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Abstract
Aims/hypothesis The imbalance between maternal insulin resistance and a relative lack of insulin secretion underlies the
pathogenesis of gestational diabetes mellitus (GDM). Alterations in T cell subtypes and increased levels of circulating proin-
flammatory cytokines have been proposed as potential mechanisms underlying the pathophysiology of insulin resistance in
GDM. Since oestrogen modulates T cell immunity, we hypothesised that oestrogen plays a homeostatic role in visceral adipose
tissue by coordinating T cell immunity through oestrogen receptor α (ERα) in T cells to prevent GDM.
Methods Female CD4-cre ERαfl/fl (KO) mice on a C57BL/6 background with ERα ablation specifically in T cells, and ERαfl/fl

(ERα-floxed [FL]) mice were fed 60 kJ% high-fat diet (HFD) for 4 weeks. Female mice mated with male BALB/c mice to
achieve allogenic pregnancy and were maintained on an HFD to generate the GDM model. Mice were divided into four
experimental groups: non-pregnant FL, non-pregnant KO, pregnant FL (FL-GDM) and pregnant KO (KO-GDM). GTTs and
ITTs were performed on day 12.5 or 13.5 and 16.5 after breeding, respectively. On day 18.5 after breeding, mice were killed and
T cell subsets in the gonadal white adipose tissue (gWAT) and spleen were analysed using flow cytometry. Histological
examination was also conducted and proinflammatory gene expression in gWAT and the liver was evaluated.
Results KO mice that mated with BALB/c mice showed normal fertility rates and fetal weights as compared with FL mice. Body and
tissue weights were similar between FL and KOmice. When compared with FL-GDMmice, KO-GDMmice showed decreased insulin
secretion (serum insulin concentration 15 min after glucose loading: 137.3 ± 18.3 pmol/l and 40.1 ± 36.5 pmol/l, respectively; p< 0.05),
impaired glucose tolerance (glucoseAUC inGTT: 2308.3 ± 54.0mmol/l ×min and 2620.9 ± 122.1mmol/l ×min, respectively; p< 0.05)
and increased numbers of T helper (Th)17 cells in gWAT (0.4 ± 0.0% vs 0.8 ± 0.1%; p< 0.05). However, the contents of Th1 and
regulatory T cells (Tregs) in gWAT remained similar between FL-GDMandKO-GDM.Glucose-stimulated insulin secretion was similar
between isolated islets derived from FL and KO mice, but was reduced by IL-17A treatment. Moreover, the levels of proinflammatory
gene expression, including expression of Emr1 and Tnfa in gWAT, were significantly higher in KO-GDMmice than in FL-GDMmice
(5.1-fold and 2.7-fold, respectively; p< 0.01 for both). Furthermore, KO-GDM mice showed increased expression of genes encoding
hepatokines, Ahsg and Fgf21 (both were 2.4-fold higher vs FL-GDM mice; p< 0.05 and p= 0.09, respectively), with no changes in
inflammatory gene expression (e.g., Tnfa and Ifng) in the liver compared with FL-GDMmice.
Conclusions/interpretation Deletion of ERα in T cells caused impaired maternal adaptation of insulin secretion, changes in
hepatokine profiles, and enhanced chronic inflammation in gWAT alongside an abnormal increase in Th17 cells. These results
suggest that the ERα-mediated oestrogen signalling effects in T cells regulate T cell immunity and contribute to glucose
homeostasis in pregnancy.
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Abbreviations
7AAD 7-amino-actinomycin D
BV421 Brilliant Violet 421
Cy7 Cyanine7
ERα Oestrogen receptor α
FOXP3 Forkhead box P 3
FL ERα-floxed (mice)
FL-GDM Pregnant ERαfl/fl (mice)
GDM Gestational diabetes mellitus
gWAT Gonadal white adipose tissue
HFD High-fat diet
KO CD4-cre ERαfl/fl (mice)
KO-GDM Pregnant CD4-cre ERαfl/fl (mice)
NK Natural killer
NPC Nonparenchymal cells
PE Phycoerythrin
SVF Stromal-vascular fraction
Th T helper
Treg Regulatory T cell

Introduction

Gestational diabetes mellitus (GDM) is defined as glucose
intolerance with an onset or first recognition during pregnancy
and its presence indicates an increased risk of future diabetes
in the mother [1]. According to the International Diabetes
Federation (IDF) in 2017, approximately 14% of pregnant
women worldwide are estimated to have GDM [2] and its
incidence increases with elevated maternal age [3]. The imbal-
ance between maternal insulin resistance and the relative lack
of insulin secretion due to beta cell dysfunction is regarded as
the central pathophysiology of GDM; however, the underly-
ing mechanisms remain unclear [4, 5].

Maternal insulin resistance is an important mechanism that
promotes the partitioning of nutrients to the fetus [4] and is
affected by maternal metabolic conditions, such as obesity and
chronic inflammation in adipose tissue [4]. Circulating levels of
proinflammatory cytokines have been shown to increase in
GDM [5, 6]. Furthermore, alterations in immune cells in
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peripheral blood, such as increased numbers of proinflammatory
T helper (Th)17 cells, and decreased numbers of regulatory T
cells (Treg) or a reduction in their immunosuppressive activities,
have been reported [7, 8], and these changes may contribute to
the progression of insulin resistance in GDM. However, the
underlying mechanisms for these immunological changes in
GDM remain unknown. Moreover, model mice that reflect
immune changes in human GDM have not yet been developed.

Oestrogen increases during pregnancy and plays important
roles in reproductive function, including the maintenance of
pregnancy [9]. A cardinal effect of oestrogen is the regulation
of reproductive immunity by controlling immune tolerance
during pregnancy, mainly by differentiating naive T cells into
Tregs and accumulating them around the uterus [10].
Oestrogen also modulates the differentiation of inflammatory
Th1 and Th17 cells [11, 12], suggesting that it possesses a wide
range of immunoregulatory functions. Regarding receptor
expression, CD4+ T cells express higher levels of oestrogen
receptor α (ERα) than oestrogen receptor β (ERβ), whereas
very low, but similar levels of both oestrogen receptors are
expressed in CD8+ T cells [13]. Therefore, most of the immuno-
regulatory effects of oestrogens in T cells are suggested to be
mediated via ERα [14]. Serum concentrations of oestrogen are
indistinguishable between women with GDM and healthy preg-
nant women [15]. However, it currently remains unclear whether
insufficient effects of oestrogen in T cells are related to the
immune disturbance observed in GDM.

Physiological levels of oestrogen enhance insulin sensitiv-
ity in various tissues, including adipose tissue, skeletal
muscles and the liver, through ERα [16, 17]. Oestrogen
contributes to the adaptation of beta cell mass and function
to counteract maternal insulin resistance during pregnancy
[18]. To examine the effects of oestrogen in T cells during
pregnancy, we generated a GDM model using T cell-
specific ERα-deleted mice. We investigated glucose metabo-
lism and immune abnormalities during pregnancy in these
mice and clarified the impact of T cell-specific ERα deletion
on chronic inflammation in visceral adipose tissue in order to
shed light on the pathophysiology of GDM.

Methods

Animals and experimental protocols All experimental proce-
dures used in the present study were approved by the
Committee of Animal Experiments at the University of
Toyama, Toyama, Japan (approval number for animal exper-
iments: A2013PHA15 and A2017PHA-16; approval number
for recombinant DNA experiments: G2013PHA-7 and
G2018PHA-2). The experiments were conducted with careful
consideration of mice welfare. ERα-floxed (ERαfl/fl [FL])
mice were provided by P. Chambon at the Institut de
Génétique et de Biologie Moléculaire et cellulaire (IGBMC;

Illkirch-Graffenstaden, France) [19]. ERα-floxed mice on a
C57BL/6 background were crossed with CD4-cre mice
(STOCK Tg(Cd4-cre)1Cwi/BfluJ; Jackson Laboratory,
USA; www.jax.org/strain/17336) to generate CD4-cre
ERαfl/fl (KO) mice with ablated ERα specifically in T cells.
Female KO mice and their littermate controls (FL mice) were
fed PicoLab Rodent Diet 20 (chow 14.4 kJ/g; PMI Nutrition
International, USA) until they were 8 weeks old, after which
they were fed a 60 kJ% high-fat diet (HFD; 21.9 kJ/g;
D12492; Research Diets, USA) for 4 weeks. Following this,
breeding was conducted overnight between female KO or FL
mice andmale BALB/c mice in a 1:1 ratio to achieve allogenic
pregnancy. Mating was confirmed the following morning
(day 0.5 after breeding) by the presence of a vaginal mucous
plug. Mice were divided into four experimental groups,
non-pregnant FL, non-pregnant KO, pregnant FL (FL-
GDM) and pregnant KO (KO-GDM), and were maintained
on an HFD. The 2 h GTT (0–120 min) was conducted on day
13.5 after breeding by an intraperitoneal injection of glucose
(11.1 mmol [2 g]/kg body weight) after 6 h of fasting, and the
ITT was performed on day 16.5 after breeding by an intraper-
itoneal injection of insulin (0.75 U/kg body weight) after 4 h
of fasting, as described previously [20, 21]. In addition, on day
12.5 after breeding, another individual mouse was used for a
0–15 min GTT to evaluate insulin secretion. Mice were killed
on day 18.5 after breeding. An outline of the experimental
protocol is shown in Fig. 1a. Serum insulin levels during
GTT and oestradiol levels at the time of death were measured
using ELISA kits (Morinaga, Japan and Cayman, USA,
respectively). The fertility rate was calculated from the
numbers of pregnant mice per vaginal mucous plug-positive
mice after breeding. Mice were maintained in the animal labo-
ratory at the University of Toyama. Mice were housed on a 12:
12 h light–dark cycle (lights on at 7:00 hours) in a temperature-
controlled colony room (23 ± 3°C) and were allowed free
access to food and water. Mice with premature delivery (n =
1) and growth failure due to abnormal tooth formation (n = 2)
were excluded from data analysis. All other mice represented
normal growth and pregnancy. Besides this, animals were
excluded from analysis if we noted an inadequate injection of
glucose or insulin. All measurements were taken from distinct
samples. Randomisation were not conducted; blinding of
samples was carried out in histological analysis, serum
measurements and real-time PCR. The deviation in sample
numbers among mice groups in each experiment was derived
from the fact that more KOmice were prepared for experiments
than FL mice because of our initial concerns about possible
miscarriage and lower mating rate in KO mice.

Flow cytometry Cells of the stromal-vascular fraction (SVF)
of gonadal white adipose tissue (gWAT), splenocytes, thymus
and uterus were prepared using the collagenase digestion
method, and then incubated with purified rat anti-mouse
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CD16/CD32 (BD Biosciences, San Jose, CA, USA) for
15 min. Cells were then stained with an anti-CD45 antibody,
antibodies corresponding to immune cell type and isotype
controls at 4°C for 30 min. Subsequently, cells were rinsed
and incubated with 7-amino-actinomycin D (7AAD; BD
Biosciences) and then subjected to flow cytometry analysis,
as described previously [22–25]. SVF cells obtained from two
mice in the same group were analysed as one sample when the
amounts from one mouse were not enough. For the analysis of
Emr1 expression in various leucocytes, CD4+, CD8+, F4/80+,
CD3-B220/CD45R+ or CD3-NK1.1+ cells gated on
CD45+7AAD− cells were isolated from the spleen of unmated
female FL and KO mice using the FACSAria II cell sorting
system (BD Biosciences); their gating is shown in electronic
supplementary material (ESM) Fig. 1. In the analysis of Tregs
in splenocytes, thymus and uterus, cells were stained with

anti-mouse CD45–APC, CD4–FITC, CD8–APC-cyanine7
(Cy7) and CD25–phycoerythrin (PE) at 4°C for 30 min, incu-
bated with 7-amino-actinomycin D (7-AAD; BD Biosciences,
Japan) for 15 min, fixed and permeabilised at 4°C overnight
using the Foxp3/Transcription Factor Staining Buffer Set
(eBioscience, USA) and then stained with forkhead box P 3
(FOXP3)–PE–Cy7 for 30 min. In the analysis of Tregs in
gWAT, SVF cells were stained with LIVE-DEAD–APC–
Cy7 and with CD45–PE–Cy7, CD4–Brilliant Violet 421
(BV421), CD25–APC and FOXP3–PE using the same proto-
col described above. In the analysis of Th1 and Th17,
splenocytes and SVF cells were stimulated with phorbol 12-
myristate 13-acetate (PMA), ionomycin and Brefeldin A
Solution (protein transport inhibitor) for 4 h. Cells were then
stained with LIVE-DEAD–APC–Cy7, CD45–PE–Cy7,
CD4–BV421, IFNγ–APC, and IL-17A–PE. Stained cells
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Fig. 1 Experimental protocol for
GDM mouse models and the
efficiency of ERα knockout in
different types of leucocytes. (a)
Female CD4-cre ERαfl/fl (KO)
mice and ERαfl/fl (FL) mice on a
C57BL/6 J background, aged 8–
9 weeks, were fed a 60 kJ% high-
fat diet (HFD) for 4 weeks and
then mated with male BALB/c
mice. Mice were killed and
analysed on day 18.5 after
mating. (b–f) Relative mRNA
expression of Esr1 (gene
encoding ERα) in CD4+ T cells
(b; n = 6–9), CD8+ T cells (c; n =
6–9; FL vs KO, p = 0.09),
macrophages (d; n = 8–11), B
cells (e; n = 4–5) and NK cells (f;
n = 6–8) isolated from the spleens
of unmated female FL and KO
mice. Cell gating in flow
cytometry for each cell type is
shown in ESM Fig. 1. Data are
shown as means ± SEM.
**p < 0.01; unpaired Student’s t
test
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were analysed by FACSCanto II or FACSAria II (BD
Biosciences). Data were analysed by FACS Diva 6.1.2
(BD Bioscience) and Flow Jo (Treestar, Ashland, OR,
USA). Antibodies used in the present study are listed in
the ESM Table 1.

RNA isolation and real-time PCR Total RNA in gWAT, liver
and sorted leucocytes was purified using TRIsure (Nippon
Genetics, Tokyo, Japan) or TRIzol (Thermo Fisher, Tokyo,
Japan). Real-time PCR was performed using SYBR
green (Takara Bio, Japan), as described previously [21,
24, 25]. The relative expression of target mRNAs was
calculated as a ratio of 18S ribosomal RNA. Primer
sequences are listed in ESM Table 2.

Histological analysis and immunohistochemistry Isolated
pancreases, gWAT and livers were fixed in 4% (wt/vol.) para-
formaldehyde for 24 h and embedded in paraffin. Following
on, 6 μm-thick sections were H&E stained and then used for
subsequent analysis. In immunohistochemistry analyses,
paraffin-embedded sections were stained with anti-F4/80,
anti-CD11c, anti-CD3, anti-insulin or anti-glucagon antibod-
ies overnight, followed by the corresponding secondary anti-
body for 1 h (see ESM Table 1 for antibody details) [24].
DAPI (Vector, USA) was used for nuclear counter staining.
Photomicrographs were captured using the microscopes
BZX800 (Keyence, Osaka, Japan) or BX61 (Olympus,
Tokyo, Japan), and images were analysed using the BZX
analyser or ImageJ 1.45s software (National Institutes of
Health [NIH], USA; https://imagej.nih.gov/ij/) [24].
Approximately 10–30 islets were observed in the pancreas
per mouse and a representative islet was selected for photo-
micrographs. The size of beta cells was analysed as previously
reported [26].

Insulin secretion from isolated pancreatic islet Insulin secre-
tion from isolated pancreatic islet was measured as described
previously [27]. In brief, collagenase (Sigma-Aldrich, USA)
in HEPES-added Krebs-Ringer bicarbonate buffer (HKRB)
supplemented with 5.6 mmol/l glucose and 0.1% (wt/vol.)
BSA was injected into the common bile duct of mice and
the pancreas was digested. Islets were hand collected under
a microscope and were cultured overnight in RPMI-1640
medium with or without 100 ng/ml murine recombinant IL-
17A (Peprotech, USA). Five islets were seeded in one well
and stimulated with 2.5 mmol/l or 13.5 mmol/l glucose for
45 min in the absence or presence of recombinant IL-17A,
according to the culture conditions, and insulin secretion in
the culture media wasmeasured using ELISA kits (Morinaga).

IL-17A secretion from gWAT IL-17A secretion from gWAT
was measured using a previously reported protocol for assess-
ment of IL-1β secretion [24] with minor modification. In

brief, 300 μg of gWAT was cultured in serum-free DMEM
for 6 h, after which IL-17A secretion in the culture media was
determined by ELISA (Fujifilm, Japan).

TNF-α secretion from hepatic nonparenchymal cells The liver
was minced and digested with collagenase at 37°C for 50 min.
Samples were passed through a mesh, suspended in RPMI-
1640 medium and centrifuged at 500 g for 4 min. Pellets were
suspended in 33% (vol./vol.) Percoll (GE Healthcare, IL, USA)
and centrifuged at 800 g at 25°C for 30 min. Pellets were
incubated with ammonium-chloride-potassium (ACK) lysing
buffer. Subsequently, 7.5 × 106 hepatic nonparenchymal cells
(NPCs) were seeded in 24-well plates and incubated in serum-
free RPMI-1640 medium for 6 h. TNF-α secretion in the
culture media was determined by ELISA (Fujifilm).

Statistical analysis Data are expressed as means ± SEM.
Statistical analyses were performed using the unpaired
Student’s t test between two groups or a two-way ANOVA
followed by the Bonferroni test for multiple comparisons,
using the software JSTAT (M. Sato, Japan; http://toukeijstat.
web.fc2.com/EnglishPage.html) or StatView5.0. (Bioz,
USA). Measurements over time were evaluated by a two-
way repeated-measures ANOVA followed by the Bonferroni
test for multiple comparisons using the software StatView5.0.
A value of p < 0.05 was considered to be significant.

Results

ERα knockout efficiency in various leucocytes of KO mice
Changes in T cell subtypes towards cells that produce proin-
flammatory cytokines are considered to be causative mecha-
nisms of insulin resistance in GDM [7]. In the present study,
we aimed to investigate whether ERα-mediated oestrogen
effects are involved in alterations in CD4+ T cell phenotypes
in GDM using CD4-cre ERafl/fl (KO) mice. We initially
characterised the knockout efficiency of Esr1 (gene encoding
ERα) in various types of leucocytes isolated from the spleen
because a low level of CD4 expression has been suggested in
some types of leucocytes, such as macrophages [28].
Expression of Esr1 was almost completely deleted in
CD4+ and CD8+ T cells (Fig. 1b,c; p < 0.01 and p =
0.09 for KO vs FL mice, respectively). In contrast, a
reduction was not observed in macrophages, B cells or
natural killer (NK cells) (Fig. 1d–f). Therefore, the T
cell-specific ablation of Esr1 was verified in KO mice.

T cell ERα-deficient mice have a normal fertility rate and basal
profiles The maternal immune system plays a crucial role in
the maintenance of pregnancy [10]. Nevertheless, the fertility
rate estimated by the proportion of pregnant mice to vaginal
mucous plug-positive mice on the morning after breeding was
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not significantly different between FL and KO mice (Fig. 2a).
Furthermore, fetal and maternal weights and number of litters
were not significantly different between FL and KO mice
(Fig. 2b–d). Serum oestradiol levels were significantly higher
in pregnant mice vs the same genotypes of non-pregnant mice,
but did not significantly change between the genotypes (Fig.
2e). Although the liver weights of pregnant mice were heavier
than those of non-pregnant mice of the same genotype, no
marked differences were observed in the weights of the spleen,
gWAT, and liver between FL and KO mice (Fig. 2f–h).

T cell ERα-deficient mousemodels of GDM show deterioration
of glucose tolerance and insulin secretion We investigated
glucose metabolism in each group of mice. Blood glucose
levels in mice with random-fed status were indistinguishable
between genotypes both before and after mating, although the
glucose levels were significantly elevated on day 8.5 after
breeding in pregnant mice vs non-pregnant mice of the same
genotype (ESM Table 3). The glucose AUC during GTTs
were indistinguishable between non-pregnant FL and non-
pregnant KO mice, but were significantly higher in KO-
GDM mice (2620.9 ± 122.1 mmol/l × min) than in FL-GDM
mice (2308.3 ± 54.0 mmol/l × min) (p < 0.05; Fig. 3a). In

contrast, the glucose AUC during ITTs was higher in FL-
GDM than in FL mice, whereas no marked changes were
observed between genotypes (Fig. 3b).

Insufficient insulin secretion in maternal adaptation is a factor
in developing GDM [4, 5]. Serum insulin levels at 30 min in the
GTT did not change significantly among the four mice groups
(ESMFig. 2). To further evaluate insulin secretion in thesemice,
we analysed insulin levels after 0, 5 and 15 min of glucose
loading (GTT15). Serum insulin levels and the insulin:glucose
ratio as an indicator of insulin secretion did not change before
glucose loading but were slightly lower in KO-GDMmice than
in FL-GDM mice 5 min (p = 0.07) and 15 min (p < 0.05) after
glucose administration (Fig. 3c, ESM Table 4). Specifically,
serum insulin levels in FL-GDM and KO-GDM mice 15 min
post glucose administration were 137.3 ± 18.3 pmol/l and 40.1
± 36.5 pmol/l, respectively (p < 0.05).

T cell ERα-deficient GDM mice show similar increase in beta
cell mass, but insufficient insulin secretion We next investi-
gated morphological changes in pancreatic beta cells because
KO-GDM mice showed decreased adaptive insulin secretion.
The size of the islets of Langerhans and mean beta cell size
became larger under pregnant conditions as compared with
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Fig. 2 Effects of the maternal T
cell ERα deletion on fertility rate,
fetal weight and body and tissue
weights in mice. (a) Fertility rate
in FL-GDM and KO-GDM mice
(n = 14–22). (b) Fetal weights
during dissection (n = 70–116).
(c) Bodyweight transition ofmice
(FL, n = 12; KO, n = 11; FL-
GDM, n = 9; KO-GDM, n = 17).
(d) Number of litters (n = 18–27).
(e) Serum oestradiol levels on day
18.5 after breeding (n = 5–6). (f–
h) Spleen (f), gWAT (g) and liver
(h) weights during dissection (n =
9–18). Data are shown as means ±
SEM. *p < 0.05, **p < 0.01,
difference between the same
genotypes of non-pregnant and
pregnant mice assessed by two-
way ANOVA followed by
Bonferroni test
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non-pregnant mice of the same genotype, but was indistin-
guishable between FL-GDM and KO-GDM mice (Fig. 4a–
d). Interestingly, the integrated density of insulin in beta cells
was significantly lower in KO-GDM mice than that in FL-
GDM mice (Fig. 4e). Elevated glucose levels in GDM mice
may affect beta cell function; therefore, we isolated pancreatic
islets from FL and KO mice and the glucose-stimulated insu-
lin secretion was compared within each genotype (Fig. 4f,g).
Insulin secretion was similar between genotypes, but glucose-
stimulated (13.5 mmol/l) insulin secretion was significantly
attenuated by IL-17A treatment in both genotypes. We further
examined infiltration of F4/80+ macrophages and CD3+ T
cells in pancreatic islet by immunostaining; however, no

apparent changes in these immune cells were observed among
the four mice groups (ESM Fig. 3).

T cell ERα-deficient GDMmice show enhanced chronic inflam-
mation with increased Th17 and unaltered Th1 and Treg
numbers in gWAT Obesity-associated chronic inflammation,
including the altered distribution of proinflammatory T cell
subsets in visceral adipose tissue, is closely associated with
glucose metabolism [29]. To investigate the impact of the
deletion of ERα in T cells on T cell subset distribution, we
analysed Treg, Th1 and Th17 content in gWAT by flow
cytometry. Representative dot plots of these CD4+ T cells
are shown in ESM Fig. 4. The contents of total CD4+ T cells
in gWAT did not significantly change among the four groups
of mice (Fig. 5a). Treg contents were also unaltered among the
four groups (Fig. 5b). The content of IFNγ+ Th1 cells signif-
icantly decreased in GDM mice compared with non-pregnant
mice of the same genotype, and no significant differences
were observed between FL-GDM and KO-GDM (Fig. 5c).
In contrast, Th17 contents in FL-GDM and KO-GDM mice
were 0.4 ± 0.0% and 0.8 ± 0.1%, and they were significantly
higher in KO-GDM than in FL-GDMmice (p < 0.05; Fig. 5d).
The spontaneous secretion of IL-17A from gWAT in culture
media was slightly higher in KO-GDM than in FL-GDM,
although the difference was not statistically significant (ESM
Fig. 5). Similar differences were not noted between the Treg,
Th1 or Th17 cell content in the spleen of each mouse group
(Fig. 5e–h), suggesting that the change in proportions of T cell
subsets was gWAT-specific. Treg content in the thymus was
significantly increased in GDM mice compared with non-
pregnant mice of the same genotype and an increase was also
observed between KO-GDM and FL-GDM mice (ESM Fig.
6a). Interestingly, the increase in the actual number of uterus
Tregs (not the ratio of Tregs) that was observed in FL-GDM
mice vs non-pregnant mice of the same genotype, was not
seen in KO-GDM (ESM Fig. 6c).

To further characterise gWAT,we analysed adipocyte sizes
using H&E-stained specimens (Fig. 6a,b). Adipocytes were
slightly larger in KO mice than in FL mice under non-
pregnant and GDM conditions, although this finding was
not statistically significant. A cell size histogram analysis also
showed a rightward shift in both non-pregnant and KO-GDM
mice (ESM Fig. 7). We next examined the expression of
proinflammatory genes in gWAT. The expression of Emr1
(encoding F4/80, a macrophage marker) was significantly
increased by 5.1-fold in KO-GDM mice compared with FL-
GDM mice (p < 0.01; Fig. 6c). Similarly, the expression of
Itgax (encoding CD11c, an inflammatory M1-macrophage
marker) was increased in KO-GDM mice vs non-pregnant
KO mice (Fig. 6d). Consequently, Tnfa expression in gWAT
was significantly increased by 2.7-fold in KO-GDM mice
compared with FL-GDM mice (p < 0.01; Fig. 6e).
Moreover, the expression of Ifng was also increased (p =
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0.051) in KO-GDMmice compared with FL-GDMmice (Fig.
6g). No significant differences were observed in Il10 expres-
sion among the four groups (Fig. 6f).

T cell-specific ERα-deficient GDM mice do not show hepatic
chronic inflammation but altered hepatokine expression We
examined the liver phenotypes of mice. In histological analy-
ses, the livers of non-pregnant FL and KO mice showed mild
steatosis or almost normal histological findings (Fig. 7a). In
contrast, the livers of FL-GDM and KO-GDMmice exhibited
significant lipid accumulation observed as small vacuolar
changes; however, the degree of steatosis was similar between
the two groups (Fig. 7a). We next evaluated chronic inflam-
mation in the liver. TNF-α secretion from hepatic NPCs did
not differ between FL-GDM and KO-GDMmice (Fig. 7b). In
addition, the number of F4/80+ Kupffer cells and macro-
phages in the liver sections were comparable between FL-
GDM and KO-GDM mice, although these cell numbers were

slightly increased when compared with respective non-
pregnant controls (ESM Fig. 8a,b). Consistently, hepatic
expression of Emr1, Itgax, Tnfa and Ifng did not differ
between the mouse groups (Fig. 7c–f). Finally, we analysed
the expression of hepatokines related to glucose metabolism
and GDM in the liver. Expression of both Ahsg, encoding
Fetuin A, and Fgf21 in KO-GDM mice was 2.4-fold higher
compared with FL-GDMmice (p < 0.05 and p = 0.09, respec-
tively; Fig. 7g,h). In constant, no such difference was
observed in Sepp1 and Lect2 expressions (ESM Fig. 8c,d).

Discussion

Insulin resistance and insufficient insulin secretion have been
proposed as contributors towards the pathophysiology of
GDM; however, their underlying mechanisms currently
remain unknown [4]. In the present study, we aimed to
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investigate the impact of the deletion of ERα in T cells on
GDM phenotype. KO-GDM mice exhibited the deterioration
of glucose tolerance due to decreased insulin secretion, and
increased Th17 cell number with increased proinflammatory
gene expression in gWAT as compared with FL-GDM mice.
In addition, KO-GDM mice showed increased expression of
the hepatokine-encoding Ahsg and Fgf21 genes compared
with FL-GDM mice, although hepatic steatosis and chronic
inflammation were indistinguishable between the genotypes.
Therefore, the effects of oestrogen on T cells are involved in
maternal adaptive insulin secretion, the attenuation of chronic
inflammation in adipose tissue and hepatokine expressions, all
of which contribute to the maintenance of glucose metabolism
during pregnancy. Increased numbers of Th17 cells and
expression of Ahsg and Fgf21 have been reported in individ-
uals with GDM [7], suggesting that a similar pathophysiology
exists in KO-GDM mice and humans.

Insulin secretion was similar between FL and KO mice in
the non-pregnant condition, but it was decreased in KO-GDM
mice when compared with FL-GDM mice (Fig. 3c).
Therefore, KOmice showed impaired maternal beta cell adap-
tation as a main cause of impaired glucose tolerance in KO-
GDMmice. The underlying mechanisms of beta cell dysfunc-
tion in KO-GDMmice need to be elucidated. Type 1 diabetes
is caused by autoreactive T cell-mediated beta cell destruction,
and Tregs are considered to regulate the immune reaction [30].
In addition, islet-reactive T cells have been suggested to be
involved in the development of beta cell dysfunction in a
certain proportion of individuals with type 2 diabetes [31].
Therefore, we initially assumed the involvement of immune
disturbance in beta cell dysfunction following T cell-specific
ERα deletion. However, the numbers of infiltrated macro-
phages and T cells in pancreatic islet were not altered in KO
mice (ESM Fig. 3); thus, no obvious islet inflammation was
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observed in KO-GDM mice. It is of note that KO-GDM mice
showed impaired maternal adaptation in regard to beta cell
function but not proliferation in the pancreas as sizes of islets
and beta cells increased to a similar extent during pregnancy in
both genotypes (Fig. 4a–d). Alternatively, since resident Tregs
have been suggested to regulate tissue homeostasis and insulin
secretion in the pancreas [32, 33], a change in the pancreatic
microenvironment, including resident Treg function, may
affect insulin secretion capacity in KO-GDM mice. In addi-
tion, glucose-stimulated insulin secretion was similar between
isolated islets derived from FL and KOmice, but was reduced
by IL-17A treatment (Fig. 4f,g), suggesting that the immuno-
logical background of KO-GDM mice may affect beta cell
function in vivo. Elucidation of the molecular mechanisms
of maternal beta cell adaptation by oestrogen signalling via
T cells would provide further insights into the pathophysiolo-
gy of GDM and approaches for GDM prevention.

Tregs are a subset of CD4+ T cells that regulate excessive
immune responses [34]. Since Tregs are potentially able to alle-
viate obesity-associated chronic inflammation in adipose tissue,
they also contribute to the maintenance of glucose homeostasis
[35]. Oestrogen has been shown to promote the differentiation of
naive T cells into Tregs [36, 37]; therefore, we initially
hypothesised that KO-GDM mice exhibit enhanced chronic
inflammation caused by impaired Treg induction. However, the
abundance of Tregs did not significantly differ in the thymus
(ESM Fig. 6), spleen, or visceral adipose tissue between the
mouse genotypes (Fig. 5b,f). These results indicate that oestrogen
is not significantly involved in the normal differentiation of Tregs
in the thymus, spleen and adipose tissue. This is consistent with
previous findings showing that ERα is not essential for the differ-
entiation of Tregs [38]. In contrast, the number of Tregs in the
uterus was significantly elevated in FL-GDM vs non-pregnant
mice of the same genotype, but not inKO-GDMmice (ESMFig.
6). Since Tregs contribute to fetal tolerance during pregnancy and
their number increases in healthy pregnant woman [10, 39–42],
the effects of oestrogen via the ERα appear to play an important
role in the induction of uterine Tregs during pregnancy.
However, the pregnancy rate of T cell-specific ERα-deficient
mice was not significantly different from that of FL mice during
allogenic pregnancy under the present experimental conditions
(Fig. 2a). Therefore, ERα-mediated oestrogen effects on T cells
are not essential for maintaining allogenic pregnancy. On the
other hand, the immunosuppressive ability of Tregs has been
reported to decrease with the deletion of ERα in vitro [43].
Assuming that the suppressive activity of Tregs is possibly
reduced in KO-GDMmice in vivo, enhanced chronic inflamma-
tion in the gWAT of KO-GDMmicemay be partly explained by
dysfunction of ERα-deficient Tregs (Fig. 6c–g). KO-GDMmice
exhibited higher expression levels of Emr1, Tnfa, and Ifng (p =
0.051) in gWAT vs FL-GDM mice, despite the lack of signifi-
cant changes in body- and gWAT weights.

Th17 cells are a subset of inflammatory CD4+ T cells that
are specifically related to autoimmunity [44]. Oestrogen atten-
uates their differentiation by directly suppressing the expres-
sion of retinoic acid receptor-related orphan receptor γt
(RORγt), a transcription factor that is important for Th17
differentiation [45]. In contrast, a previous study demonstrated
that the number of Th17 in the peripheral blood of humans
increased in association with glucose levels at 1 h and 2 h
during GTT [7] and serum IL-17 levels slightly increased with
GDM, suggesting a role for Th17 in the pathology of GDM
[46]. In addition, Th17 cells are involved in chronic inflam-
mation in obesity because their differentiation is promoted in
obese mice and individuals [47]. A recent study indicated that
a high glucose condition, per se, drives Th17 differentiation
through a reactive oxygen species-dependent TGFβ activa-
tion mechanism [48]. In this context, IL-17-deficient mice
showed decreased IL-6 and IFNγ levels with improved
glucose and lipid metabolism [49, 50]. In the present study,
the number of Th17 cells in visceral fat was significantly
higher in KO-GDM mice than in FL-GDM mice (Fig. 5d).
The secretion of IL-17A from gWAT ex vivo was slightly
higher in KO-GDM than in FL-GDM, although this did not
reach statistical significance (ESM Fig. 5). IL-17 is known to
act in a paracrine manner in the microenvironment of certain
disease conditions [51, 52], and IL-17-differentiated macro-
phages are shown to express higher levels of Toll-like receptor
4 (TLR4) and have a greater inflammatory ability [53]. Since
IL-17 causes inflammation, the observed increase in Th17
cells could be an upstream event for deteriorating chronic
inflammation in the gWAT of KO-GDM mice (Fig. 6c–g).

The pathophysiology of GDM is affected by fluctuating
hepatokines. Increased serum Fetuin A is associated with the
induction of insulin resistance, whereas increased fibroblast
growth factor 21 (FGF21) is thought to antagonise maternal insu-
lin resistance in women with GDM [54–56], although the precise
induction mechanism is unknown. Similar to the reports in indi-
viduals with GDM, the genetic expression of these hepatokines
was increased in KO-GDM mice compared with FL-GDM mice
(although the difference was not significant for Fgf21; Fig. 7g,h).
Since the levels of these hepatokines in non-pregnant FL mice
were as low as those in KO mice, the observed increases in KO-
GDM mice may be due to the secondary influence of the GDM
condition rather than the direct effect of ERα deletion in T cells. In
contrast, hepatic steatosis was more prominent in pregnant mice
than in non-pregnant mice but was similar between genotypes
(Fig. 7a). Similarly, the expression of proinflammatory genes
and proteins was indistinguishable among mouse groups (Fig.
7b–f). It currently remains unclear why chronic inflammation in
KO-GDM mice was only aggravated in gWAT and remained
unchanged in the liver. We speculate that an adipose tissue-
specific Th17 infiltration mechanism or relatively abundant resi-
dent Kupffer cells in the liver affected the phenotype.
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In summary, oestrogen contributes to the maintenance of
glucose metabolism through signalling via ERα in T cells
under high oestrogen conditions in pregnancy. The disruption
of ERα signalling in T cells affects maternal adaptative insulin
secretion, as well as function and distribution of T cell subsets
under GDM conditions, particularly Th17 cells, causing
chronic inflammation in visceral adipose tissue and impairing
glucose metabolism.
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