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Abstract

Aim/hypothesis Altered adipose tissue secretory profile contributes to insulin resistance and type 2 diabetes in obesity.
Preclinical studies have identified senescent cells as a cellular source of proinflammatory factors in adipose tissue of obese mice.
In humans, potential links with obesity comorbidities are poorly defined. Here, we investigated adipose tissue senescent status
and relationships with metabolic complications in human obesity.

Methods The study includes a prospective cohort of 227 individuals with severe obesity. A photometric method was used to
quantify senescence-associated 3-galactosidase (SA-[3-gal) activity in paired subcutaneous and omental adipose tissue biopsies
obtained during gastric surgery. Gene and secretory profiling was performed in adipose tissue biopsies and in human primary pre-
adipocytes in the presence or absence of senolytic drugs targeting senescent cells. Participants were phenotyped for anthropo-
metric and bioclinical variables, metabolic complications and gastric surgery-induced improvement to address relationships with
adipose tissue SA-[3-gal.

Results SA-f3-gal activity was sevenfold higher in subcutaneous than in omental adipose tissue and not associated with BMI or
chronological age. Several factors, including insulin-like growth factor binding protein 3 (IGFBP3), plasminogen activator
inhibitor 1 (PAI1), C—C motif chemokine ligand 2 (CCL2) and IL-6, were upregulated in subcutaneous adipose tissue in relation
with SA-3-gal (p for linear trend across tertiles <0.05) and in pre-adipocytes cultured with inflammatory macrophage conditioned
media. Senolytic treatment reduced SA-[3-gal staining and normalised these alterations. In the whole population, subcutaneous
adipose tissue SA-3-gal activity was positively associated with serum leptin, markers of insulin resistance and increased trunk fat
mass. Metabolic complications, including type 2 diabetes and dyslipidaemia, were more prevalent in patients with high levels of
SA-3-gal, but improved with bariatric surgery whatever the initial adipose tissue senescent status.

Conclusions/interpretation This study highlights a phenotype of senescence in adipose tissue of severely obese individuals,
which characterises prominently subcutaneous fat depots. Subcutancous adipose tissue senescence is significantly linked to
altered glucose metabolism and body fat distribution. Elimination of senescent cells through senolytic treatment could alleviate
metabolic complications in severely obese people.
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Research in context

What is already known about this subject?

e Adipose tissue produces factors promoting metabolic complications in obesity

e Some complications might derive from senescent cells via their inflammatory senescence-associated secretory

phenotype

e In mice, senescent cell accumulation in adipose tissue is related to obesity-induced alteration of glycaemic status

What is the key question?

e Whatis the pathological relevance of adipose tissue senescence in human obesity?

What are the new findings?

e Senescence-associated B-galactosidase (SA-B-gal) activity is sevenfold higher in subcutaneous than in omental

adipose tissue of participants with severe obesity

e Subcutaneous adipose tissue with high SA-B-gal displays altered gene and secretory profiles characterised by
upregulation of senescence- and inflammation-related factors

e Subcutaneous adipose tissue senescence associates with insulin resistance markers and higher prevalence of
metabolic diseases, but does not mitigate bariatric surgery-induced recovery

How might this impact on clinical practice in the foreseeable future?

e Senolytic treatments could be clinically relevant to improve metabolic fitness through elimination of senescent

cells in adipose tissue of severely obese patients

omAT Omental AT

PAIl Plasminogen activator inhibitor 1

PBMC Peripheral blood mononuclear cell
SA-3-gal Senescence-associated [3-galactosidase
SASP Senescence-associated secretory phenotype
scAT Subcutaneous AT

SVF Stromal vascular cell fraction
Introduction

White adipose tissue is one of the largest endocrine organs
with a unique plasticity property to orchestrate nutritional
adaptation. In response to over-nutrition, adipose tissue
expands by increasing triacylglycerol storage in adipocytes
and undergoes metabolic and cellular adaptive changes that
protect from lipotoxicity. In obesity, adipose tissue remodel-
ling turns into a pathological process with excessive fat mass
deposition [1]. Enlarged adipose tissue contributes to obesity-
linked complications through the production of inflammatory
and insulin-desensitising factors that promote local and distant
organ dysfunction [2]. The cellular sources of these deleteri-
ous molecules are thought to be multiple. Inflammatory
macrophages were first identified as major culprits. In addi-
tion, a wealth of adipose-tissue-resident immune cells shift in
number and phenotype towards a proinflammatory status,
characterising obesity [3]. Within obese adipose tissue,
immune cells engage in complex crosstalk through cell

contact or paracrine pathways, to which non-immune and
progenitor cells contribute, accounting for altered adipose
tissue endocrine and metabolic functions [4-7].

Among the myriad of adipose-tissue-produced molecules,
some are proposed as mediators of cellular senescence.
Senescence is a physiological response to prevent the prolif-
eration of defective cells [8]. However, when senescent cells
accumulate, they impair proper tissue function largely through
their senescence-associated secretory phenotype (SASP)
[9-11]. Several senescence biomarkers have been proposed
to detect senescent cells in tissues (review in [10]). The most
widely used biomarker relies on elevated senescence-
associated (3-galactosidase (SA-f3-gal) activity, as originally
proposed by Dimri et al [12] and later shown to reflect
increased amounts of the lysosomal enzyme in senescent cells
[13, 14]. Other markers relate to cell cycle arrest, including
pl6 or TP53 and its target cyclin-dependent kinase (CDK)
inhibitor p21 [10]. Notably, drugs termed senolytics have
been identified based on their capacity to eliminate senescent
cells by targeting pro-survival or SASP pathways (review in
[15]). Among them, dasatinib and quercetin were shown to be
effective in delaying age-related symptoms in mice [16] and
are now being tested in clinical trials [17].

In a pioneer study, Minamino et al revealed enhanced
SA-3-gal activity, higher amounts of TP53 and increased
expression of p21 in adipose tissue of genetically and diet-
induced obese mice [18]. Genetic or senolytic-mediated
depletion of senescent cells reduced inflammation and
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improved glycaemic status, supporting a causal role of
adipose tissue senescence in obesity-induced metabolic
complications in mouse models [18, 19]. In humans, studies
exploring adipose tissue senescence status remain scarce,
despite increasing interest on senescence in metabolic
diseases. Recently, Gustafson et al [20] reported that (3-
galactosidase and 7P53 gene expression increased in subcu-
taneous adipose tissue (scAT) of lean and obese participants in
relation to fat cell enlargement. Senescent-like features,
including increased SA-[3-gal activity, have been detected in
visceral adipose tissue of a limited number of diabetic non-
obese individuals [18]. In culture experiments, markers of
senescence were higher in pre-adipocytes and endothelial cells
derived from adipose tissue of obese vs lean participants [21,
22]. Interestingly, obese adipose tissue conditioned media
induced a senescent phenotype in endothelial cells, suggesting
that obesity promotes a pro-senescent milieu [21].

The present study was designed to address the pathological
relevance of adipose tissue senescence in human obesity. To this
aim, we developed a method to quantify SA-(3-gal activity in
adipose tissue biopsies on a large-scale basis. Adipose tissue
SA-[3-gal status was determined in a prospective cohort of 227
obese participants, including individuals with metabolic compli-
cations at different stages of severity. As a working hypothesis,
we looked for associations between adipose tissue senescence
and alteration of metabolic fitness in human obesity.

Methods

Participants The study includes 227 obese participants
prospectively recruited between 2015 and 2018 in the
Prospective Bariatric Surgery Cohort of the Nutrition
Department at Pitié-Salpétriere Hospital. They are part of
several studies registered on ClinicalTrials.gov
(NCT00476658, NCT01655017, NCT01454232). They met
standard bariatric surgery recommendations and are
monitored according to bariatric surgery guidelines [23]. All
patients provided informed consent. Clinical and biological
variables were assessed prior to surgery and at 3, 6 and
12 months post surgery in a subgroup of 181 study
participants. Ninety-three patients had type 2 diabetes, accord-
ing to ADA criteria [24]. Lipid metabolism-related complica-
tions were found in 182 patients exhibiting dyslipidaemia
(triacylglycerol >1.70 mmol/l; and/or HDL cholesterol
[HDL-C] <1.04 mmol/I for men or <1.29 mmol/l for women;
and/or receiving hypolipidaemic drugs). The list of medica-
tions for study participants is shown in electronic supplemen-
tary material (ESM) Table 1. Total body and trunk (abdominal
and arms) fat mass were determined by dual-energy x-ray
absorptiometry (DEXA) (GE Lunar Prodigy Corporation,
Madison, WI, USA) [25]. Venous blood samples collected
in the fasting state were used to assess bioclinical markers
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[26, 27]. HOMA-IR was determined using the HOMA
Calculator v2.2.2 (www.dtu.ox.ac.uk/homacalculator/
download.php). QUICKI was determined as described in
[28]. The study flow chart is shown in ESM Fig. 1.

Adipose tissue biopsies and SA-B-gal activity Paired omental
adipose tissue (omAT) and scAT adipose tissue biopsies were
obtained during bariatric surgery. SA-f3-gal activity was
measured in fresh adipose tissue biopsies with the Senescence
Cells Histochemical Staining Kit (Sigma, St Louis, MO, USA).
We standardised the procedure as follows: 100 mg of adipose
tissue was incubated overnight at 37°C in 700 ul of staining
solution containing X-gal. The reaction was stopped with fixa-
tion buffer. When applied to human adipose tissue biopsies, this
assay produced a blue—green stain, which was quantified on
digitally analysed adipose tissue pictures using Image J (NIH,
USA) (ESM Fig. 2). RGB images were converted into CMKY
format (https://imagej.net/RGB_to CMYK) to measure the
cyan value of each pixel. SA-3-gal values were set as the ratio
of cyan pixel intensity over the number of pixels in the biopsy
area multiplied by 1000, and reported as arbitrary units (AU). A
subset of scAT and omAT biopsies were incubated for 48 h
prior to SA-(3-gal assay, with or without a cocktail of the
senolytic drugs, dasatinib (1 umol/l) and quercetin (20 pmol/l)
(Sigma), following a protocol by Xu et al [29].

Histopathology of adipose tissue Adipocyte diameter was
measured with Perfect Image (v 7.7, ClaraVision, Verriéres
le Buisson, France) on scAT needle-aspirated biopsies after
collagenase digestion [30]. Macrophages were detected on
adipose tissue slides with the pan-macrophage marker CD68
antibody (DakoCytomation, Trappes, France) and counted per
100 adipocytes [31]. Fibrosis score of adipose tissue (FAT
score) was determined on picrosirius red labelled adipose
tissue sections using a method by Bel Lassen et al [32].
Hydroxyproline concentration, reflecting collagen content,
was measured in adipose tissue biopsies using a colorimetric
assay (BioVision, Milpitas, CA, USA) [7].

Adipose tissue explants Adipose tissue explants were
prepared from scAT biopsies as described previously [33].
Briefly, adipose tissue was minced in endothelial cell basal
medium (Promocell, Heidelberg, Germany) containing 1%
FBS to reach a concentration of 0.1 g/ml. Twenty-four hour
conditioned media was analysed for released factors using
ELISA (Biotechne, Mineapolis, MN, USA) or Luminex tech-
nology (ThermoFisher, Courtaboeuf, France). In some exper-
iments, explants were incubated for 48 h with or without a
senolytic cocktail of dasatinib (1 pumol/l) and quercetin
(20 pmol/1) [29].

Cultured human pre-adipocytes Pre-adipocytes were obtained
from stromal vascular cells of adipose tissue collected by


http://clinicaltrials.gov
http://www.dtu.ox.ac.uk/homacalculator/download.php
http://www.dtu.ox.ac.uk/homacalculator/download.php
https://imagej.net/RGB_to_CMYK

Diabetologia (2021) 64:240-254

243

lipoaspiration in non-obese female participants [34]. To assess
the effect of macrophage-derived factors, differentiated blood
monocytes were incubated with either 100 ng/ml lipopolysac-
charide (from Escherichia coli 0127:B8) or dexamethasone
(100 nmol/l), to obtain proinflammatory (M1-) and anti-
inflammatory (M2-) conditioned media (CM), respectively
[34]. Pre-adipocytes were cultured for 72 h in standard medi-
um (control) or with M1- or M2-CM (1/4 vol./vol.). When
indicated, a senescence inhibitor roscovitine (20 pmol/l) [35]
or a senolytic cocktail of dasatinib (I pmol/l) and quercetin
(20 pumol/l) [29] was added concomitantly with M1-CM.
SA-f3-gal activity was determined using the Senescence
Cells Histochemical Staining Kit (Sigma), according to the
manufacturer’s recommendations. The number of blue cells
was quantified and expressed as per cent of total cell count per
field.

Gene expression analysis Total RNA was extracted from
adipose tissue biopsies or cultured pre-adipocytes using the
RNeasy Mini Kit (Qiagen, Hilden, Germany). cDNAs were
synthesised with M-MLV reverse transcriptase (Promega,
Fitchburg, WI, USA). Exiqon primers were used for quantita-
tive real-time PCR using the 7300 real-time PCR system
(Applied Biosystems, Foster City, CA, USA). A list of
primers used is shown in ESM Table 2. The QuantiGene 2.0
Plex Assay kit (ThermoFisher) was used to quantify some
transcripts as indicated. Plates were analysed in the Luminex
200 system (Luminex, Austin, TX, USA) and gene expression
was calculated using the xPonent software (v 3.1, Luminex).

PBMC telomere length Peripheral blood mononuclear cells
(PBMCs) were isolated from fresh blood samples. Briefly,
following plasma removal, blood cells were centrifuged
(10 min at 1200 g) in SepMate PBMC isolation tubes contain-
ing Ficoll (STEMCELL Technologies, Grenoble, France).
Genomic DNA was extracted from PBMCs with the
QIAamp DNA Kit (Qiagen). Telomere length was assessed
by real-time quantitative PCR according to [36] and reported
as the ratio of telomere copy number over 3684 (also known
as RPLP0) gene (AU).

Statistical analyses Since SA-3-gal values were not normally
distributed, we categorised this variable in tertiles. Statistical
tests for comparison between tertiles included Student’s ¢ test,
Wilcoxon test, ANOVA or linear pgenq for continuous data
and X test for categorical data. Correlations were assessed
by Spearman’s test. To confirm associations between scAT
SA-3-gal and bioclinical characteristics, we used multivari-
able linear regression allowing adjustments for sex and diabe-
tes status and estimation of their effect size. We (1) assessed
the robustness against deviations from normality of these
models, (2) log( transformed non-normal variables when
required and (3) evaluated plots of residuals against normal

quantiles (QQ-plot). We explored the explained variance of
each bioclinical variable in the total variance of scAT SA-3-
gal by calculating n” in generalised linear models [37].
Relations between scAT SA-(3-gal at inclusion and changes
in clinical variables over time after bariatric surgery were test-
ed by building linear mixed-effects (LME) models with partic-
ipants’ identification as a random variable [38]. All LME
models were fit by maximising the restricted log-likelihood
of their estimated coefficients and were adjusted for sex, age,
diabetes status and type of surgery (sleeve gastrectomy or
gastric bypass). The p value of LME referred to the interaction
term between time (0, 3, 6 or 12 months post surgery) and
tertiles of scAT SA-3-gal (categorical variables). Estimates of
LME were expressed as adjusted means and 95% CI.
Statistical analyses were performed by using R software
(version 2.10.1, http://www.r-project.org) and the SAS
system (version 9.0.1 SAS, Cary, NC).

Results

SA-B-gal activity predominates in scAT biopsies To explore
SA-3-gal activity, we used a well-established cytochemical
assay that we optimised and standardised for human adipose
tissue biopsies. This assay generated highly variable blue
staining among individuals and fat depots (Fig. 1a). Using
an in-house quantification method (ESM Fig. 2), we found
that SA-f3-gal staining values were sevenfold lower in
omAT than in scAT (Fig. 1b). More than half (52%) of the
omAT biopsies were negative for SA-3-gal vs 13% of the
scAT samples. In paired biopsies, omAT and scAT SA-f3-
gal levels were positively correlated (Fig. 1c). When adipose
tissue biopsies were treated with senolytic drugs, SA-[3-gal
staining and quantification were markedly reduced in scAT
and omAT samples (Fig. 1d).

For following analyses, scAT biopsies were partitioned in
tertiles according to Low (0-20 AU), Medium (21-99 AU) or
High (100-322 AU) SA-[3-gal activity. scAT SA-3-gal levels
were similar in men and women in the Low and Medium
tertiles, but higher in women in the High tertile (Fig. le).
BMI and age of the study participants were equally distributed
among scAT SA-[3-gal tertiles regardless of sex (Fig. 1f,g). To
substantiate the lack of association of scAT senescence with
chronological ageing, we measured PBMC telomere length,
an established marker of organismal ageing, in 61 participants
separated in two age groups (5070 years, n = 30; 1849 years,
n=31). Reduced telomere length was found in older individ-
uals (0.649 +0.02 AU) compared with younger individuals
(0.772+0.02 AU, p<0.01), while scAT SA-f3-gal was
similar (69+14 vs 65+13 AU, NS). Thus, although a
systemic marker of ageing readily identified older people,
their scAT senescence status was not aggravated compared
with young individuals.
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Fig. 1 SA-{3-gal in adipose tissue a

biopsies in relation with fat depot,
sex, age and BML. (a)
Representative pictures of paired
scAT and omAT biopsies used for
quantification of SA-[3-gal staining.

SCAT

omAT "

Paired biopsies were visually
classified in three groups according
to the intensity of blue colour in
scAT samples. (b) Quantification of
SA-B-gal (AU) in scAT and omAT
biopsies in 227 obese participants.
(¢) Correlation between scAT and
omAT SA-f3-gal activity; » and

p values were obtained by
Spearman test. (d) SA-3-gal
activity in scAT and omAT
incubated for 48 h with a senolytic
drug cocktail (D+Q) prior to SA-f3-
gal activity assay. (e) Quantification
of scAT SA-f3-gal in participants
classified by sex and SA-[3-gal
tertile. (f, g) Distribution of BMI (f)
and age (g) of participants classified
by sex and SA-[3-gal tertile. (b, d—
) Individual data and mean (line)
are shown. *p<0.05, *¥p<0.01 by
Student’s ¢ test. Tertiles of sCAT
SA-[3-gal are defined as Low: 0-20
AU; Medium: 21-99 AU; High:
100-322 AU. D, dasatinib; Q,
quercetin
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scAT gene and secretory profiles are altered in relation to SA-
B-gal We next performed transcription and secretion profiling
in scAT biopsies with distinct SA-3-gal levels. Only a few
genes were modified in relation to increasing SA-{3-gal,
including SPPI (which encodes osteopontin), LIPA (lipase
A, lysosomal acid type) and LEP (leptin). SPP1 was the most
upregulated gene in the High tertile (Fig. 2a). We found no
significant change in gene expression of SASP factors (PA/l
and /GFBP3) or ADIPOQ (which encodes adiponectin). In
scAT biopsies with high SA-p3-gal, SPP/ and LIPA upregu-
lation occurred mostly in the stromal vascular cell fraction
(SVF), while LEP was overexpressed specifically in adipo-
cytes (Fig. 2b). Although senescence can be induced by oxida-
tive stress, we found no evidence for change in the expression
of several antioxidant genes with increasing SA-3-gal in scAT
biopsies (ESM Fig. 3a). Furthermore, scAT expressed higher
levels of antioxidant genes than omAT (ESM Fig. 3b),
suggesting disconnection of adipose tissue senescent status
with the degree of oxidative stress based on this gene expres-
sion evaluation. Expression of several other genes was not
significantly changed irrespective of SA-3-gal tertile (ESM
Table 3). Specifically, lipogenic genes were not differentially
expressed according to SA-[3-gal status. In line with this, an
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equal partition of adipocyte diameters across tertiles (ESM
Fig. 4a) indicates no relationship of adipocyte size with
SA-f3-gal in this population. Similarly, we did not detect
significant change in expression of classical gene markers of
senescence, i.e. P21 (also known as CDKNIA), TP53 and
RBI1. Finally, stable expression of the profibrotic factor
TGF(1 (also known as TGFBI) or the collagen isoform
COL3A1I suggested no link between SA-3-gal levels and
scAT fibrosis in people with severe obesity (ESM Table 3).
Two sets of observations support this assumption. First,
hydroxyproline concentrations in scAT were not significantly
correlated with SA-3-gal (ESM Fig. 4b). Second, SA-[3-gal
was not significantly altered in biopsies with FAT scores of
increasing severity (ESM Fig. 4c).

The release of several factors, including leptin, plasmino-
gen activator inhibitor 1 (PAIl), insulin-like growth factor
binding protein 3 (IGFBP3) and C—C motif chemokine ligand
2 (CCL2) increased progressively up to twofold, together with
scAT SA-3-gal, while IL-6 and adiponectin release remained
stable across tertiles (Fig. 2c). We did not find further
evidence for SA-3-gal-related alteration in scAT secreted
factors (ESM Table 4). Importantly, senolytic treatment mark-
edly reduced the release of leptin, PAI1, IGFBP3, CCL2 and
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Fig. 2 Gene expression and secretory profiles of scAT biopsies with
distinct levels of SA-f3-gal. (a) Senescence-related gene expression in
scAT biopsies classified according to tertile of SA-3-gal. Data are mean
+ SEM of fold change over mean values of Low set to 1 (n=11-28 per
tertile). (b) Gene expression of selected factors in SVF and adipocytes
from scAT biopsies assigned to the High (n=12) or Low (n=9) SA-f3-gal
tertile. Data are mean + SEM of relative mRNA levels normalised to
RPLPO mRNA determined by QuantiGene Plex. (¢) Release of secreted
factors in explants of scAT biopsies classified according to tertile of SA-
[3-gal. Data are mean + SEM of fold change over mean values of Low set

IL-6 specifically in scAT biopsies with High SA-3-gal (Fig.
2d). This selective inhibition identifies cells with a senescent
phenotype as a source or a trigger of these factors in human
adipose tissue.

M1-CM induces a pro-senescent effect in human pre-adipo-
cytes We sought to determine whether proinflammatory
macrophages promote senescence. The number of CD68"
cells in scAT biopsies was not related to SA-3-gal activity
(ESM Fig. 4d). Nevertheless, M1-CM increased the number
of SA-3-gal-positive cells in culture of pre-adipocytes (Fig.
3a,b). This induction did not occur with M2-CM and was
reversed by the senescence inhibitory drug roscovitine.
Further support for M1-CM pro-senescent effect was provided
by upregulation of senescence markers and reversion upon
roscovitine or senolytic drug treatments (Fig. 3c—). M1-CM
exhibited a potent proinflammatory effect, as expected,
demonstrated by a marked stimulation of CCL2 and IL-6 gene
expression and release (Fig. 3f,g). Neither senescence- nor
inflammation-related factors were significantly changed in
response to M2-CM (ESM Fig. 5). Notably, while roscovitine
reduced the inflammatory effect of M1-CM, senolytic drugs
failed to reverse CCL2 and IL-6 induction (Fig. 3f,g).
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to 1 (n=11-28 per tertile). (d) Secretory profile of explants of scAT
biopsies selected in the High (n=5) or Low (n=5) SA-f-gal tertile.
Explants were incubated for 48 h without or with a senolytic cocktail
(D+Q), as indicated. Data are shown as mean + SEM of the amounts
released by 0.1 g of adipose tissue over 48 h. (a, ¢) p values were obtained
by linear pyenq test. (b, d) p values were obtained by unpaired (b) or
paired (d) Student’s ¢ tests; *p<0.05; **p<0.01. Tertiles of scAT SA-f3-
gal are defined as Low: 0-20 AU; Medium: 21-99 AU; High: 100-322
AU. D, dasatinib; Q, quercetin

scAT SA-B-gal associates with trunk fat mass and insulin resis-
tance markers In our population of severely obese partici-
pants, SA-3-gal was positively associated with serum leptin
and markers of insulin resistance, including increased fasting
insulin levels and HOMA-IR and reduced QUICKI (Table 1)
in both men and women. In women, additional relationships
support a link between scAT SA-{3-gal and poor glycaemic
status, including elevated fasting glucose levels and HbA .
and low adiponectin. Moreover, women with senescent
scAT displayed high trunk fat mass.

Multivariable linear regression and adjustments for sex and
type 2 diabetes status confirmed that scAT SA-{3-gal was
significantly associated with large trunk fat mass, serum leptin
and markers of insulin resistance (Fig. 4a). The effect size of
these associations showed that seven bioclinical variables
were the best to explain scAT SA-f3-gal variance (Fig. 4b).
By contrast, age, BMI, fasting glucose and HbA . did not
significantly contribute to scAT SA-[3-gal variations.

scAT SA-B-gal does not impair improvement of metabolic
status following bariatric surgery The concordant data found
at baseline (i.e. before bariatric surgery) revealed a deleterious
relationship between high scAT SA-f3-gal and insulin
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resistance phenotypes. In line with this, the number of partic-
ipants with type 2 diabetes was twice as high in the High scAT
SA-{3-gal tertile than in the other groups at inclusion (Fig. 4c).
Importantly, all diabetic patients received similar drug treat-
ment (ESM Table 5), indicating that this unequal partition of
type 2 diabetic patients was not accounted for by distinct
medication. As a well-established beneficial consequence of
bariatric surgery, the number of diabetic patients decreased

@ Springer

progressively over 1 year (Fig. 4c). Notably, both total remis-
sion or improvement of diabetes confirmed by reduced use of
glucose-lowering treatments occurred irrespective of patients’
initial assignment to SA-{3-gal tertile (ESM Table 6, 7). At
inclusion, increased numbers of patients with dyslipidaemia
or low HDL-C were classified in the High and Medium SA-3-
gal tertiles (Fig. 4d,e). After surgery, the number of affected
patients decreased regularly in each group, reaching similar



247

Diabetologia (2021) 64:240-254

urojoid 9A1oeaI-D) ANANISULS-Y3IY ‘IYDSY

NV T2T€-001 “YSIH PUE NV 66T ‘WP NV OT0 MO St pauyop e [e5-¢-y'S [ V95 JO Sa[Iia],
pannbar usym ‘eyep pauriojsuen; 0130] uo YAQNY Aem auo £q paurejqo a1om sanjea d

NS F ueaw se passaidxo are ereq

6£9°0 9STFEE9  IVIFES 090F 09 Y60 CTILFTEL  €SOFI0C  OL0F6£S 0080 €9CFLIL  PSOFOTS SS0F 0TS (tur/3d) 9-11
[€C0 8I'TFLI9 €STFEE6 991 F 88 6C1'0 6L0FO0CT8  OLTFVCL 10T FLS6 0290 LYOFCLL o6V 1 F8II  98°0FLEG (1/8w) YOsY
LO80 VrOF8LE THOFCISE LEOFOE SI0°0 ITOF86E VrOFLVY LTOFEOS +¥LOO 6I0FV6C PEOFITY $TOF 9V (1/8w) unosuodipy
€600 SOV FRIS SLLFECI  0€9 F ¥8¢ 020 STSFVYIL €EFELY  LLEFESH9  6V00 O6EVFEIL  8IEFCSI9  TSEF €8S (Tu/Bu) undory
0I€0 €CO0FCO'l THOFEET 600 F €L’ 9LL'0 800FCST OI'0OF¥ST II'0OF6VT  vpb0  800FI9L  €IOFELT  TI0F ST (1/10u) (01004141,
ICC0 SO0F860 LOOFS60  800FIII LITO vOOF¥CT  SOOF8I'L  SOOFICT 6500 €OO0F8I'T YOOFCI'T  +00F9CI (1/10ww) D-1AH
098°0 ITOFL9Y STOFI8Y BI'0OFLLY L190 TI0OF VLY €I0F 067 CIOFO8Y €vS0 OI'0OF €LY TCIOFO68Y OI'0F 98¢ (I/10wu) [012153]0Y 10,
PEOFOF9  SSOF P69  TEOTF SH9 8I'0FCL9 SI'0OFEO9 €I0OFEI9 910 FS99 8I0FSCTY9 €I0FICTI (%) *'VaH
9690 VLEFVOY 8P SFOIS PSEFOLY 7000 96’1l Fo'6F O6STFVTr WWIFOEr T00 CLTIFT6F TWWIFOV I F b (Towyjown) *yqy
SI00 II'TF€I'8 €LOFIVY9  LSOFEOY €000 00T FT89 8LOFOCS €SOFITY 1000> 080F¥IL +90F €SS €40 F I¢d AI-VINOH
SI00 T0°0 F98C0 000 F 9620 000F 60£0 €000 000F00€0 T100F9IE0 000FTCEO 1000> 000 F 860 000 F CIEO 000 F 0CE0 IDINO
9€00 0LTF6S6I SOTFO099T TPIF 6T +I00 €EIFO6ST 6¢VI FHSel LE€IFLIIL 1000> T[CIF 1891 9TIFLIVL 601 F I'SII (1/10wd) urnsur Sunse,y
8960 8SOFOIL ¥8OFETL €90F€0L 9100 LTOF659 0CTOFS9S STOFCOS SSO0  STOFILY9 9TOF 109 STOF 9 (1/10w) 2500013 Funse]
8¢€0 I10T+S99 WWIFELY T60F1°S9 LTO0 6LO0F6TY 080F6T9 080F66S S900 890FLEY SLOFO6TY 690 F 419  (SSew jey g) Ssew Jej yunig,
vero vI'LF TV L F 6Ly 660 F I'lY 6680 CSOFE0S 0S0FC0S 6S0F00S TS0 9S0F 06y €90FS8 ILOFVLY (1ySrom £poq 9) ssew 1]
VS0 9STTF €9  SOTFCTLY 0SS F eV 09¢€0 II'IF09% CTLOFCTSY S60FIvy CTITO CTOOF 19 T8OFLSY 080FIth (/%) NG
YITO 8rEF86F 60CFICH 6€CTFOES G8S°0 E€STIFIvy o6L1F ISy 991 F¥or €€C0 wWIF¥Sy vSTFTSH OVl FT8Y (s1e0K) 98V
81 Ll 0c 09 LS S¢S 8L YL SL u

anfea d ySig wnIpaj Mo onead ySig wnIpaj Mo onead ySiy wnIpaj MO
(S§=u) v\ (TL1=u) uswopm (Lez=uwy v onsLLoeIRYY

1e8-¢g-VS 1Vos Jo 9[119) YSIH] 10 wnIpajy ‘Mo ur paygnens sjuedonted Apmis Jo sonsmojoeIeyd [eoruroorg | ajqeL

pringer

Qs



248

Diabetologia (2021) 64:240-254

Fig. 4 Relations between scAT
SA-f3-gal and bioclinical
variables in obese individuals at
surgery and during post-surgery
follow-up. (a) Heat map of
multivariable linear regressions
between bioclinical variables and
scAT SA--gal, not adjusted or
with adjustments as indicated
(n=227). ¥p<0.05, **p<0.01. (b)
Effect size of standardised
discriminant variables explaining
percentages of total scAT SA-f3-
gal variance (n=227).
Significance refers to a global
generalised linear model
including all indicated variables.
(c—e) Number of participants with
obesity-linked metabolic
complications expressed as a
percentage within each tertile of
scAT SA-[3-gal at inclusion (time
0). Patients remained assigned to
their initial SA-[3-gal tertile for
post-surgery follow-up at 3, 6 and
12 months (n=181). Comparison
between tertiles at each time point
was performed by x*-test.
*p<0.05, **p<0.01. (f-g) Mixed
models of post-surgery evolution
of selected variables in patients
assigned to tertiles of scAT SA-f3-
gal at inclusion (n=181). Data
were normalised over baseline
(time 0). The interaction term
between time and scAT SA-3-gal
tertile at baseline was statistically
significant (p<0.05 for each
graph). (c—h) Tertiles of scAT
SA-{3-gal defined as Low: 0-20
AU; Medium: 21-99 AU; High:
100-322 AU. T2D, type 2
diabetes
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values at 6 and 12 months post surgery. Thus, metabolic
anomalies were more prevalent in patients with high scAT
senescence status at baseline, but improved with bariatric
surgery irrespective of the initial level of SA-[3-gal.

After adjustment for sex, diabetes status and type of
surgery, a few bioclinical variables showed significantly
distinct profiles of post-surgery evolution according to
scAT SA-f3-gal at inclusion (Table 2). When normalised
over baseline, trunk fat mass, QUICKI and HbA,.
showed a distinct time course over 1 year post surgery.
Participants classified in the High SA-(3-gal tertile were
characterised by lower trunk fat mass loss but enhanced
QUICKI and reduced HbA;. compared with other
tertiles (Fig. 4f-h).
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Discussion

This study is, to our knowledge, the first addressing the poten-
tial contribution of adipose tissue senescence to metabolic
complications in human severe obesity. We show that adipose
tissue from a large group of people displays highly variable
degrees of senescence reflected by a large range of SA-[3-gal
levels. In this specific population with severe obesity, senes-
cent scAT represents a hallmark of poor glycaemic status.
Importantly and surprisingly, scAT SA-3-gal was unrelated
to chronological ageing, indicating that obesity associates
with premature senescence in this tissue. However, a high
degree of senescence in scAT did not preclude improvement
of metabolic markers after bariatric surgery.
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Given the established contribution of visceral fat to meta-
bolic injuries [39], we expected high senescence status in
omAT. Contrary to this hypothesis, SA-{3-gal was either not
detectable or found in low range values in omAT biopsies.
Currently, we have no explanation for this previously uniden-
tified fat depot-specific difference in human obesity.
Disconnection between scAT SA-(3-gal and chronological
ageing suggests implication of age-independent factors,
remaining to be identified.

A set of data gives support to SA-3-gal being a relevant
marker of human adipose tissue senescence status. First,
SA-(3-gal staining in adipose tissue biopsies significantly
decreased upon senolytic treatment. Second, gene expression
and release of several established SASP components
increased with SA-{3-gal in scAT and were downregulated
by senolytics selectively in biopsies expressing high levels
of SA-f3-gal activity. Third, M1 macrophage-derived factors
increased SA-{3-gal along with other senescence markers in
cultured human pre-adipocytes. This induction was readily
abolished by senolytic drugs and by roscovitine. By contrast,
the potent proinflammatory effect of M1-CM previously
established [34, 40] and confirmed here, was resistant to the
inhibitory effect of senolytic drugs. This indicates that M1
macrophages trigger inflammation and senescence through
distinct pathways, with a prominent activation of inflammato-
ry signalling. Notably, roscovitine reduced M1-induced
inflammation, in line with the capacity of this drug to repress
NF-kB inflammatory pathways [41]. The mechanisms by
which the drug reduces SA-{3-gal activity and other senes-
cence markers in human pre-adipocytes remain to be
determined.

Performing ex vivo and in vitro exploration on human
samples, we defined senescence-associated and inflammatory
factors produced by senescent adipose tissue. This includes
CCL2, IL-6, PAIl, IGFBP3 and leptin, which could be
considered SASP factors in human scAT. One of the genes
most upregulated in senescent scAT was SSPI, encoding
osteopontin. Recently, adipose tissue-derived osteopontin
has been implicated in age-related cardiac fibrosis and
dysfunction in mice [42]. Further studies are needed to estab-
lish whether osteopontin is a component of human scAT
SASP. As such, this protein might contribute, with other
SASP deleterious factors, to obesity-linked cardiometabolic
complications.

We tested the hypothesis that senescence contributes to
adipose tissue pathological remodelling in human obesity.
We found no evidence for a link between lipogenic gene
expression or adipocyte size and SA-[{3-gal, suggesting that
senescence does not influence triacylglycerol storage in obese
scAT. In a distinct population comprising lean and moderately
obese individuals, (3-galactosidase gene expression in scAT
was shown to increase with adipocyte size [20]. This relation-
ship might reflect expansion of the lysosomal compartment

with cell enlargement, not specifically related to senescence,
since [3-galactosidase gene expression does not fully account
for the senescent phenotype detected by SA-(3-gal assay [14].
Macrophage accumulation is another well recognised delete-
rious cellular alteration that was not linked with scAT senes-
cence status, although this does not preclude association with
M1-activated macrophages. Finally, we found no relationship
between scAT SA-3-gal activity and FAT score stages, which
readily detected increasing degree of fibrosis severity in our
current population with severe obesity, similar to our previ-
ously explored cohort [32]. In sum, our current observations
do not support a major contribution of senescence to aggravate
local scAT deterioration at the severe and chronic stages of
obesity.

The large spectrum of SA-[3-gal levels found in the present
study suggests highly variable senescence status of scAT. In
obese women, SA-[3-gal levels were associated with increased
trunk fat mass. Concordant observations also highlight a rela-
tionship between scAT SA-f-gal and insulin resistance
phenotypes. Ex vivo analyses showed that senescent scAT
produces molecules implicated in the alteration of glucose
homeostasis, such as IL-6 [43] or IGFBP3 [44], which could
contribute to these deleterious phenotypes. Although a causal
relationship is virtually impossible to establish in humans,
mouse studies support a pathological role for adipose tissue
senescent cells. Indeed, deletion or overexpression of TP53 in
obese mice caused improved or aggravated insulin resistance,
respectively [18]. Other studies showed that a decline in
adipose tissue senescence markers in response to exercise or
through senolytic treatment was associated with amelioration
of glycaemic status in diet-induced obese mice [19, 45].

Clinical investigation of the study participants revealed that
metabolic anomalies, including type 2 diabetes and
dyslipidaemia, were more frequent in obese participants with
senescent scAT. Nevertheless, well-established beneficial
effects of bariatric surgery on insulin resistance phenotypes
occurred independently of scAT senescence status before
surgery. We cannot exclude the possibility that surgery-
induced amelioration of scAT senescence status, together with
a decreased proinflammatory milieu, contributed to improve
recovery in participants with high SA-3-gal at inclusion. Post-
surgery scAT SA-{3-gal was not measured in the present
study, given that surgical biopsies were not available.

Cellular senescence promotes deterioration of a broad
range of physiological functions in aged mice that can be
reversed or delayed through elimination of senescent cells
[29, 46]. Specifically, several obesity-related pathologies
might be driven by senescent cell accumulation in various
organs. This includes non-alcoholic fatty liver disease
(NAFLD) and anxiety disorders, which have been attributed
to the senescence status of hepatocytes and glial cells, respec-
tively, in obese mice [47, 48]. Notably, hepatocyte senescence
has also been reported in chronic liver disease in humans [49].
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Whether senescent scAT-derived factors contribute to these
alterations needs to be explored deeper in human obesity.

The strength of our human study relies on the demonstra-
tion that SA-p-gal staining in scAT is positively linked to
altered glycaemic status. We believe that this brings to light
a new feature of adipose tissue dysfunctional state driving
metabolic diseases in humans. Nevertheless, we acknowledge
some limitations. First, the SA-f3-gal assay provides a global
evaluation of senescence in adipose tissue. Further studies are
needed to unequivocally identify adipose tissue senescent cell
types by combining staining of markers of senescence and
cellular identity, as proposed by Biran et al [50]. Second, the
pathological relevance of senescence in human adipose tissue
was explored exclusively in participants with severe to morbid
obesity. Although this allowed us to link adipose tissue senes-
cence to altered glycaemic status in this severe phenotype, this
deleterious relationship remains to be explored in cohorts of
lean, overweight or less obese individuals. Finally, the surpris-
ingly low levels of SA-3-gal in omAT ruled out further inves-
tigation. We cannot exclude that other senescence markers
would be more appropriate to quantify low degrees of senes-
cence in this fat depot.

In conclusion, adipose tissue is a site of pathological cellu-
lar remodelling, which eventually leads to disruption of meta-
bolic homeostasis in obesity. Our data revealed that scAT
senescence is another hallmark of these alterations in severe
obesity, with highly variable degrees of senescence linked to
altered glucose metabolism and deleterious truncal fat distri-
bution. Given the promising results of senescent cell elimina-
tion in mice, senolytic treatment could alleviate senescent cell
accumulation in scAT and, in turn, reduce obesity-induced
metabolic complications.
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