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Obesity-induced reduced expression of the lncRNA ROIT impairs
insulin transcription by downregulation of Nkx6.1 methylation
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Abstract
Aims/hypothesis Although obesity is a predisposing factor for pancreatic beta cell dysfunction, the mechanisms underlying its
negative effect on insulin-secreting cells is still poorly understood. The aim of this study was to identify islet long non-coding
RNAs (lncRNAs) involved in obesity-mediated beta cell dysfunction.
Methods RNA sequencing was performed to analyse the islets of high-fat diet (HFD)-fed mice and those of normal chow-fed
mice (NCD). The function in beta cells of the selected lncRNA 1810019D21Rik (referred to in this paper as ROIT [regulator of
insulin transcription]) was assessed after its overexpression or knockdown in MIN6 cells and primary islet cells, as well as in
siRNA-treated mice. Then, RNA pull-down, RNA immunoprecipitation, coimmunoprecipitation and bisulphite sequencing were
performed to investigate the mechanism of ROIT regulation of islet function.
Results ROITwas dramatically downregulated in the islets of the obese mice, as well as in the sera of obese donors with type 2
diabetes, and was suppressed by HNF1B. Overexpression of ROIT inMIN6 cells and islets led to improved glucose homeostasis
and insulin transcription. Investigation of the mechanism involved showed that ROIT bound to DNA methyltransferase 3a and
caused its degradation through the ubiquitin proteasome pathway, which blocked the methylation of the Nkx6.1 promoter.
Conclusions/interpretation These findings functionally suggest a novel link between obesity and beta cell dysfunction via ROIT.
Elucidating a precise mechanism for the effect of obesity on lncRNA expression will broaden our understanding of the patho-
physiological development of diabetes and facilitate the design of better tools for diabetes prevention and treatment.
Data availability The raw RNA sequencing data are available from the NCBI Gene Expression Omnibus (GEO series accession
number GSE139991).
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Abbreviations
ChIP Chromatin immunoprecipitation

CHX Cyclohexamide
DAC Decitabine
DMR Differentially methylated region
DNMT DNA methyltransferase
EMSA Electrophoretic mobility shift assay
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GSIS Glucose-stimulated insulin secretion
HFD High-fat diet
HNF1B HNF1 homeobox B
LncRNA Long non-coding RNA
NCD Normal chow diet
QMSP Quantitative methylation-specific PCR assay

analysis
qPCR Quantitative real-time PCR
ROIT Regulator of insulin transcription
WAT White adipose tissue
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Introduction

The pancreatic beta cell is solely responsible for the tran-
scription, synthesis and release of insulin and plays a
central role in the control of glucose homeostasis. Failure
of beta cell function appears to underlie virtually all forms
of diabetes mellitus [1, 2]. Obesity is thought to increase
circulating NEFA levels, and chronic exposure to elevated
NEFA is detrimental to pancreatic beta cells, resulting in
insulin content reduction, insulin secretion deficiency, and
beta cells apoptosis [3–6].

Long non-coding RNAs (lncRNAs) are a newly identi-
fied class of endogenous RNA molecules, which are typi-
cally longer than 200 nucleotides and on rare occasions
can encode a functional short peptide [7]. LncRNAs influ-
ence the expression and stability of protein-coding RNAs.
They also affect DNA methylation, the chromatin land-
scape, and subsequent gene silencing or activation
[8–10]. Abnormal expression of lncRNAs has been asso-
ciated with a variety of human diseases, including diabetes
[11]. Recent studies have identified thousands of lncRNAs
in human pancreatic beta cells as well as in mouse
pancreatic islet cells [12, 13]. A large proportion of human
beta cell lncRNAs is regulated by extracellular concentra-
tions of glucose [14, 15]. We hypothesised that obesity-
induced beta cell function failure might be due to alter-
ations in the level of lncRNAs. The aim of this study was
to identify islet lncRNAs involved in obesity-mediated
beta cell dysfunction via RNA sequence (RNA-seq) anal-
ysis and to investigate the mechanism of the regulation of
beta cell function by the lncRNA 1810019D21Rik
(referred to in this paper as ROIT [regulator of insulin
transcription]).

Methods

Animals Five-week-old C57BL/6J mice, ob/obmice (8 weeks
old), and db/db mice (8 weeks old) and db/- mice, were
obtained from the Model Animal Research Center of
Nanjing University (Nanjing, China). All animals were on
the C57BL/6 background except for db/- mice and db/db
mice, which were on the BKS background. C57BL/6J mice
were fed a high-fat diet (HFD) for 8 weeks (Catalogue no:
D12494, 60% energy from fat, Research Diets, New
Brunswick, NJ, USA) using a protocol previously described
by Peyot et al [16], and weighed between 40 and 45 g at the
end of the 8 weeks on the diet. The control group were fed
with a normal diet (Catalogue no: D12450J, 10% energy from
fat, Research Diets), and weighed between 20 and 25 g. The
mice were randomised to receive the high-fat and normal diet
and specify the method of randomisation. All care and
handling of animals were carried out according to the appro-
priate international laws and policies (EEC Council Directive
86/609, 1987), and approved by the animal ethics committee
of China Pharmaceutical University (Nanjing, China).

RNA-sequencing analysis Total islet RNA (100 islets per
group; three NCD groups, three HFD groups) was isolated
using the RNeasy kit (Qiagen, Hilden, Germany). The quality
of the samples was assessed and the experiment and data
analysis were carried out by Vazyme (Nanjing, China).
Cuffdiff (v2.2.1) [17] was used to calculate the fragments
per kilobase million (FPKM) for lncRNAs in each group. A
difference in gene expression with a p value of ≤0.05 was
considered significant. The raw data are displayed in
Electronic supplementary material (ESM) Table 1. See ESM
Methods for further details.
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Serum samples of normal-weight and overweight individuals
with type 2 diabetes The serum and clinicopathological data
used were collected from the Department of Authority of
Nanjing Army Hospital, and Zhongda Hospital Southeast
University (Nanjing, China). All the individuals enrolled in
this study were obese individuals with type 2 diabetes (BMI
≥25 kg/m2). The negative control individuals were of normal
weight (19≤BMI <25 kg/m2) and were free from diabetes. All
the participants provided written informed consent, and the
experiments were approved by the ethics committees of the
respective hospitals.C. elegans spiked-in control miRNAwith
50 fmol of cel-miR-39 (Applied Biosystems, Foster City, CA,
USA) in a 2.5 μl total volume of water was added to 1 ml of
human serum, which is an internal control for miRNA in
serum [18]. We then performed the purification procedures
following the manufacturer’s protocol for the miRNeasy
Serum/PlasmaKit (Qiagen). The clinical features of the partic-
ipants are listed in ESM Table 2.

Islet dispersion and insulin-secreting cells C57BL/6J mouse
islets were isolated by collagenase digestion and enriched
using a Histopaque (Sigma Aldrich) density gradient as
described previously [19, 20]. Isolated islets were gathered
and resuspended in KRBH balanced buffer containing 0.2%
(wt/vol.) BSA supplemented with 2.5 mmol/l glucose, 10%
FBS, 100 IU/ml penicillin, and 100 μg/ml streptomycin at
37°C in a humidified 5%CO2 atmosphere. After equilibrating
for 90 min, the islets were counted and seeded into 48 well or
6 well plates for further research.

MIN6 cells (passage 20-25), obtained from X. Han
(Nanjing Medical University, Nanjing, China) [21, 22], were
maintained in DMEM (Gibco, Burlington, ON, USA)
containing 15% FBS (Gibco), 100 units/ml penicillin G sodi-
um, 100 μg/ml streptomycin sulphate, and 50 μmol/l β-
mercaptoethanol (Sigma Aldrich, St Louis, MO, USA) at
37°C in a humidified 5% CO2 atmosphere.

To study the effect of palmitate, high glucose and proinflam-
matory cytokine treatment, islets and MIN6 cells were incubat-
ed in 0.5 mmol/l palmitate (Sigma Aldrich), 33.3 mmol/l
glucose (Sangon Biotech, Shanghai, China) or a combination
of IL-1β (5 ng/ml, Sigma Aldrich) and TNF-α (30 ng/ml,
Sigma Aldrich) for 48 h.

Glucose-stimulated insulin secretion (GSIS) assays of the
islets and MIN6 cells were performed as described previously
[23]. Immediately after incubation an aliquot of the mediumwas
removed for analysis of insulin secretion, and the islets or MIN6
cells were incubated in acid-ethanol for insulin content determi-
nation via mice insulin ELISA kit (ExCell Bio, Shanghai,
China), and the amount of insulin secretion was normalised by
the insulin content. See ESM Methods for further details.

Co-immunoprecipitation MIN6 cells were transfected with
pcDNA3.1 and HA-Ub construct or Roit overexpression

vector and HA-Ub construct for 48 h, and then treated with
MG132 (20 μmol/l, MCE,Monmouth Junction, USA) for 6 h.
Then IP lysis/wash buffer containing protein inhibitor cocktail
was employed to collect protein lysates, which were then
centrifuged and incubated with 10 μ l of anti-HA
immunomagnetic beads overnight at 4°C. To identify binding
proteins, the beads were washed and eluted for western
blotting.

Subcellular fractionation Cytoplasmic and nuclear RNA was
isolated from MIN6 cells using the PARIS Kit (PARI Kit,
Invitrogen, Vilnius, Lithuania) according to the manufac-
turer’s instructions. See ESM Methods for further details.

Plasmid construction The Roit promoter plasmids, upstream
2 kb (sequence from UCSC, http://genome.ucsc.edu/) of
mouse Roit was inserted into pGL3-basic vector (Addgene,
Watertown,MA, USA). The coding sequences ofRoit,Nkx6.1
andHnf1bwere amplified by PCR from the full-length cDNA
of mice, and then cloned in the pcDNA 3.1 vector to construct
Roit,Nkx6.1 andHnf1b expression plasmids (denoted as over-
Roit, over-Nkx6.1 and over-Hnf1b, respectively).

Dual-luciferase assay Roit promoter plasmids or Roit promoter
mutant plasmids, transcription factors and Renilla luciferase
were transfected into MIN6 cells. After incubation for 48 h,
the luciferase report experiment was performed using the
Dual-Luciferase Reporter Assay system (Beyotime,
Shanghai, China) to assess the DNA binding and promoter
inhibition effect of ROIT.

Chromatin immunoprecipitation The chromatin immunopre-
cipitation (ChIP) assays were performed using a Magna ChIP
A/G kit (Millipore, Billerica MA, USA). Chromatin was
immunoprecipitated with anti-HNF1B (1:100 dilution,
Novus) and analysed by PCR. The sequences of the primers
used for ChIP-PCR are listed in ESM Table 3.

Electrophoretic mobility shift assay analysis The probes were
biotin end-labelled (Thermo Scientific Pierce, MA, USA) and
then annealed to double-stranded probe DNA. HNF1 homeo-
box B (HNF1B)–DNA complexes were performed according
to the instruct ions provided with the LightShif t
Chemiluminescent EMSA kit (Thermo Scientific Pierce, MA,
USA). The sequences of the probes are listed in ESM Table 3.

Bisulphite sequencing and quantitative methylation-specific
PCR assay analysis DNA was subjected to sodium bisulphite
modification using the Methylamp One-step DNA
Modification kit (EpiGentek Group, Farmingdale, NY, USA)
following the manufacturer’s instructions.

For quantitative methylation-specific PCR assay analysis
(QMSP), the primers (ESM Table 3) were predicted using the
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MethPrimer website (www.urogene.org/cgi-bin/methprimer/
methprimer.cgi). The albumin gene (Alb) was used as a
loading control for all QMSP normalisation. See ESM
Methods.

RNA pull-down In vitro transcription of Roit was performed
with primers containing the T7 promoter sequence (ESM
Table 3). RNA pull-down assay was performed according to
the manufacturer’s instructions (Catalogue no. 20164,
Thermo Fisher Scientific, Rockford, MA, USA). See ESM
Methods.

RNA immunoprecipitation (RIP) RIP experiments were
performed using the Magna RIP RNA-Binding Protein
Immunoprecipitation kit (Catalogue no. 17–700, Millipore,
Billerica MA, USA). See ESM Methods for further details.

Transfection of lncRNA smart silencer Roit smart silencer
(siRoit123), a mixture of three antisense oligonucleotides (si-
1, si-2 and si-3), was synthesised by RiboBio (Guangzhou,
China). The target sequences are listed in ESM Table 4.
siRoit123 or individual si-3 (herein referred to as siRoit) was
transfected into MIN6 cells and islets via lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) according to the manufac-
turer’s instructions.

RNA extraction and quantitative real-time PCR analyses Total
RNAwas extracted from tissues (30 mg tissue per group, 100
islets per group), and cultured cells as described [24]. The
primers used are listed in ESM Table 5. Results were normal-
ised to the expression of Gapdh and fold of reference genes

were calculated by 2−ΔΔCt.

Western blot Western blotting was performed as
described previously [25]. Results were normalised to
glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
The antibodies used are listed in ESM Table 6.

Cell Counting Kit-8 assayMIN6 cells were seeded in a 96-well
plate (4 × 104 cells/well) in 100 μl culture medium, then the
Cell Counting Kit-8 (CCK-8) assay (Vazyme) was performed
0, 24, 48 and 72 h after transfection according to the manu-
facturer’s instructions.

Flow cytometry Forty eight hours after transfection, MIN6
cells were treated with trypsin without EDTA, and the
Annexin V-FITC Apoptosis Detection Kit (KeyGen Biotech,
Nanjing, China) was used for the detection of cell apoptosis
according to the manufacturer’s instructions.

In vivo experimentsMale C57BL/6J mice (8 weeks old, about
22 g) were randomly divided into five groups (n = 7 mice per
group). Then, 50, 100, 200 μg siRoit dissolved in 0.2 ml

normal saline (154 mmol/l NaCl) was injected intravenously
into each mouse through the tail vein daily for 3 days.
Scrambled siRNA was used as a negative control (siNC),
and normal saline as a mock. See ESM Methods for further
details.

Immunofluorescence An immunofluorescence assay was
performed as described previously [26]. Anti-insulin (1:500
dilution; Novus) and anti-NKX6.1 (1:250 dilution; CST) anti-
bodies were used. Fluorescent images were observed with
confocal laser scanning microscope (CLSM, LSM700,
Zeiss, Germany).

IPGTT and GSIS in vivo The IPGTT and GSIS tests were
performed as previously described [27]. See ESM Methods
for further details.

Statistical analysis Student’s t test was used to assess differ-
ences between two groups, and ANOVAwas used for multi-
group difference analysis. The level of significance was set at
p < 0.05. Correlations between ROIT expression and the BMI
of individuals were performed by linear regression. Data are
expressed as mean ± SD or ± SEM. GraphPad Prism 7 soft-
ware (GraphPad, San Diego, CA, USA) was used for all
calculations.

Results

ROIT is downregulated in the islets of obese mouse models
To identify the lncRNAs affected by changes in metabolism,
and potentially contributing to the development of obesity-
associated type 2 diabetes, we performed RNA-seq analysis
on RNA isolated from islets of HFD-induced obese mice and
mice fed a normal chow diet (NCD). ESM Fig. 1a–d gives
information on the weight and blood glucose of the HFD and
NCDmice, and the results of the IPGTT. The reads mapped to
the mouse genome (GRCM38/mm10) were analysed using
GEM software (Marc Kennedy, Sheffield, UK). RNA
sequencing yielded about 90 million reads per sample, of
which about 85% were mapped to the mouse genome, and
novel transcripts were classified from known lncRNAs and
protein-coding mRNA. A total of 3203 lncRNAs were detect-
ed, 571 lncRNAs were known and 2632 lncRNAs were novel
(ESM Table 1, ESM Fig. 1e), of which 2763 lncRNAs were
detected in both the HFD mice and the NCD mice. The
expression of 342 lncRNAs (of the 2763) was significantly
changed; the vast majority (89.2%) of which were downreg-
ulated in the islets of HFD mice vs NCD mice (Fig. 1a, ESM
Fig. 1f). Raw RNA sequencing data are available from the
NCBI Gene Expression Omnibus (GEO series accession
number GSE139991).
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The changes observed in the lncRNA levels were confirmed
by quantitative real-time (qPCR) analysis of the 20 most dysreg-
ulated lncRNAs. More than 90% of the results of qPCR were
consistent with those of the RNA-seq analysis, indicating that the
results of theRNA-seqwere credible (ESMFig. 1g). This screen-
ing confirmed decreased expression of lncRNAs, such as
PLUTO, that were previously reported to be associated with
diabetes [28] (Fig. 1a). In addition, the decrease in expression
was even greater for 1810019D21Rik/ROIT in the islets of HFD
mice (Fig. 1a). As shown in Fig. 1b–d, we revealed about nine-,
eight- and twofold downregulation of ROIT expression in the
islets of HFD-fedmice, ob/obmice and db/dbmice, respectively,
compared with that in the control. ROIT expression was also
decreased in other tissues of HFD mice compared with islets in
NCD mice, such as in the liver, white adipose tissue (WAT) and
skeletal muscle (ESM Fig. 1h), although to a lesser extent than
that observed in the islet. Moreover, we also compared the
expression levels of ROIT in the islets and serum of ten HFD
mice and NCD mice, revealing that the islets and the serum of
these mice shared the same expression pattern of ROIT (ESM
Fig. 1i and j). A similar pattern was seen in the ten db/dbmice vs

control mice (ESM Fig. 1k and l). Interestingly, ROIT levels
were significantly decreased in overweight individuals with type
2 diabetes (BMI ≥25 kg/m2) compared with those in normal-
weight individuals without type 2 diabetes (Fig. 1e), and ROIT
expression in the serum correlated significantly with the BMI of
these individuals (Fig. 1f). Taken together, our results suggest
that ROIT may improve beta cell function during the develop-
ment of type 2 diabetes.

Characterisation of ROIT The ROIT gene is located on chro-
mosome 8 in mice and chromosome 16 in humans (Fig.
2a), which has four annotated transcripts (Fig. 2b).
According to previous reports [29], qPCR analyses with
primers detecting variants v1-4 or v1+2 revealed that all
variants together had about 20-fold higher expression than
the long variants v1+2 both in MIN6 cells and islets,
suggesting that the short variant v4 represents the major
transcript (Fig. 2c). Roit was predicted to have no coding
potential, and Roit transcripts did not reveal any
conserved small open reading frames (ORFs) (ESM Fig.
2a).
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Fig. 1 ROIT expression was downregulated in the islets of obese mice
and obese humans. (a) Heatmap of differentially expressed lncRNAs in
the islets of HFDmice compared with NCDmice. Red and green indicate
increased and decreased gene expression levels, respectively. The expres-
sion levels of 342 lncRNAs were significantly changed. (b–d) ROITwas
significantly downregulated in the islets of HFD (b), ob/ob (c) and db/db
(d) mice measured by qPCR (n = 5–7). All qPCR experiments were
performed in three independent experiments (each independent experi-
ment including n = 5–7 mice) each performed in triplicate. Data are mean

± SD. ***p < 0.001. Control in part (c) is C57BL/6J mice. (e) The expres-
sion levels of ROIT in the serum pools in normal-weight individuals
without type 2 diabetes (n = 50; normal) and overweight individuals with
type 2 diabetes (n = 99; T2D), ***p < 0.001, with Ce-miR-39 as positive
control (ROIT levels were normalised to Ce-miR-39 before calculating
fold). (f) Scatter plots of ROIT expression vs BMI. Pearson correlation
coefficients (r) and p values were shown. The fold of ROIT was calcu-
lated by 2−ΔΔCt
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To assess whether the expression of ROIT is restricted to
pancreatic islets, we analysed the level of this lncRNA in a
large variety of tissues. We found that ROIT was enriched in
islets and was also detectable inmuscle, liver, WATand brown
adipose tissue, where the expression was more than ten times
lower in muscle than that in the islets (Fig. 2d). Furthermore,
we found that ROIT is indeed more abundant in the islet frac-
tion than non-islet fraction (Fig. 2e).

Next, we found that ROIT was mainly distributed in the
nuclear fraction of MIN6 cells (Fig. 2f). There is growing
evidence that a subset of nuclear lncRNAs functions locally
to regulate neighbouring genes [30, 31]. Therefore, we inves-
tigated whether ROIT could regulate Esrp2 (encoding epithe-
lial splicing regulatory protein 2 [ESRP2]) expression, a
neighbouring gene of Roit. Indeed, we found that knockdown
of ROIT resulted in the downregulation of the ESRP2 protein
level (ESM Fig. 2b). However, changes in Esrp2 expression
level has no effect on beta cell function (ESM Fig. 2c–e).

Regulation of ROIT expression in the islets of obese mice by
HNF1B To determine the possible causes of the changes in
ROIT expression detected in the islets of obese mice (HFD,
ob/ob and db/db mice), we exposed normal mouse islets and
MIN6 cells to pathophysiological concentrations of palmitate,
glucose and proinflammatory cytokines. The expression of
ROIT only decreased in the presence of palmitate
(0.5 mmol/l) (Fig. 3a, b, ESM Fig. 3a–d).

Next, we investigated the underlying molecular mecha-
nisms of the downregulated expression of ROIT in the islets
of obese mice. Primary islets were exposed to 0.5 mmol/l
palmitate for 48 h, and qPCR was performed to confirm the
expression levels of high-score transcription factors (score
>12.5) of Roit, which were predicted by JASPAR (http://
jaspar.genereg.net/) and PROMO (http://alggen.lsi.upc.es/
cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3)
(ESM Table 7). Among these, HNF1B, which has a potential
binding site on the Roit promoter (ESM Fig. 3e), showed the
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Fig. 2 Characterisation of ROIT.
(a) ROIT is located in a large
syntenic block on human
chromosome 16 and mouse
chromosome 8. (b) UCSC
Genome Browser scheme of the
human ROIT (red) and mouse
Roit variants 1–4 (v1–4, light
blue); location of primers
detecting ROIT v1+2 or v1–4,
respectively, is indicated in red.
(c) qPCR was performed to test
the expression levels of ROIT
variants 1–4 in MIN6 cell and
islets. (d) The abundance of ROIT
in different tissues of wild-type
mice relative to Gapdh by qPCR
analysis (n = 4;
2− ROIT Ct–Gapdh Ctð Þ ). (e)
Expression of ROIT in the islet
and non-islet fraction (n = 5). (f)
ROITwas enriched in the MIN6
cell nuclear fraction. Levels of
ROIT, Gapdh mRNA and U6
small nuclear RNA in purified
MIN6 cell nuclear and cytoplasm
fractions were detected by qPCR.
All qPCR experiments were
performed in three independent
experiments each performed in
triplicate. Data are mean ± SD.
**p < 0.01, ***p < 0.001. The
fold of ROIT was normalised to
GapdhmRNA, then calculated by
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greatest downregulation (ESM Fig. 3f). The mRNA and
protein levels of HNF1B were also decreased in primary islets

and MIN6 cells (Fig. 3c, d) induced by 0.5 mmol/l palmitate.
The same results were observed in obese mice (Fig. 3e).
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Fig. 3 Knockdown of HNF1B expression results in ROIT downregula-
tion. We used qPCR to examine the expression of ROIT in primary islets
(a) and in MIN6 cells (b) after incubation with 0.5 mmol/l palmitate for
48 h. qPCR and western blotting were performed to measure the expres-
sion levels of HNF1B in primary islets (c) and in MIN6 cells (d) after
incubation with 0.5 mmol/l palmitate for 48 h. (e) HNF1B expression
levels in the islets of obese mice (HFD mice and ob/ob mice) were
assessed by qPCR and western blotting. (f) A schematic illustration of
the EMSA primer and ChIP primer location. Blue rectangle: EMSA
primer location, purple rectangle: ChIP primer location. (g, h) EMSA
analysis revealed that HNF1B could directly bind to the Roit promoter
in MIN6 cells (g) and primary islets (h). C1 and C2 represent nuclear
protein–Roit probe complexes and nuclear protein–Roit probe–anti-
HNF1B complexes, respectively. Biotin-WTwas a 25 bp fragment probe
that included the binding region of HNF1B, while Biotin-MUT was a

25 bp fragment probe in which the binding sequence was mutated. (i–
k) The enrichment of HNF1B on the Roit promoter relative to IgG detect-
ed by ChIP-qPCR assays, in MIN6 cells transfected with over-Hnf1b,
pcDNA3.1, siHnf1b or siNC (i), in MIN6 cells treatment with
0.5 mmol/l palmitate or without palmitate (j), and in islets of HFD or
NCD mice (k, n = 5–7). ‘% of input’ indicates the percentage of Roit
promoter bound by HNF1B compared with input. IgG, negative control;
R1, binding site of HNF1B for the Roit promoter region. (l) ROIT down-
regulation induced by palmitate was partly reversed by overexpression of
Hnf1b. All qPCR experiments were performed in three independent
experiments, each performed in triplicate. Data are mean ± SD.
**p < 0.01, ***p < 0.001 compared with the control. The fold of Hnf1b
mRNAwas normalised to Gapdh mRNA, then calculated by 2−ΔΔCt
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HNF1B is known to be an important regulator of glucose and
lipid metabolism [32] and expression of the gene is suppressed
by palmitate in islets [33, 34]. We next focused on studying
whether obesity facilitates ROIT downregulation by repressing
HNF1B expression. We first conducted a dual-luciferase assay
and, as expected, this showed overexpression of HNF1B in
MIN6 cells (data not shown) and increased transcriptional activ-
ity of the Roit promoter (ESM Fig. 3g). Next, EMSA assays
revealed that the signal from the probe–protein–anti-HNF1B
complex was detected using a Roit probe in MIN6 cells (Fig.
3f, g); similar results were observed in the isolated islets (Fig.
3h). Furthermore, HNF1B overexpression in MIN6 cells could
increase the enrichment of HNF1B in the Roit promoter region
via a chromatin immunoprecipitation (ChIP) assay (Fig. 3f, i
and ESM Fig. 3h). Moreover, we detected that binding of
HNF1B to the Roit promoter region was decreased in MIN6
cells treated with 0.5 mmol/l palmitate (Fig. 3j, ESM Fig. 3i)
and islets isolated from HFD mice (Fig. 3k, ESM Fig. 3j).
Further research showed that palmitate-induced ROIT down-
regulation in islet cells was partly reversed by overexpression
of Hnf1b (Fig. 3l). Taken together, the results indicate that
decreased expression ofRoit in the islets of obesemousemodels
is due to the downregulation of expression of HNF1B.

Suppression of ROIT expression decreases insulin synthesis
We next focused on whether ROIT could regulate beta cell
function. siRoit123 and Roit expression plasmid (over-Roit)
were transfected into primary islets and MIN6 cells for 48 h.
The efficiency of knockdown and overexpression were about
70% and 200-fold, respectively (ESM Fig. 4a, b). Over-Roit
significantly increased the mRNA for the insulin genes (Ins1

and Ins2) (Fig. 4a, b) and the insulin content (Fig. 4c, d), while
knockdown induced the opposite result. Glucagon content
was not affected by the change in Roit levels (ESM Fig. 4c).

Next, we performed a glucose challenge experiments using
primary islets andMIN6 cells with knockdown or overexpres-
sion of ROIT. Suppression of ROIT expression decreased
insulin secretion after exposure to high glucose, and insulin
secretion was markedly increased after ROIT overexpression,
even at 2.5 mmol/l glucose (Fig. 4e, f). However, ROIT over-
expression had no effect on the proliferation or apoptosis of
MIN6 cells as assessed byCCK-8 (ESMFig. 4d), flow cytom-
etry (ESM Fig. 4e) and western blot assays (ESM Fig. 4f, g).

Inactivation of ROIT in normal mice impairs insulin synthesis
To determine the role of Roit in regulating insulin synthesis
in vivo, we used a smart silencer comprising three indepen-
dent antisense oligonucleotide sequences (si-1, si-2 and si-3,
collectively referred to as siRoit123) for the specific knock-
down of ROIT. Analysis by qPCR revealed that si-3 was the
most effective at knockdown in MIN6 cells, reducing ROIT
expression by 70% compared with siNC (Fig. 5a). Thus, the
antisense oligonucleotide si-3 (herein referred to as siRoit)
was used for the subsequent knockdown studies in vivo. We
injected siRoit intravenously into normal-weight C57BL/6J
male mice at three different doses: 50, 100 and 200 μg.
Figure 5b shows that a higher suppressive effect on ROIT
was observed at the 200 μg dose, resulting in a reduction of
almost 60% in the islets compared with that in the siNC group.
A decrease in ROIT expression levels in the liver, WAT and
skeletal muscle were also observed after injection with 200 μg
siRoit compared with siNC (ESM Fig. 5a).
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Fig. 4 ROIT inhibition impaired
beta cell function in vitro.
siRoit123 (smart silencer; a
mixture of three oligonucleotides:
si-1, si-2 and si-3), or over-Roit
was transfected into primary islets
and MIN6 cells for 48 h. qPCR
was carried out to determine
insulin synthesis in primary islets
(a) and MIN6 cells (b). Insulin
content was then tested by ELISA
in primary islets (c) and MIN6
cells (d), and insulin secretion
was analysed by a GSIS assay in
islets (e) and MIN6 cells (f). All
experiments were performed in
three independent experiments,
each group contains three batches
of individual samples. Data are
mean ± SD. *p < 0.05,
**p < 0.01, ***p < 0.001. The
fold of Ins1 and Ins2 mRNAwas
normalised to Gapdh mRNA,
then calculated by 2−ΔΔCt
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In response to an IPGTT, the blood glucose levels in
ROIT-silenced mice were elevated in comparison with those
in mice from the siNC group, and remained increased for
30 min (Fig. 5c, d). In addition, siRoit remarkably decreased
the insulin level and insulin content compared with that in the
siNC group (Fig. 5e, f), and ROIT silence in vivo has no effect
on the levels of the apoptosis markers BCL2 and BCL2-
associated X protein (BAX) in the islets (ESM Fig. 5b, c).

Roit inhibits transcription of insulin through downregulation
of NK6 homeobox 1 To explain how downregulation of ROIT
impairs insulin production, we investigated the transcription of
the genes for 11 islet transcription factors that play well-
established roles in beta cell maturation and insulin transcrip-
tion using qPCR. Among these, the gene for NK6 homeobox 1
(NKX6.1) was increased most by ROIT overexpression (ESM
Fig. 6a). ROIT suppression selectively decreased NKX6.1 both
at the mRNA and protein levels (Fig. 6a). Consistent with these
findings, islets from the mice i.v. injected with siRoit showed
decreased Nkx6.1 mRNA levels, lower levels of staining and
protein expression levels of NKX6.1 were observed in the islets
from the siRoit groups (Fig. 6b, c), which coincided with the
impaired expression of insulin.

To explore the role of NKX6.1 in beta cell function, MIN6
cells were transfected with Nkx6.1-overexpression plasmid
(over-Nkx6.1) and siNkx6.1. The ELISA showed that MIN6
cell insulin content and secretion were significantly enhanced
by overexpression of Nkx6.1 (Fig. 6d, e). We then co-
transfected islet cells with the Roit-overexpression plasmid
and siNkx6.1 to perform the rescue experiment and found that
the upregulation of insulin content and secretion by the Roit
vector were reversed when co-transfected with siNkx6.1 (Fig.
6f, g). A similar result was also observed in MIN6 cells (ESM
Fig. 6b, c). Taken together, the results suggest that ROIT can
affect islet function by regulating NKX6.1 expression.

ROIT affects the expression of Nkx6.1 by regulating methyl-
ation of its promoter Nuclear lncRNAs are enriched for func-
tionality, involving chromatin interactions, transcriptional
regulation, and DNA methylation [35]. To determine whether
Roit affects the expression of the Nkx6.1 gene by influencing
its methylation, we predicted methylation-sensitive sites in the
promoter region of Nkx6.1 via the MethPrimer website. We
found four methylation-sensitive sites in this region (ESM
Fig. 7a). We found that the downregulation of Nkx6.1 induced
by siRoit123 could be reversed by decitabine (DAC, Fig. 7a),
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Fig. 5 Inactivation of ROIT impaired beta cell function in vivo. (a) MIN6
cells were transfected with smart silencer (a mixture of three oligonucle-
otides: si-1, si-2 and si-3) targeting ROIT for 48 h, and then qPCR was
performed to determine the expression level of ROIT. Because si-3 was
the most effective, this was used for subsequent experiments and is
referred to as siRoit from now on. (b) siRoit was injected into normal
C57BL/6J male mice every day for 3 days. Forty-eight hours after the
final injection, qPCR was performed to examine the expression level of
ROIT (n = 3; pooled samples of islets of Langerhans). (c–e) IPGTT (c),

glucose AUC (d), and serum insulin levels (e) of mice from siRoit, siNC
and NS (normal saline) groups were detected (n = 5 for each group of
mice). (f) Insulin content was analysed by ELISA (n = 3 for each group of
mice). In vivo experiments were performed in three independent experi-
ments, each performed in triplicate. Data are mean ± SEM, *p < 0.05,
**p < 0.01, ***p < 0.001. The fold of ROIT was normalised to Gapdh
mRNA, then calculated by 2−ΔΔCt
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which is a DNA methyltransferase inhibitor. This suggested
that the expression ofNkx6.1was regulated by demethylation.

Next, we measured two distinct regions, named bisulphite
sequencing 1 (BSP1) and bisulphite sequencing 2 (BSP2,
ESM Fig. 7a). A higher degree (69.7%) of methylation was
found in Region 1 in the Roit siRNA group than in the Roit-
overexpressed group (23.4%), and a similar pattern was
observed for Region 2 (Fig. 7b). In addition, QMSP analysis
revealed that both differentially methylated regions (DMR) of
the Nkx6.1 promoter were found to be more heavily methyl-
ated in the siRoit123 group (Fig. 7c).

To investigate the effects of the mechanisms of ROIT on the
methylation of the Nkx6.1 promoter, we hypothesised that
ROIT might bind to some kinds of proteins that mediate these
effects. To identify the protein factors, we first incubated
in vitro-transcribed biotinylated ROIT sense or antisense RNA

with cell lysate (ESMFig. 7b–d) and then performed pull-down.
The results showed that DNA methyltransferase (DNMT)3A,
rather than DNMT1 or DNMT3B, interacted with ROIT (Fig.
7d). Next, RIP assays showed that the DNMT3A antibody
instead of the control antibody successfully pulled down
ROIT as detected by PCR (ESM Fig. 7e) and qPCR (Fig. 7e).
Furthermore, we found that knockdown of ROIT reduced the
DNMT3A protein level (Fig. 7f), and the same phenomenon
was found when siRoit was injected in vivo (Fig. 7g).

To explore the molecular mechanism by which ROIT
downregulated DNMT3A expression, we examined the
Dnmt3a mRNA level in ROIT-overexpressing MIN6 cells.
We found that ectopic expression of ROIT did not alter the
Dnmt3a mRNA level (ESM Fig. 7f), and similar results were
observed when siRoitwas injected in vivo (ESM Fig. 7g). We
investigated whether ROIT might reduce the protein level of
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Fig. 6 ROIT affects beta cell
function by regulation of NKX6.1
(a) siRoit123 or over-Roit was
transfected into MIN6 cells for
48 h, and then qPCR and western
blotting were performed to test
the expression level of NKX6.1.
(b) After siRoit treatment for 48 h
in vivo, qPCR and western
blotting were performed to
examine the expression levels of
NKX6.1 in vivo. (c) Double
immunostaining was performed
for mouse pancreas sections with
anti-NKX6.1 (green) in
combination with an anti-insulin
antibody (red) among three
groups. DNAwas visualised by
staining with DAPI (blue). Scale
bar, 100 μm (n = 3 per group). (d,
e) siNkx6.1 or over-Nkx6.1 was
transfected into MIN6 cells for
48 h and insulin content (d) and
secretion (e) were analysed by
ELISA. (f, g) Primary islets were
co-transfected with Over-Roit and
siNkx6.1 for 48 h and then insulin
content (f) and secretion (g) were
analysed by ELISA. All
experiments described in this
figure were performed in three
independent experiments, each
performed in triplicate. Data are
mean ± SD, *p < 0.05,
**p < 0.01, ***p < 0.001. The
fold of Nkx6.1 mRNAwas
normalised to Gapdh mRNA,
then calculated by 2−ΔΔCt
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Fig. 7 ROIT promoted insulin synthesis and secretion by binding to
DNMT3A and elevating Nkx6.1 expression. (a) siRoit123 and DAC were
co-expressed in MIN6 cells for 48 h, and qPCR and western blotting were
performed to examine the expression level of NKX6.1. (b) Two BSP
regions of the Nkx6.1 promoter CpG island in MIN6 cells. Each box indi-
cates the methylation status of the CpG site. Each row represents an indi-
vidual sequenced DNA strand. Over 20 clones from each mixed sample
were sequenced. The per cent methylation in each sequenced region is
indicated. (c) MIN6 cells were isolated 48 h later and analysed using
QMSP. (d) Western blotting indicated that DNMT3A, rather than
DNMT1 or DNMT3B, interacted with ROIT in the pull-down assay. (e)
The MIN6 cell lysate was subjected to the anti-DNMT3A RNA immuno-
precipitation (RIP), and the precipitated RNAs were examined by qPCR.
Gapdh served as a control to validate DNMT3A–Roit interaction. (f)
siRoit123 or over-Roit was transfected into MIN6 cells for 48 h, and west-
ern blotting was performed to test the expression level of DNMT3A. (g)
The protein expression level of DNMT3A in the islets of mice when

injected with siRoit. (h) MIN6 cells transfected with pcDNA3.1 and
over-Roit for 48 h, then treated with CHX (20 μg/ml) for 0 h, 4 h and
8 h. Cells were lysed and then subjected to western blotting with the
indicated antibodies to monitor the stability of the DNMT3A protein. (i)
MIN6 cells were transfected with pcDNA3.1 and over-Roit for 48 h, and
then treated with MG132 (20 μmol/l) for 6 h and subjected to western
blotting with indicated antibodies to verify the DNMT3A degradation
pathway. (j) MIN6 cells were transfected with pcDNA3.1 and HA-Ub
construct or over-Roit and HA-Ub construct for 48 h, and then treated with
MG132 (20 μmol/l) for 6 h. Cells were subjected to immunoprecipitation
assay (IP) with anti-DNMT3A antibody followed by immunoblotting (IB)
using anti-HA-Tag antibody for detection of DNMT3A ubiquitination. All
experiments presented in this figure were performed in three independent
experiments, each performed in triplicate. Data are mean ± SD, *p < 0.05,
***p < 0.001 compared with the control. The fold of Nkx6.1 mRNAwas
normalised to Gapdh mRNA, then calculated by 2−ΔΔCt
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DNMT3A by promoting its degradation. DNMT3A degrada-
tion was examined in the presence of cycloheximide (CHX), a
de novo protein biosynthesis inhibitor. In the presence of
CHX, MIN6 cells transfected with over-Roit exhibited an
increased DNMT3A degradation rate compared with the
control group (Fig. 7h). Since the ubiquitin–proteasome path-
way is the most ubiquitous pathway for protein degradation,
we treated the cells with the ubiquitin–proteasome pathway
inhibitor MG132, revealing that MG132 inhibited ROIT
induction of DNMT3A degradation (Fig. 7i). Furthermore,
we observed increased DNMT3A ubiquitination following
ROIT overexpression in MIN6 cells (Fig. 7j). Collectively,
these data suggested that overexpression of ROIT could
destabilise DNMT3A protein and elevate NKX6.1 gene and
protein expression, which improved expression of the insulin
genes (Ins1 and Ins2) and insulin secretion.

Discussion

Although obesity is known to cause alterations in the expres-
sion of several genes that play important roles in beta cell

functions [36], the accurate mechanisms suffering the
lipotoxic effects are still a mystery. Herein, we found that
ROIT expression was downregulated in the islets of obese
mice, which was affected by HNF1B. Decreased ROIT levels
inhibited DNMT3A protein degradation and downregulated
Nkx6.1 expression by promoting the methylation of its
promoter, which impaired insulin transcription and glucose
homeostasis (Fig. 8).

Studies have suggested that conditional NKX6.1 inactiva-
tion in adult mice caused beta cell dysfunction and
hypoinsulinaemia [37], which can facilitate insulin promoter
activation [38] to stimulate insulin synthesis and secretion
[39]. In this study we have verified that expression of
NKX6.1 is downregulated after knockdown of ROIT.
Moreover, the rescue experiment showed that upregulation
of insulin content and secretion due to the ROIT vector
(over-Roit) was reversed when co-transfected with siNkx6.1.
Taken together, these results demonstrate that downregulation
of ROIT decreased NKX6.1 expression, causing a defect in
insulin synthesis and secretion.

Much importance has been attached to the role of DNA
methylation in regulating beta cell function in current research
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Me level
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Insulin
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lncRNA ROIT 
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Degradation
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Fig. 8 Aworking model for the
role of ROIT in promoting insulin
transcription. During obesity,
ROIT is downregulated,
suppressing insulin expression
and secretion through interaction
of ROITwith DNMT3A.
DNMT3A protein degradation
via the ubiquitin proteasome
pathway is inhibited and Nkx6.1
expression is reduced by
methylation of the Nkx6.1
promoter
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[40–43]. Di Ruscio et al [44] reported that DNMT1 could
interact with RNA to block DNA methylation of genes. Our
results showed that ROIT decreased the DNMT3A level via
direct interaction, which is an important finding based on the
fact that the Nkx6.1 promoter is often modulated by DNA
methyltransferases [45, 46]. As expected, our data showed
that knockdown of ROIT could increase Nkx6.1 methylation
by upregulation of DNMT3A. To our knowledge, this is the
first report of DNMT3A regulation through post-translational
modification by ubiquitination. Overall, these results help
further understanding of the mechanisms by which ROIT
regulates beta cell function. Herein, we found some novel
lncRNAs, such as lncRNA-SOX5 and lncRNA-PTPRD by
RNA-seq assays, which might play a crucial role in human
beta cell function based on previous findings [47, 48].
However, whether these lncRNAs are able to regulate mouse
beta cell function is unclear. ROIT lncRNA has been predicted
to occur in human beta cells [28], but further study is needed
to determine whether ROIT could play a regulatory role in
human beta cell function.

In summary, we found that obesity reduced the expression
of ROIT through HNF1B. ROIT knockdown inhibited
DNMT3A protein degradation and downregulate NKX6.1
expression, which impaired insulin transcription and glucose
homeostasis. It suggested that obesity might be relevant to
distinct modifications of the expression profile of lncRNAs.
An accurate description of the physiopathological conditions
caused by disturbances in lncRNA expression will be benefi-
cial to elucidate the causes of beta cell failure and facilitate the
design of better tools for diabetes prevention and treatment.
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