigate the causal roles of CpGs on fasting glucose has been
reported for the East Asian population.

In this study, we aimed to identify the mediation effects of
CpGs between genetic variants and fasting glucose using
samples of Han Chinese descent in Taiwan. We hypothesised
that SNPs identified as significant from GWAS and nearby
CpGs affected by the SNPs may reside along the same path-
way to influence fasting glucose levels. Our analysis results
can provide new biological insights into the functional roles of
GWAS-significant SNPs for fasting glucose and mechanisms
for type 2 diabetes.

Methods

Cohort descriptions and fasting glucose measurement The
discovery dataset for the GWAS analyses consisted of three
cohorts, from the Taiwan Biobank (TWB) [25], the Healthy
Aging Longitudinal Study in Taiwan (HALST) [26] and the
Stanford Asia-Pacific Program for Hypertension and Insulin
Resistance (SAPPHIRe) [27] studies. Written informed
consent for participation was obtained from all participants
and the analysis was approved by the Institutional Review
Board of the National Health Research Institutes in Taiwan.
The TWB and HALST studies are both population-based
longitudinal studies, while the SAPPHIRe study is comprised
of concordant and discordant sib pairs for hypertension. The
replication dataset (TWB2) for the GWAS results was another
batch of cohorts obtained from the TWB. Detailed descrip-
tions of the three cohorts are provided in electronic supple-
mentary material (ESM) Methods.

Fasting glucose in mmol/l was measured from fasting
serum in the TWB and HALST studies and from fasting plas-
ma in the SAPPHIRe study. The fasting blood specimens (up
to 30 ml) were collected in the morning after participants had
fasted overnight for >8 h. Individuals were excluded if they
had fasting glucose ≥7 mmol/l, HbA1c ≥48 mmol/mol (6.5%),

type 1 diabetes, type 2 diabetes or gestational diabetes (diag-
nosed, self-reported or on diabetes treatment). Fasting glucose
values were inverse normal transformed for analyses.

Genotyping, imputation and quality control Samples from the
TWB were genotyped using the TWB chip, which is a
customised Affymetrix Axiom Genome-Wide Array
consisting of approximately 653,000 SNPs [28]. The SNPs
included a subset of SNPs on the Axiom Genome-Wide
CHB 1 Array, SNPs that are reported to be ancestry informa-
tive, significant SNPs from other GWAS, and pharmacoge-
netics markers on the Affymetrix DMET Plus array. The
HALST samples were genotyped based on the Metabochip
[29], from which approximately 200,000 candidate SNPs for
metabolic, cardiovascular and anthropometric traits were
selected. Moreover, the SAPPHIRe samples were genotyped
using the Affymetrix Genome-Wide Human SNP Array 6.0,
which contains approximately 900,000 SNPs. The SNP geno-
types and samples then underwent standard GWAS quality
control procedures for each cohort study. Briefly, SNPs with
call rates <95% and with Hardy–Weinberg equilibrium p-
values <10−4 were excluded [6]. Moreover, samples with call
rates <95% [6], duplicated samples (the PLINK [30] pi_hat
statistics >0.9 [31]), or samples who failed the PLINK sex
check were excluded. For replicated samples, the sample with
the highest call rate was kept. Furthermore, if the median of
the PLINK pi_hat statistics of a sample with all other samples
was >0.05, the sample was removed due to a possible sample
contamination [32]. The aforementioned analyses were
performed using PLINK v1.9 [33]. Principal components
were calculated using the PC-AiR method, which accounted
for sample relatedness, implemented in the R (v3.5.1) [34]
package GENESIS (v2.14.3) [35]. The principal components
were included as covariates in statistical analyses to adjust for
population stratification. Samples in each cohort were then
imputed against the reference panel consisting of haplotypes
of 2504 samples from the 1000 Genomes Project [36] using
the Michigan Imputation Server. SNPs with minor allele
frequency (MAF) >1% and the imputation quality measure
RSQ >0.9 [37] were used for the association analyses. After
quality control, the TWB had 18,122 individuals, HALST had
1989 individuals, SAPPHIRe had 416 individuals (in 179
families) and TWB2 had 6955 individuals. There were
5,151,227, 374,794, 5,084,103 and 5,050,043 directly geno-
typed and imputed SNPs with MAFs >1% and imputation
RSQ >0.9 in the TWB, HALST, SAPPHIRe and TWB2
datasets, respectively. Demographics, such as the proportions
of sex and hypertension status, and the means of age, BMI and
fasting glucose for the four datasets, are provided in ESM
Table 1.

DNA methylation assays Blood samples were randomly
selected from 2091 TWB participants who had been
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genotyped by the GWAS arrays for genome-wide methylation
profiling using the Illumina Infinium MethylationEPIC
BeadChip [38]. The R package Bigmelon (v1.12.0) [39],
one of the few tools that can process the MethylationEPIC
chip data, was used for the sample and CpG-level quality
control, and the quality control procedures as suggested in
the Bigmelon paper [39] were followed. Briefly, outlier
samples were first removed based on the principal component
analysis [39]. Samples with <85% bisulphite conversion
values, a conservative threshold as suggested in Bigmelon
[39], were removed. Data were then normalised using the
Dasen function in the wateRmelon R package (v1.30.0)
[40]. The Qual function in Bigmelon was used to further
remove samples whose normalised values changed signifi-
cantly compared with the raw values. Samples with 1% of
CpG sites with a detection p value >0.05 were also removed
[39]. CpG sites with less than three bead counts in 5% of
samples or with 1% of samples having a detection p value
>0.05 were then removed [39, 41]. The data were then
normalised again using the Dasen function. Outlier CpG
values, defined as values beyond 4 × IQR, were set to missing
using the Pwod function in WateRmelon, and samples or
CpGs with missing rates >5% were removed [39]. Finally,
CpG probes with common variants (e.g. SNPs, indels or struc-
tural variations with frequencies >1%) and probes with cross-
hybridisation potential identified by McCartney et al [42], as
well as CpGs on the sex chromosomes, were removed [41].
After quality control, 774,398 CpGs in 1775 samples
remained for the analysis. Demographics for the 1775 samples
are shown in ESM Table 2. The distributions of the variables
were similar to those observed for TWB and TWB2 (ESM
Table 1).

GWAS analyses Single SNP association analysis was
performed for each cohort using the software EMMAX
(v20120210) [43], which implements a linear mixed model-
based approach accounting for sample relatedness, with
covariates including age, age2, BMI, sex, hypertension status,
genotyping batch and the top 10 principal components. The
fixed effects in the linear mixed model included the overall
mean, covariates and the tested SNP, and the random effect
was the polygenic background where its variance accounted
for sample relationships using a kinship matrix. This linear
mixed model framework has been used in other studies
[44–46]. Wald tests based on the linear mixed model using
the empirical kinship (i.e. the Balding–Nichols matrix estimat-
ed in EMMAX) were performed and genotype dosages were
used in the model to account for imputation uncertainty. Then,
the SNPs with RSQ >0.9 in each cohort were included in the
meta-analysis. Therefore, meta-analysis for a SNP may
include one, two or three cohort results, depending on the
RSQ value for the SNP in each cohort. The meta-analysis
was performed using META (v1.7) [47] with the inverse-

variance method based on a fixed-effects model. SNPs were
significant if their p values from the meta-analysis were <5 ×
10−8. A replication analysis was performed for the significant
SNPs using the TWB2 samples. We also performed a condi-
tional analysis using the meta-analysis results to identify novel
SNPs using GCTA (v1.91.1) [48]. A list of literature SNPs for
fasting glucose was compiled based on the GWAS catalogue
(https://www.ebi.ac.uk/gwas/; v1.0) [49]. We also extracted
SNPs with p values <10−6 for fasting glucose from the Type
2 Diabetes Knowledge Portal (https://t2d.hugeamp.org/,
accessed 4 February 2020) and from the summary data of
different studies including Dupuis et al [4], Scott et al [5],
Manning et al [6], and Lagou et al [50] downloaded from
the Meta-Analyses of Glucose and Insulin-related traits
C on s o r t i um (MAGIC ) [ 5 1 ] w eb s i t e ( h t t p s : / /
magicinvestigators.org/downloads/, accessed 4 February
2020). A total of 1133 literature SNPs with results in our
meta-analysis were extracted. Because many of the 1133
SNPs were in linkage disequilibrium (LD), there would be
collinearity if all of them were included in a regression model.
Therefore, PLINK was first used to prune for LD so that the
LD r2 was <0.98 for each pair of SNPs after pruning. LD was
measured based on the TWB2 sample. A total of 426 SNPs
remained and then the conditional analysis was performed for
each significant SNP conditional on the 426 SNPs. The
TWB2 was used as the reference sample for GCTA.
Furthermore, to identify SNPs with independent signals in
the significant SNPs, the stepwise model selection procedure
implemented in GCTA was performed using the meta-
analysis results. The phenotypic variance explained by the
independent SNPs was also calculated by GCTA using the
restricted maximum likelihood analysis [52]. We then
constructed a genetic risk score (GRS), which was the weight-
ed sum of the risk alleles with the weights proportional to the
effect sizes of the risk alleles [4], using the significant and
independent SNPs. The effect sizes for calculating the GRS
were obtained from the meta-analysis and the GRS was calcu-
lated for each TWB2 sample.

MR analysis for the causal effects of CpGs on fasting glucose
We followed the procedures described by Richardson et al
[22] to perform the MR analysis. These authors [22] suggest
four possible explanations when observing the associations
between methylation quantitative trait loci (meQTLs; SNPs
influencing DNA methylation level) and the complex trait.
Briefly, explanation 1 is our hypothesised relationship where-
in the SNP affects fasting glucose, mediated by DNA meth-
ylation (Fig. 1a). For explanation 2, the SNP affects fasting
glucose through other mechanisms, and fasting glucose
affects the DNA methylation (Fig. 1b). In explanation 3, the
SNP affecting DNA methylation is in LD with another SNP
affecting fasting glucose (Fig. 1c). Finally, explanation 4
suggests that the SNP has separate effects on DNA
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methylation and fasting glucose through different pathways,
also known as horizontal pleiotropy (Fig. 1d). The advantages
of the procedures proposed by Richardson et al [22] are that
they can distinguish explanation 1 from explanations 2 and 3.
To be more specific, we first investigated whether the signif-
icant SNPs identified by the GWAS analyses can influence
DNA methylation levels at nearby CpGs (i.e. whether the
SNPs are cis-meQTLs). We extracted CpG sites that were
within 300 kb of each significant SNP from the 1775 samples
with both GWAS and methylation array data available,
resulting in 3755 SNP–CpG pairs. A linear regression model
accounting for age, age2, BMI, sex, methylation assay batch
and the top 10 principal components calculated by the meth-
ylation data was used to test the association between a SNP
and the DNA methylation levels at its nearby CpGs. SNPs
with significant effects on CpGs (i.e. meQTLs) passing the
Bonferroni correction threshold (i.e. 1.33 × 10−5 considering
3755 tests) were extracted, resulting in 216 SNP–CpG pairs
that were used for the following MR analysis. As the MR
analysis assumes that the instrumental variable (i.e. a SNP)
is independent of the factors that confound the association
between the risk factor (i.e. methylation) and outcome (i.e.
fasting glucose), we used generalised linear regression to

evaluate the associations between SNP genotypes and poten-
tial confounders, such as age, sex and BMI. For the MR anal-
ysis, a two-stage least-squares regression model implemented
in the R package Systemfit (v1.1.24) [53] was used, where the
meQTL was used as the instrumental variable, DNA methyl-
ation influenced by the meQTL as the risk factor, and fasting
glucose as the outcome. The two-stage least-squares regres-
sion analysis identified seven CpGs with significant MR
effects passing the Bonferroni correction threshold (i.e.
2.31 × 10−4 for 216 MR tests). The seven CpGs were subse-
quently evaluated using the reverse MR analysis, by using the
GRS as the instrumental variable, fasting glucose as the risk
factor, and DNA methylation at the CpGs as the outcome in
the 1775 samples, similar to the analysis described by Wahl
et al [54]. The reverse MR analysis was used to investigate
whether the CpGs with significant MR effects were actually
affected by fasting glucose levels (Fig. 1b), rather than our
hypothesis that fasting glucose was affected by the DNA
methylation levels. CpGs with p value <0.05 for the reverse
MR test were excluded from further analysis. We then used
the bivariate fine-mapping analysis to evaluate whether the
DNA methylation was influenced by a genetic variant that is
simply in LD with another variant influencing fasting glucose
(Fig. 1c). The software FINEMAP (v1.4) [55] was used to
calculate the posterior probability that an meQTL or any
SNP in LD with the meQTL is the causal SNP. LD measures
were calculated using TWB2 and effect estimates of meQTLs
were obtained from the meQTL analysis using the 1775
samples. To replicate the significant MR results, a two-
sample MR analysis strategy using published data [56] was
performed. The effect estimates of SNPs for fasting glucose
were obtained from the literature SNPs as described in the
GWAS analysis section. The effect estimates of SNPs for
DNA methylation were downloaded from the meQTL data-
base (summary data based on MR [SMR]) [41] based on
results from 1175 UK samples, where DNA methylation
levels were also profiled using the MethylationEPIC chip.
The estimate of causal effect for a CpG on fasting glucose
was calculated using the Wald ratio method, which is the
effect estimate of a SNP for fasting glucose divided by the
effect estimate of the SNP for the CpG [57]. The two-sample
MR analysis results were considered as significant if their p
values were <7.14 × 10−3 for replicating the seven CpGs iden-
tified using our sample.

Results

Figure 2 shows the flowchart of our analysis strategy, similar
to that of Richardson et al [22].

GWAS analyses For the GWAS analyses (step 1 in Fig. 2), the
discovery dataset consisted of three cohorts from the TWB,

Fig. 1 The four possible explanations when observing associations
between meQTLs and fasting glucose. (a) Explanation 1: the SNP affects
fasting glucose through the mediation of the DNA methylation. (b)
Explanation 2: the SNP affects fasting glucose through other mechanisms
and fasting glucose affects the DNA methylation. (c) Explanation 3: the
SNP affecting the DNA methylation is in LD with another SNP affecting
fasting glucose. (d) Explanation 4: the SNP has separate effects on the
DNA methylation and fasting glucose
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HALST and SAPPHIRe studies, and the replication dataset is
from the TWB2. The quantile–quantile (Q-Q) plots for the
association p values from individual cohorts are shown in
ESM Fig. 1. In the plots, the p values from the HALST and
SAPPHIRe analyses generally followed the expected lines
under the null, while an excess of small p values was observed
from the TWB analysis. The results suggest that the TWB
study with a larger sample size showed higher power than
the HALST and SAPPHIRe studies, which had smaller
sample sizes. The genomic inflation factor (λ) for TWB,
HALST and SAPPHIRe was 0.984, 0.999, and 1.002, respec-
tively, suggesting that confounding factors such as population
substructures and batch effects were controlled. The p values
from individual cohorts were adjusted by λ for the meta-
analysis.

The significant SNPs from the meta-analysis were annotat-
ed using ANNOVAR [58] based on the hg19 coordinates.
Then SNPs located within 1 MB to a previously reported
locus of fasting glucose were annotated to the locus. For a
Manhattan plot of the meta-analysis results, showing the lead
SNPs (i.e. the most significant SNP passing the genome-wide
threshold of p < 5 × 10−8 in each loci), see ESM Fig. 2. To be
more specific, there were 827 SNPs with p values <5 × 10−8 in

the meta-analysis results. They were all located in previously
reported loci. The stepwise model selection suggests that there
were 18 independent SNPs among these 827 SNPs. The 18
SNPs all had p values <6.04 × 10−5 (accounting for the multi-
ple testing of 827 SNPs) in the joint model identified by the
stepwise model selection. Fifteen of the 18 SNPs were repli-
cated in TWB2 with p values <2.78 × 10−3 (accounting for the
multiple testing of 18 SNPs). The conditional analysis based
on the 426 literature SNPs showed that one of the 18 SNPs
had a p value of 0.039 but the SNP would not be significant
using the Bonferroni correction threshold of 2.78 × 10−3. The
meta-analysis, replication analysis, conditional analysis and
joint analysis results for the 18 SNPs are shown in Table 1.
The correlation structures of the 18 SNPs are shown in ESM
Table 3. For SNPs that are in the same locus such as G6PC2,
the pairwise LD (measured by r2 based on the TWB2 sample)
among them was low (<0.05). The 18 independent SNPs
explained approximately 7.1% (SE 2.27%) of the phenotypic
variance calculated by GCTA based on the TWB2 replication
sample. This estimate was slightly higher than the estimate of
3.2–4.4% using 14 SNPs in Dupuis et al [4]. ESM Fig. 3
shows the mean fasting glucose levels categorised by GRS
calculated based on the 18 SNPs in the TWB2 sample.

Fig. 2 Flowchart of the analysis
procedures
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Similar to the observation made by Dupuis et al [4], higher
fasting glucose levels were generally observed in individuals
with higher GRS.

meQTL evaluation We then evaluated whether the 18 SNPs
were meQTLs (step 2 in Fig. 2). Table 2 shows the CpGs with
the smallest p values that were associated with the 18 signif-
icant SNPs. Interestingly, all the 18 SNPs had a significant p
value, with at least one nearby CpG, suggesting that they were
all meQTLs. One study suggested that meQTLs are enriched
in GWAS SNPs with low p values for metabolic traits such as
LDL-cholesterol and BP [59]. In addition, approximately 60%
of SNPs in the GWAS catalogue were found to be cis-
meQTLs [60]. The results of our meQTL analysis supported
the findings in the literature, implying that the 18 significant
SNPs may be involved in pathways affecting fasting glucose
with effects on DNA methylation levels at local CpGs.

Moreover, 16 of the 18 SNPs were reported as meQTLs
based on our search in public meQTL databases (ESM
Table 4). The two SNPs not reported in the databases were
rare in the European population (MAF <0.5%). Therefore, the
power to detect the effects of the two SNPs on DNA methyl-
ation in the European population may be low or the effects
may be specific to the East Asian population.

MR analysis The significant SNP–CpG pairs were then used
for the MR analysis (step 3 in Fig. 2). Table 3 shows the MR

analysis results for seven CpGs with significant causal effects
on fasting glucose using the meQTL as the instrumental vari-
able. The seven significant CpGs were generally upstream or
downstream of the G6PC2 gene and were all associated with
rs2232326 located in an exon of the gene. It has been found
that multiple CpGs can share the same genetic effect [41].
Genotypes at rs2232326 were not associated with potential
confounders of age, age2, sex and BMI (ESM Table 5). The
DNAmethylation rates and the correlations of the DNAmeth-
ylation levels for the seven CpGs are shown in ESM Table 6.
The correlation structures suggest that there are four methyla-
tion blocks. The seven CpGs were mostly partially methylated
(methylation rates between 0.3 and 0.8; one had a methylation
rate of 0.88) and three CpGs were highly correlated (correla-
tion coefficients >0.8).

Reverse MR analysis To further investigate whether there was
a reverse causal relationship between the DNA methylation
and fasting glucose (i.e. explanation 2 in Fig. 1b), a reverse
MR analysis was performed using the DNAmethylation at the
seven CpGs as the outcome, fasting glucose as the risk factor,
and GRS as the instrumental variable (step 4 in Fig. 2). The
results are shown in ESM Table 7. Only one CpG,
cg00689835, showed a nominal reverse MR effect (p =
0.017), while the effects for the other six CpGs were not
significant. The associations between GRS and potential
confounders are also shown in ESM Table 5. There was a

Table 2 Association of the 18
significant SNPs with methyla-
tion levels at nearby CpGs

SNP SNP position Locus No. of
CpGsa

Best CpGb Best CpG
position

Best CpG p
value

rs780094 2:27741237 GCKR 29 / 501 cg12648201 2:27665141 4.60×10−53

rs895636 2:45188353 SIX2-SIX3 20 / 328 cg16198908 2:45192207 1.14×10−68

rs540524 2:169756930 G6PC2 11 / 178 cg06269299 2:169756942 4.03×10−103

rs560887 2:169763148 G6PC2 1 / 178 cg25044149 2:169777650 1.08×10−6

rs2232326 2:169764491 G6PC2 7 / 178 cg25467166 2:169770254 1.10×10−55

rs56960326 2:173591412 RAPGEF4-AS1 27 / 176 cg14982212 2:173591687 3.04×10−201

rs17085593 5:95630705 LOC101929710 6 / 151 cg04095375 5:95617251 1.17×10−19

rs17168486 7:14898282 DGKB 6 / 64 cg27295253 7:14774665 6.42×10−32

rs1990379 7:15066045 DGKB 1 / 64 cg19272540 7:15055459 1.51×10−222

rs1008384 7:44178626 MYL7 31 / 418 cg09354581 7:44150992 2.93×10−298

rs1799884 7:44229068 GCK 11 / 418 cg22208713 7:44194466 8.51×10−27

rs3802177 8:118185025 SLC30A8 4 / 109 cg22200611 8:117950296 1.96×10−9

rs12684488 9:571582 KANK1 15 / 139 cg24849973 9:567490 7.37×10−160

rs3934283 9:4285119 GLIS3 11 / 133 cg05406233 9:4290574 1.67×10−76

rs10811662 9:22134253 CDKN2B-AS1 1 / 102 cg23900144 9:22142053 3.87×10−6

rs10830963 11:92708710 MTNR1B 3 / 139 cg14824936 11:92675685 8.88×10−14

rs61944004 13:28492405 PLUT 12 / 329 cg21101465 13:28493404 8.52×10−22

rs72470563 20:22560932 FOXA2 20 / 150 cg19575804 20:22559456 2.68×10−190

a No. of significant CpGs (p<1.33×10−5 ) and the number of the total tested CpGs near the SNP
b The most significant CpG in the region
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nominal association between GRS and age but the association
would not be significant considering multiple testing using
four tests. To eliminate the possibility that the SNP affecting
the DNA methylation is in LD with another SNP affecting
fasting glucose (explanation 3 in Fig. 1c), the six CpGs with
non-significant reverse MR effects were tested for the concor-
dance of top SNPs based on rs2232326 and the other two
SNPs (rs139014876 and rs192788039) in LD with
rs2232326, using the bivariate fine-mapping analysis (step 5
in Fig. 2). The LD r2 for rs139014876 and rs192788039 with
rs2232326 were 0.78 and 0.89, respectively, calculated using
the TWB2 sample. The results are shown in ESM Table 8.
Concordance was observed for all of the six CpGs that
rs2232326 had the highest posterior probability and Bayes
factor to be causal to each CpG. The posterior probabilities
for four CpGs also suggested that there was at most one vari-
ant (i.e. rs2232326) affecting the DNAmethylation. The step-
wise model selection in GCTA also selected rs2232326 as the
representative SNP in the GWAS analyses. Therefore, the
relationship between the SNP, DNA methylation and fasting
glucose was not likely due to explanation 3 in Fig. 1. This
finding supports our hypothesis that DNA methylation is part
of the pathway between genetic variants and fasting glucose
(i.e. explanation 1 in Fig. 1).

Replication analysis for the MR analysis results The SNP
rs2232326 had a MAF of 0.048 in our data but is rare (MAF
=0.3%) in the European population in the 1000 genomes data,
which made the replication analysis for the MR results based
on the same SNP–CpG pairs difficult. We further
hypothesised that CpGs may mediate the effects of different
SNPs in G6PC2 on fasting glucose in different populations.
Therefore, we extracted SNPs within 300 kb of G6PC2 from
the literature SNPs, resulting in 148 SNPs. Among the 148
literature SNPs, two (rs12475700 and rs2232328) were
suggested as meQTLs influencing three CpGs from the
SMR database. The two-sample MR analysis was performed

based on the effect estimates of the two SNPs for fasting
glucose obtained from Manning et al [6] and the effect esti-
mates of the two SNPs for the three CpGs downloaded from
the SMR database (step 6 in Fig. 2). The study samples for
Manning et al [6] and the SMR database are both of European
origin. Table 4 shows the two-sample MR analysis results.
Compared with the results presented in Table 3, two of the
same CpGs, cg15742848 and cg05703053, with the same
direction of effects, were replicated in blood, although their
instrumental SNPs were different. The results suggest that
CpGs in G6PC2 may mediate the effects of different SNPs
on fasting glucose in different populations.

Discussion

In this study, we identified two CpGs near G6PC2 that were
putative mediators between a SNP in G6PC2 and fasting
glucose. The G6PC2 gene encodes glucose 6-phosphatase
catalytic subunit 2 (G6PC2); members of this enzyme family
are part of a multicomponent system for catalysing the hydro-
lysis of glucose 6-phosphate to glucose and inorganic phos-
phate [61]. G6PC2 is primarily expressed in pancreatic beta
cells [62] and the knockout of G6PC2 resulted in reduced
fasting glucose levels in mice [63, 64]. It is hypothesised that
G6PC2 functions as a negative regulator of basal glucose-
stimulated insulin secretion that hydrolyses glucose 6-
phosphate so that the action of the glucose sensor is opposed
[65]. Furthermore, knockdown of G6PC2 in human
EndoC-βH1 cell line increased insulin secretion at submaxi-
mal glucose levels, suggesting that basal glucose sensitivity is
enhanced by promoting glycolytic flux at substimulatory
glucose concentrations [66]. Multiple genetic variants in
G6PC2 have been found to be associated with fasting glucose
in several GWAS [16, 65, 67], studies that focused on exome
regions via exome chips [15, 66, 68, 69] and studies using
whole-exome and whole-genome sequencing [44, 70].

Table 3 MR analysis results between DNA methylation and fasting glucose

SNP SNP position Locus CpG CpG position Locationa meQTL MR

Effect (SE) p value Effect (SE) p value

rs2232326 2:169764491 G6PC2 cg00689835 2:169757618 Upstream −0.976 (0.075) 3.06×10−37 0.492 (0.089) 3.68×10−8

rs2232326 2:169764491 G6PC2 cg11152513 2:169757751 UTR5 −0.438 (0.077) 1.70×10−8 1.119 (0.265) 2.59×10−5

rs2232326 2:169764491 G6PC2 cg07024094 2:169769071 Downstream 0.812 (0.076) 5.11×10−26 −0.603 (0.112) 7.74×10−8

rs2232326 2:169764491 G6PC2 cg15742848 2:169769501 Downstream 1.078 (0.074) 1.09×10−45 −0.455 (0.078) 5.54×10−9

rs2232326 2:169764491 G6PC2 cg05703053 2:169769616 Downstream 1.108 (0.074) 2.68×10−48 −0.443 (0.076) 5.82×10−9

rs2232326 2:169764491 G6PC2 cg22447106 2:169769804 Downstream 0.851 (0.075) 1.51×10−28 −0.577 (0.104) 3.34×10−8

rs2232326 2:169764491 G6PC2 cg25467166 2:169770254 Downstream −1.164 (0.073) 1.73×10−53 0.422 (0.072) 5.39×10−9

a Location relative to the G6PC2 gene

UTR5, 5′ untranslated region
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In vitro studies have been performed to further explore func-
tional roles of the significant genetic variants in G6PC2 [66,
68]. Reduced levels of G6PC2 protein were observed by
Mahajan et al [68] when mutations of three genetic variants
were introduced in the cell lines of human embryonic kidney
and rat pancreatic beta cells, and the loss of G6PC2 function
reduced the fasting glucose levels. Ng et al [66] investigated
functional roles of ten variants, including the three variants
studied by Mahajan et al [68], and also found that mutations
resulting in sevenG6PC2 variants reduced the levels of G6PC2
protein in human and rat cell lines. Both studies found that
proteins resulting from G6PC2mutations were mainly degrad-
ed through the ubiquitin–proteasome pathway. Ng et al [66]
further found that G6PC2 proteins resulting from loss-of-
function variants in G6PC2 may influence beta cell endoplas-
mic reticulum homeostasis. Moreover, a variant at the non-
coding literature SNP rs560887 (also found significant in our
study) may alter splicing, increasing the expression of G6PC2
and subsequently elevating fasting glucose levels [66].

The association of the exonic SNP rs2232326 in G6PC2
with fasting glucose was first reported in a study using
Chinese samples [15]. It is a missense mutation and the
increase of the alternative allele lowered the fasting glucose
level. The mutation was predicted to be ‘probably damaging’
to the function of the G6PC2 protein by PolyPhen-2 [71].
Similarly, rs2232328 is also an exonic variant in G6PC2 and
a missense mutation. It was significantly associated with
fasting glucose levels in the European population with the
same direction of effect as rs2232326 [6]. The functional
effects of the mutation, predicted to be ‘benign’ in
PolyPhen-2, is not clear [72]. Our analysis results may provide
new biological insights into how the two variants in G6PC2
affect fasting glucose levels. That is, mutations in rs2232326
or rs2232328 in G6PC2 may increase the DNA methylation
levels at CpGs near the gene, as our analysis results showed a
positive association between the SNP and the CpGs. The
elevated DNA methylation levels may affect the gene expres-
sion levels for the nearby genes in pancreatic islets, which
influence fasting glucose levels.

An instrumental variable in MR analysis must satisfy three
assumptions: (1) the instrumental variable is associated with the
risk factor; (2) the instrumental variable is independent of the
confounders that confound the association between the risk factor

and outcome; and (3) the instrumental variable is independent of
the outcome given the risk factor and confounders [57]. As seen
in Table 2, the meQTLs had strong effects on methylation, thus
satisfying the first assumption. In addition, as seen in ESM
Table 5, the meQTLs were not associated with potential
confounders (age, sex and BMI) between methylation and
fasting glucose. Finally, horizontal pleiotropy (explanation 4 in
Fig. 1d) can cause violation of the third assumption. As discussed
in Richardson et al [22], using single instrumental variable in
MR, it is difficult to distinguish between horizontal pleiotropy
and mediation. Alternatively, MR with multiple instrumental
variables can be used to assess pleiotropy and provides consistent
estimates of the causal effects [73]. In our analysis, this requires
multiplemeQTLs associatedwith the sameCpG,whichwere not
identified based on our analysis framework.

The major strength of this study is that replication analyses
were performed for the significant results and most of the
major findings were replicated. Moreover, a comprehensive
and rigorous pipeline (shown in Fig. 2) was performed to
support our findings. One weakness of the study, as
mentioned previously, is that the MR analysis with single
instrumental variable may not distinguish between horizontal
pleiotropy and mediation. Another limitation in this study is
that DNA methylation levels were measured in blood and the
conclusions may not be generalised to other tissues such as
pancreatic beta cells. To further study the functional roles of
the identified CpGs in gene expression, DNAmethylation and
gene expression should be measured in disease-relevant
tissues, as described by Dayeh et al [74].

In conclusion, our analysis results demonstrate that the
integrative analysis using GWAS and DNA methylation data
can provide new biological insights into the significant
GWAS findings for glucose homeostasis. Further studies will
be warranted to investigate the pathway involving the SNPs in
G6PC2 and CpGs near G6PC2 implicated in our study, and
the potential role of the CpGs in influencing gene expression
at nearby genes and their effects on fasting glucose.
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Table 4 Replication results using the two-sample MR analysis between DNA methylation and fasting glucose

SNP SNP position CpG CpG position meQTL effect (SE) Trait effect (SE) MR

Effect (SE) p value

rs12475700 2:169757780 cg07338205 2:169757780 −0.011 (0.002) 0.049 (0.003) −4.451 (0.803) 2.96×10−8

rs2232328 2:169764546 cg15742848a 2:169769501 0.062 (0.008) −0.039 (0.005) −0.623 (0.117) 1.00×10−7

rs2232328 2:169764546 cg05703053a 2:169769616 0.055 (0.006) −0.039 (0.005) −0.703 (0.125) 2.10×10−8

a CpGs replicated in Table 3
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