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Abstract

Aims/hypothesis Vascular changes in individuals with type 2 diabetes mellitus majorly contribute to the development of
cardiovascular disease. Increased cardiorespiratory fitness (CRF) has been associated with improvements in vascular
health. Although CRF tends to improve with exercise training, there remains a portion of participants with little or no
improvement. Given the importance of vascular function in individuals with type 2 diabetes, we assessed whether indi-
viduals who failed to improve CRF following a 1 year exercise intervention also failed to improve arterial stiffness and
structural indices.

Methods Individuals with type 2 diabetes with no major micro- and macrovascular complications and aged between 30 and
75 years old (n = 63) participated in a three-arm, 1 year, randomised controlled exercise intervention in Lisbon, Portugal. The
study involved a non-exercise control group, a moderate continuous training combined with resistance training (RT) group and a
high-intensity interval training with RT group. Allocation of participants into the intervention and control groups was done using
a computer-generated list of random numbers. An improvement in CRF was defined as a change in VOjpeax =5%. Vascular
stiffness and structural indices were measured using ultrasound imaging and applanation tonometry. Generalised estimating
equations were used to compare changes in vascular measures across individuals in the control group (n =22) and those in the
exercise groups who either had improved CRF (CRF responders; 7 = 14) or whose CRF did not improve (CRF non-responders;
n=27) following 1 year of exercise training.

Results Compared with the control group, exercisers, with and without improvements in CRF, had decreased carotid intima—
media thickness (IMT) (CRF responders: 3 =-2.84 [95% CI —5.63, —0.04]; CRF non-responders: 3 =—5.89 [95% CI —9.38,
—2.40]) and lower-limb pulse wave velocity (PWV) (CRF responders: 3 =—0.14 [95% CI —0.25, —0.03]; CRF non-responders:
3 =-0.14 [95% CI —0.25, —0.03]), the latter being an indicator of peripheral arterial stiffness. Only CRF responders had
decreased PWV of the upper limb compared with control participants (3 =—0.12 [95% CI —0.23, —0.01]). As for central stiffness,
CRF non-responders had increased aortic PWV compared with CRF responders (3 =0.19[95% C10.07, 0.31]), whereas only the
CRF non-responders had altered carotid distensibility coefficient compared with the control group (3 =0.00 [95% CI 3.01 x
107, 0.00]). No interaction effects between the CRF responders and non-responders vs control group were found for the
remaining stiffness or haemodynamic indices (p>0.05).
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What is already known about this subject?

e Adverse vascular changes are thought to be a major mechanism connecting diabetes with increased risk of
cardiovascular disease (CVD)-associated morbidity and mortality

e Increased cardiorespiratory fitness (CRF) following exercise training is highly related to improvements in functional

and structural arterial properties

e Considerable interindividual differences exist in the amount of change in CRF following exercise, with a substantial

number of adults showing no improvement in CRF

What is the key question?

e Do individuals with type 2 diabetes who lack improvements in CRF following a 1 year exercise intervention also fail

to improve arterial stiffness and structural indices?

What are the new findings?

e  Regardless of improvements in CRF, individuals with type 2 diabetes had significant improvements in arterial
structure and stiffness indices following 1 year of exercise training

How might this impact on clinical practice in the foreseeable future?

e Theimpact of exercise training on vascular health indicators should not be overlooked by simply focusing on CRF
since vascular-health benefits are still obtainable with exercise in individuals with type 2 diabetes despite lack of

improvements in fitness

Conclusions/interpretation Regardless of improvements in CRF, individuals with type 2 diabetes had significant improve-
ments in carotid IMT and lower-limb arterial stiffness following a 1 year exercise intervention. Thus, a lack of improve-
ment in CRF following exercise in people with type 2 diabetes does not necessarily entail a lack of improvement in
vascular health.

Trial registration ClinicalTrials.gov NCT03144505

Funding This work was supported by fellowships from the Portuguese Foundation for Science and Technology. This work is also
financed by a national grant through the Fundacéo para a Ciéncia e Tecnologia (FCT), within the unit 1&D 472.
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Abbreviations

CRF
CVD
DBP
HIOT
HRR
IMT
LIPA
MAP
MCT
MVPA
NEPA
PWV
RT
SBP
TEM

Cardiorespiratory fitness
Cardiovascular disease
Diastolic BP

High-intensity interval training
Heart rate reserve
Intima—media thickness

Low intensity physical activity
Mean arterial pressure
Moderate continuous training
Moderate-to-vigorous physical activity
Non-exercise physical activity
Pulse wave velocity

Resistance training

Systolic BP

Technical error of measurement

Introduction

Alterations in arterial structure and stiffness are major
culprits for the increased risk of cardiovascular disease
(CVD) and early mortality in individuals with type 2
diabetes [1, 2]. Pulse wave velocity (PWV) and carotid
intima—-media thickness (IMT) are established surrogate
measures of arterial stiffness and structure, respectively,
that are strong predictors of cardiovascular outcomes
[2-4]. Hence, interventions in individuals with type 2
diabetes that can improve these markers of arterial health
are critically important for preventing and/or delaying
adverse cardiovascular events and mortality. Exercise
training of different types and intensities has been shown
to be an effective strategy for improving PWV and IMT in
individuals with type 2 diabetes [5-8].
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Many of the cardiovascular benefits of exercise are associ-
ated with improvements in cardiorespiratory fitness (CRF), as
determined by VOzpeak, independent of traditional risk factors
[9]. A higher CRF is not only associated with lower levels of
risk factors for the metabolic syndrome, lower body fat,
improved insulin resistance and BP, and reduced inflamma-
tion [10], all of which are independently associated with arte-
rial structure and stiffness [11], but it is also independently
associated with reduced carotid IMT [12] and increased
PWYV in individuals with and/or at risk for type 2 diabetes
[13]. However, there is still wide interindividual variability
in the response to exercise, with certain individuals improving
CRF with exercise training, while others do not [14, 15]. In
fact, the theme of CRF response to exercise was recently
highlighted in a consensus statement by an expert panel; the
authors recommended future research to better understand the
interindividual variability in the therapeutic effect of exercise
[15].

Although CRF, based on VO,, is connected with many
health outcomes [10], previous investigations have suggested
that exercise and being physically active can have beneficial
effects on health that are independent of improvements in
CREF, in both healthy individuals [16], and those with
increased cardiovascular risk [17, 18]. However, in individ-
uals with type 2 diabetes, there has only been one investiga-
tion that has addressed the impact of CRF response on health
outcomes (the Health Benefits of Aecrobic and Resistance
Training in individuals with Type 2 Diabetes [HART-D]
study), in which improvements in glycaemic control and body
fat were observed regardless of improvements in CRF follow-
ing a 9 month exercise intervention [14]. It is particularly
important to consider the possibility of having health benefits
from exercise despite alterations in CRF when working with
individuals with type 2 diabetes as they are more likely not to
experience improvements in CRF following exercise due to
having slowed oxygen uptake, impaired muscle oxygen deliv-
ery, premature muscle fatigue and reduced overall exercise
tolerance as a consequence of the disease [19]. No investiga-
tion, however, has assessed the long-term relationship
between CRF non-response and measures of vascular stiffness
and structure in individuals with type 2 diabetes. Given that
adverse vascular changes are thought to be the major mecha-
nism connecting diabetes with increased risk of CVD morbid-
ity and mortality [2], and that functional and structural arterial
properties are highly related to CRF [12, 13], it is uncertain
whether exercise-induced vascular changes only occur in
those who also have improved CRF. Therefore, we investigat-
ed arterial stiffness and structure indices in individuals with
type 2 diabetes who either improved or did not improve CRF
following a 1 year exercise intervention. We hypothesised
that, following 1 year of exercise training, participants with
type 2 diabetes would have improvements in arterial stiffness
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and structure irrespective of improvements in CRF, as
compared with a non-exercise control group.

Methods

Study design and participants The current investigation
assessed individuals with type 2 diabetes who took part in
the D2FIT study. The design and methodology of the D2FIT
study is fully described elsewhere [20]. In brief, the D2FIT
study was a | year exercise randomised controlled trial with
three distinct arms: a non-exercise control group, a moderate
continuous training (MCT) with resistance training (RT)
group, and a high-intensity interval training (HIIT) with RT
group (ClinicalTrials.gov registration no. NCT03144505).
The three groups were allocated with a 1:1:1 ratio by a
researcher external to the project, using a computer-
generated list of random numbers. The primary outcome of
this study concerned changes in HbA . following exercise in
individuals with type 2 diabetes, with secondary outcomes
focused on several health-related parameters, including CRF
and vascular health changes, which were assessed at baseline
and at follow-up (1 year). Inclusion criteria consisted of the
following: adults previously diagnosed with type 2 diabetes in
accordance with ADA criteria [21]; aged between 3075 years
old; no major microvascular complications from diabetes,
such as nephropathy, neuropathy and retinopathy, when
considered severe enough to be contraindicative to exercise,
as assessed by a clinical physician; no macrovascular compli-
cations, such as coronary artery disease and cerebral vascular
disease; BMI <48 kg/m?; and no physical limitations that
would prevent individuals from practicing exercise.
Participants were recruited within the Lisbon Metropolitan
Area (Portugal) between February 2014 and July 2016.
Power and sample size calculations (G-Power, Version 3.1.3;
Diisseldorf, Germany) were based on a predicted change in
HbA | of 0.66 units with an SD of 1.2 units, oc=0.05, 1-3 = 0.80,
and a 10% expected dropout rate. For the D2FIT project, a total of
80 individuals were selected and randomised using a computer-
generated list of random numbers. However, for this specific anal-
ysis, we considered only those who completed the investigation,
resulting in a final sample size of 63 participants with type 2
diabetes.

Written informed consent was obtained from all partici-
pants prior to screening. The study protocol was reviewed
and approved by the Ethics Committee of the Portuguese
Diabetes Association (approval number: 07/17/2013).

Exercise intervention Exercise prescription for both exercise
groups was standardised, according to body weight and based
on physical activity guidelines [22], to achieve a weekly target
of 41.84 kJ/kg (10 kcal/kg) for both exercise groups.
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Participants in the HIIT with RT (n =19) and MCT with
RT groups (n =22) exercised 3 days per week. Throughout
the whole year of the intervention, individuals in both
groups participated in a planned periodisation exercise
prescription programme with individualised intensity
based upon heart rate reserve (HRR), to gradually intro-
duce exercise prescription. A heart rate Polar band (Polar
T-31; Bethpage, NY, USA) was worn by participants
during the exercise sessions and was used to monitor the
intensity of training. The MCT group performed continu-
ous cycling (Monark Ergometric 828¢ (Vansbro, Sweden)
at 40-60% of HRR throughout the 1 year intervention. The
HIIT group performed 1 min of cycling at 90% of HRR,
followed by a 1 min rest period at 40-60% of HRR, using a
1:1 exercise:rest ratio. Following the aerobic exercise
component, both groups underwent whole-body RT, which
included one set of 10—12 repetitions of upper- and lower-
limb exercises. All exercise sessions were overseen and
supervised by a certified exercise physiologist. A full
detailed description of the periodisation protocol can be
found elsewhere [20].

A standard counselling session regarding general physical
activity guidelines was provided for the control group (n=22).
Additionally, the control group, along with both exercise groups,
met once every 4 weeks for thematic sessions, with topics includ-
ing nutrition or physical activity, to improve trial adherence.

Anthropometry Participants were weighed without shoes and
wearing minimal clothing, on an electronic scale (Seca,
Hamburg, Germany), to the nearest 0.01 kg. Height was
measured to the nearest 0.1 cm with a stadiometer (Seca),
according to standardised procedures [23]. BMI (kg/m?) was
calculated as the ratio between weight (kg) and the square of
height (m).

Brachial BP After 15 min in the supine position, the right and
left brachial systolic BP (SBP) and diastolic BP (DBP) were
measured using an automated oscillometric cuff (HEM-907-
E; Omron, Tokyo, Japan). Two measurements were taken,
with a third measurement being performed if duplicate values
deviated by >5 mmHg. The mean arterial pressure (MAP) was
calculated using the formula: MAP =DBP + [1/3(SBP —
DBP)]. Pulse pressure was calculated as follows: pulse pres-
sure = SBP — DBP.

Carotid artery IMT Carotid artery IMT was defined as the
distance between the leading edge of the lumen—intima inter-
face and the leading edge of the media—adventitia interface of
the far wall of the right carotid artery. This measurement was
performed using an ultrasound scanner equipped with a linear
13 MHz probe (MyLab One, Esaote, Italy) [24] and distension
curves were acquired within a segment of the carotid artery
about 1 cm before the flow divider.

Carotid arterial stiffness indices After 15 min in a supine posi-
tion, the carotid arterial stiffness measurement was conducted
on the right side of the body. An ultrasound scanner equipped
with a linear 13 MHz probe (MyLab One), with Quality
Arterial Stiffness technology, was used approximately 1 cm
before the bifurcation. This allows the calculation of carotid
stiffness indices: PWV (m/s), carotid distensibility coefficient
(1/KPa) and stiffness index (3. A detailed description of the
calculations for the carotid stiffness indices can be found in the
electronic supplementary material (ESM) Methods.

Contralateral PWV PWV was measured by applanation
tonometry immediately after ultrasound imaging. A single
operator located the carotid, femoral, radial and distal posteri-
or tibial arteries on the left side of the body and marked the
point for capturing the corresponding pressure curves with
two specific pressure sensitive transducers. The distance
between the carotid and femoral, and radial and distal poste-
rior tibial arteries were measured and values were directly
inserted into the Complior Analyse software (ALAM
Medical, Paris, France). Detailed description of the methods
for contralateral PWV are available in the ESM Methods.
PWYV values obtained from measurements of the carotid to
femoral artery, carotid to radial artery, and carotid to distal
posterior tibial artery were taken as indices of aortic and
peripheral arterial stiffness for upper and lower limbs, respec-
tively. The quality of the PWV records was immediately eval-
uated by a second observer. Whenever a continuous decrease
before the sharp systolic upstroke was not clearly seen, or the
tolerance was above 5 m/s, a second measure was taken.

Carotid BP Carotid SBP was obtained from left carotid traces
acquired during the PWYV assessment, from the Complior
Analyser (ALAM Medical). The waveforms were averaged
and the mean values were extracted from 15 s window of
acquisition. The carotid waveforms were calibrated with left
brachial MAP measured immediately before the acquisition.

CRF For the assessment of CRF, a Bruce standard protocol
[25] was used on a motorised treadmill (Quinton, model
Q-65; Cardiac Science, Bothell, WA, USA) to exhaustion, in
a spacious ventilated room, with only the participant, the tech-
nician and the cardiologist present during the test. All graded
exercise tests were monitored using a 12-lead ECG PC-based
acquisition module (model Quark C12; Cosmed, Rome, Italy)
and all data, including heart rate, were monitored and recorded
using Cosmed software. Expired gases were continuously
analysed, breath-by-breath, through a portable gas analyser
(K4b2; Cosmed). To ensure peak effort, participants attained
volitional fatigue and met at least one of the following objec-
tive test criteria: (1) a respiratory exchange ratio of 1.1 or
higher; (2) participants reached predicted maximal heart rate;
(3) oxygen uptake did not increase in spite of increasing
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workload. However, if there was a medical contraindication,
the exercise testing was interrupted. The highest 20 s value for
VOzpeak (I/min) attained in the last min was used in the anal-
ysis and is termed ‘CRF’ from here on.

Defining CRF improvement CRF improvement was defined as
having a change in VOzpeak (I/min) >5.0% from baseline to
follow-up. This cut-off point was chosen based on the techni-
cal error of measurement (TEM) of Vngeak using the Cosmed
K4, which is ~4.5% [26]; this was also the cut-off point used
by Pandey et al in a similar analysis with a type 2 diabetes
population [14]. Any value greater than the TEM is more
likely to be a true biological response to exercise training
rather than a result of the typical error variation present in
the measurement technique and the day-to-day biological
variability present in the individual [27].

Laboratory measurements Participants underwent biochemi-
cal assessments, including the analysis of HbA;.. Blood
samples were collected from an indwelling catheter and drawn
into chilled, heparinised tubes and centrifuged rapidly to avoid
glycolysis. HbA,. was analysed by immunoassay (Premier
Hb9210 HbA, . Analyzer; Trinity Biotech, Wicklow, Ireland).

Physical activity Physical activity was assessed using an accel-
erometer (ActiGraph, GT3X+ model; Fort Walton Beach, FL,
USA). Participants were asked to wear the accelerometer on
the right hip, close to the iliac crest, for 7 consecutive days.
The device activation, download and processing were
performed using the software, Actilife (v.6.9.1; ActiGraph).
The devices were activated on the first day, in the morning,
and data were recorded using the raw mode with a 100 Hz
frequency, and posteriorly downloaded into 15 s epochs.
Apart from actual non-wear time (i.e. when the device was
removed during sleep and water activities), periods of at least
60 consecutive min of zero activity intensity counts were
considered as non-wear time. A valid day was considered as
having 600 min or more of wear time. Participants with at least
4 valid days (including 1 weekend day) were included in the
analyses. All minutes for which the accelerometer counts were
below 100 cpm were defined as sedentary time.
Accelerometer counts >100 cpm and <2020 cpm were classi-
fied as low-intensity physical activity (LIPA). Accelerometer
counts >2020 cpm were classified as moderate-to-vigorous
physical activity (MVPA) [28].

Statistical analysis Descriptive statistics, including measures
of central tendency (mean) and variability (SD) for normally
distributed variables, and median (interquartile range) for
skewed variables, were used to describe the baseline descrip-
tive characteristics of the control group and those in the exer-
cise groups who had improved (CRF responders) and did not
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have improved (CRF non-responders) CRF. To compare
differences in descriptive characteristics and changes in phys-
ical activity between the three groups, a one-way ANOVA
with Bonferroni adjustment for multiple comparisons or the
non-parametric Kruskal-Wallis test was used to compare
differences in continuous measures, and a X2 test or Fisher’s
exact test was used for categorical variables.

Generalised estimating equations were used to model
outcomes using sex and total number of training sessions
completed as covariates. Since arterial stiffness is dependent
on arterial pressure [29], per cent change in MAP from base-
line to the end of the study was included as a covariate in all
regression models assessing differences in arterial stiffness
and structure indices. Further adjustment for baseline MVPA
and the exercise intervention group (i.e. non-exercise control,
HIIT or MCT) were also performed given the significant
difference between CRF responder groups at baseline. A least
significant difference post hoc test was used to estimate the
between- and within-group effects with regard to haemody-
namic and vascular outcomes. A linear distribution for the
response was assumed and an autoregressive correlation
matrix was set to the data.

A p value of <0.05 was considered statistically significant.
Data analyses were performed using IBM SPSS Statistics
version 22.0 (SPSS, Chicago, IL, USA) and STATA version
13.1 (StataCorp, College Station, TX, USA).

Results

Of the 41 individuals with type 2 diabetes who engaged in
1 year of either MCT or HIIT combined with RT, 14 had
clinically meaningful improvements in CRF (mean
AVOzpeak, 0.24 1/min), whereas 27 participants did not have
improvements in CRF (mean AVOzpeak, —0.16 1/min) follow-
ing exercise training. There were no significant difference in
the number of training sessions that were attended by those in
whom CRF was improved and not improved (p =0.12).
Baseline descriptive characteristics of the participants are
presented in Table 1. At baseline there were no differences
(p>0.05) between the control group, those in whom CRF
was improved and those in whom CRF was not improved,
with the exception of MVPA, which was higher (p<0.05) in
CRF non-responders compared with the control group
(p<0.05), and the exercise intervention group category, with
more of the CRF non-responders being in the HIIT group
compared with CRF responders (p<0.05).

Time in LIPA and MVPA were not significantly different
between the CRF responders (ALIPA, 6.9+57.9 min;
AMVPA, 1.1 £ 18.0 min), non-responders (ALIPA, —11.1 +
40.8 min; AMVPA, —2.8 £22.9 min) and control participants
(ALIPA, 0.2 £70.5 min; AMVPA, —0.1 £ 12.6 min).
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Table 1  Baseline descriptive characteristics of individuals in the control group, and exercise groups with either improved or unimproved CRF
following 1 year of exercise training

Characteristic Control (n=22) CRF non-responders (n=27) CREF responders (n = 14) p value®
Age, years 60.8+7.5 59.9+9.2 56.6+4.9 0.29
Sex (F [n]:M [n]) 11:11 11:16 6:8 0.81
Weight (kg) 85.9+15.7 81.8+13.1 83.3+19.3 0.65
Height (cm) 164.5+9.5 164.2 +8.7 165.3£7.6 0.93
BMI (kg/m?) 31.7+4.7 30.5+5.2 30.4+6.1 0.69
Training sessions completed (1) NA 95 (31) 110 (16) 0.12
Training sessions completed (%) NA 72.0 (23.8) 83.0 (12.4) 0.12
MCT (n):HIIT (n) NA 11:16 11:3 0.02
Time from DM dx, years 59+54 7.6+4.7 79455 041
Baseline sedentary time (min/day) 599.1 (138.1) 594.4 (84.7) 590.9 (131.3) 0.99
Baseline MVPA (min/day) 15.9 (21.0) 31.8 (34.9) 35.0 (41.3)* 0.02
Baseline LIPA (min/day) 191.7+£75.1 201.4+552 227.1+£97.2 0.36
Baseline HbA . (mmol/mol) 48.1 (16.4) 47.6 (18.6) 49.2 (25.1) 0.78
Baseline HbA . (%) 6.6 (1.5) 6.5(1.7) 6.7(2.3) 0.78
Baseline fasting glucose (mmol/l) 7.7 (3.1) 7.9 (3.5) 8.0 (6.4) 0.21
Baseline VO2peax (Vmin) 2.14+0.59 2.13+0.50 1.98+0.29 0.60
Baseline TTE (min) 6.8+2.6 7.6+23 7.7+1.7 0.36
Baseline resting HR (bpm) 67.2+10.5 66.6+9.3 69.0+11.6 0.77
Baseline total fat (kg) 299+6.8 277+7.6 285+11.2 0.64
Baseline MAP (mmHg) 98.9+823 101.8+9.6 99.6+10.6 0.54

Data are presented as mean = SD or median (interquartile range), unless otherwise indicated

2 p value for differences across all groups based on a one-way ANOVA with Bonferroni adjustment for multiple comparisons or the non-parametric
Kruskal-Wallis test for continuous measures, and a x2 test or Fisher’s exact test for categorical variables

* p<0.05 vs control, non-parametric Kruskal-Wallis test for continuous measures

¥ p<0.05 vs CRF non-responders, Fisher’s exact test for categorical variables

bpm, beats per min; DM dx, diabetes diagnosis; F, female; HR, heart rate; M, male; NA, not applicable; TTE, time to exhaustion

Table 2 presents the between- and within-group changes
for haemodynamic measures, and local and regional indices
of early pathological changes in arterial structure and stiffness,
after adjusting for sex, total number of training sessions
completed, and exercise intervention group. Arterial structure
and stiffness indices were additionally adjusted for per cent
change in MAP. Regardless of whether CRF improved, those
in the exercise groups had either decreased (CRF non-
responders: —0.03 mm) or unchanged (CRF responders:
0.001 mm) carotid IMT compared with the control group
(+0.04 mm), following the 1 year intervention. Improvements
(p<0.05) were also observed in peripheral arterial stiffness in
exercisers, regardless of improvements in CRF, as lower-limb
PWV was decreased vs the control group (CRF responders:
—0.38 m/s; CRF non-responders: —0.40 m/s; control:
+1.31 m/s). However, only the CRF responders had significant-
ly decreased PWYV of the upper limb compared with control
participants (CRF responders: —1.29 m/s; control: +0.12 m/s).
As for central stiffness, only the CRF non-responders had
significant changes in carotid distensibility coefficient
(p<0.05) compared with the control group. Despite changes in

aortic PWV not differing from the control group (»p>0.05),
changes in aortic PWV differed (p<0.05) between CRF
responders and non-responders, with non-responders having
increased aortic PWV (CRF non-responders: 1.62 m/s), while
the responders had decreased levels (CRF responders:
—0.68 m/s) following 1 year of exercise training. No other inter-
action effects between individuals in the exercise groups who
had improved or who did not have improved CRF vs individ-
uals in the control group were found for the remaining vascular
stiffness or haemodynamic measures (p>0.05). Further adjust-
ment for baseline MVPA did not alter the results (data not
shown).

Figure 1 displays the individual per cent changes in local
and regional indices of early pathological changes in indices
of arterial structure and stiffness in the control participants and
individuals in the exercise groups who either had increased or
not improved post-trial CRF. Even among the participants in
the exercise groups with and without improvements in CRF,
there was a wide range of interindividual variability in vascu-
lar adaptations to exercise training. Overall, compared with
the control group, those in the exercise groups had
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Fig. 1 Individual per cent changes in (a) aortic PWV, (b) upper-limb PWYV, (¢) lower-limb PWYV, (d) carotid IMT, (e) carotid PWV and (f) carotid
distensibility coefficient (DC). *p<0.05 vs control after adjustment for sex, total number of training sessions completed and per cent change in MAP

improvements (p<0.05) in lower-limb PWV and carotid IMT
(Fig. 1c, d), regardless of whether they had concurrent
improvements in CRF.

Discussion

The aim of this study was to assess whether improvements in
vascular function were independent of improvements in CRF,
based on AVO;pek, following 1 year of exercise training in
individuals with type 2 diabetes. This is the first study to show
that a long-term exercise intervention significantly decreased
carotid IMT and lower-limb arterial stiffness in participants
with type 2 diabetes, regardless of improvements in CRF.
These findings are important given that vascular complica-
tions are common in individuals with type 2 diabetes and that
these vascular alterations are a main mechanism connecting
diabetes to increased risk of cardiovascular morbidity and
mortality [1, 30]. Hence, our findings suggest that exercise-
induced benefits in terms of vascular health may disrupt the
close link between diabetes and CVD. In addition, individuals
with type 2 diabetes are known to have CRF impairments
independent of physical activity levels, obesity and presence
of CVD [19], making them more likely to not experience
changes in CRF following exercise, as compared with adults
without type 2 diabetes [14, 31]. Thus, although exercise
training-induced improvements in CRF have been correlated
with decreases in CVD risk factors [10], this is the first study
to show that the absence of an increase in CRF after exercise
training does not preclude the possibility of beneficial vascu-
lar adaptations in individuals with type 2 diabetes.

In the present study, an interaction between CRF
responders and non-responders was found in aortic PWYV,
such that individuals who had improved CRF with exercise
had more favourable changes in aortic PWV. Strong associa-
tions between improvements in aortic vascular stiffness and
reduced risk of cardiovascular and all-cause mortality have
been previously reported [32]. However, using a central surro-
gate of PWV measured through carotid PWYV, no differences
between the exercise and control groups were found.
Although carotid and aortic PWV are both classified as elastic
and valid surrogate measures of central stiffness [2, 3], the
ultrastructure of the carotid artery is more like the abdominal
aorta than the ascending aorta. In addition, discrepancies
between changes in carotid and aortic artery PWV following
an intervention could also result from differences in measure-
ment techniques: aortic PWV is determined manually by
measuring the distance between the carotid and femoral sites,
whereas carotid PWV is determined cross-sectionally from
local changes in pressure and artery diameter due to the short
vessel path (10-15 cm) and subsequent short time lag (5—
15 ms) of the carotid artery, making manual measurement
difficult [33]. Nevertheless, compared with the control group,
decreases in PWV of the lower limb of exercisers with and
without improvements in CRF were observed suggesting that
exercise training may have a larger effect on peripheral rather
than central stiffness, which may be attributable to the
mechanical compression of the arteries due to muscular
contraction during exercise [34]. In line with our findings, a
recent meta-analysis of the impact of exercise on both central
and peripheral arterial stiffness in adults, observed that exer-
cise training had less of an effect on central arterial stiffness
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compared with peripheral measures [35]. Even though aortic
PWYV is the only segment of the arteries associated with
decreased CVD risk, changes in lower-limb PWV following
exercise might induce local adaptations and have implications
on other systems, such as glucose transport and insulin signal-
ling, in the muscle [36].

Beyond PWYV, the distensibility coefficient, measured
through ultrasound of the carotid artery, is also an indicator
of vascular stiffness, which tends to deteriorate with ageing
and type 2 diabetes [37, 38]. We found that, regardless of CRF
improvement, 1 year of exercise training was able to halt the
natural age- and disease-related deterioration in carotid disten-
sibility vs baseline, such that decreases in carotid distensibility
coefficient were only observed in control participants.

Exercise training has also been shown to improve indices
of local vascular structure [6]. In accordance with previous
findings, we also observed favourable effects of exercise train-
ing on carotid IMT independent of improvements in CRF.
Given that for every 0.1 mm increase in carotid IMT, the risk
of having a myocardial infarction increases by ~10% [4], our
finding of a decrease in carotid IMT by 0.03 mm in the CRF
non-responders and maintenance of carotid IMT in responders
has important clinical implications in terms of decreasing
cardiovascular events, which can occur regardless of having
changes in CRF. In addition, it is important to note that carotid
IMT is strongly linked to age and has been estimated to
increase by ~0.010 mm per year in men and women [39].
Hence, our finding of a decrease and/or maintenance of carot-
id IMT after 1 year is even more relevant as it indicates that
regardless of CRF improvements, long-term exercise can slow
down the age-related increases in IMT, or even promote a
decrease in carotid IMT.

Currently, we have only fragments of insight regarding
the mechanisms involved in vascular remodelling follow-
ing long-term exercise training regimes. Teasing apart the
contribution of CRF on the vascular system [40] may
provide key information for tailored interventions aiming
for the prevention of arterial stiffening and related cardio-
vascular complications. In fact, most of the vascular bene-
fits observed with exercise are thought to be mediated by
the increased exercise-induced blood flow, which is
responsible for increasing endothelial shear stress [11].
The force exerted by the blood flow on the arterial wall
(i.e. shear stress) stimulates the production of nitric oxide,
a potent vasodilator that adjusts the shear stress to which
the artery is subjected to and plays a key role in repairing
damaged endothelial cells, leading to an overall improve-
ment in vascular health with medium-to-long-term impli-
cations on vascular structure and function [11]. This shear
stress and pulsatile stretching of the arteries is also
believed to aid in the breakdown of diabetes-associated
collagen cross-links, resulting in decreased arterial

@ Springer

stiffness [11]. Exercise-related improvements in vascular
health may also be influenced by exercise-induced chang-
es in metabolic disease risk factors, including hyperten-
sion, dyslipidaemia, inflammation and insulin resistance
[41]. However, although CRF is associated with a
favourable metabolic profile [40], several reports suggest
that the exercise-induced metabolic improvements, which
in turn improve vascular health, are independent of chang-
es in CRF [18]. For instance, improvements in metabolic
parameters, such as HbA;. and measures of adiposity,
have been observed in individuals with type 2 diabetes,
irrespective of improvements in CRF, following a 9 month
exercise intervention [14]. Additionally, it has been
suggested that the high interindividual variability in
response to exercise can be partially due to alterations in
non-exercise physical activity (NEPA), which is known to
be affected by the intensity and duration of exercise train-
ing sessions [42]. However, we did not observe any
differences in LIPA and MVPA levels between control
participants and those in the exercise intervention, regard-
less of improvements in CRF, suggesting that improve-
ments in vascular outcomes in the present study were
not a consequence of higher NEPA.

Understanding the factors that lead to an increase in CRF in
some but not all individuals undertaking an exercise interven-
tion remains a source of considerable discussion [15].
Currently, there is no consensus on how to best quantify indi-
vidual variability and categorise responders and non-
responders to an exercise intervention. For instance, previous
investigations have used various approaches to classify a CRF
non-responder, including: a <0 I/min change in CRF [43, 44];
anon-clinically significant <5% change in CRF [14]; a within-
participant CV of 5.6% from the literature [45]; arbitrary cut-
off points of CRF <0 ml kg ' min™", <1.75 ml kg ' min~' and
<3.5mlkg ' min' [46]; and a change in CRF <TEM [31, 47].
Nonetheless, all of these investigations have focused on the
use of VO, (i.e. either maximal or peak) as the indicator of
CRF. However, there are other indices of CRF that may
provide additional information on the effectiveness of exercise
interventions. Our results show that despite the absence of
CRF improvements based on VOzpeak in the non-responder
group, both CRF responders and non-responders had
increased time to exhaustion during maximal CRF exercise
testing at 1 year vs baseline. It is possible that the increases
in the time to exhaustion observed in the non-responder group
were due to improvements in walking performance and other
efficiency factors as a result of the exercise intervention,
which may potentially contribute to more favourable effects
on the economy of motion without leading to a concurrent
increase in the VOzpeak [48]. Moreover, previous investiga-
tions have suggested that there is substantial variability in
the time to exercise exhaustion, with increases in time to
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exhaustion being independent of changes in VO,pa Over a
series of repeated exercise tests [49, 50].

This study is not without limitations. Although our sample
size was relatively large considering the length of the exercise
intervention, the small number of participants within each
group (i.e. control, CRF non-responders and CRF responders)
could have affected the power to detect significant changes
between groups.

In conclusion, 1 year of exercise training was able to slow
the progression of the natural age- and disease-related deteri-
oration of vascular health in individuals with type 2 diabetes,
with significant improvements being observed in carotid IMT
and lower limb arterial stiffness vs a non-exercise control
group, regardless of changes in CRF. Thus, a lack of improve-
ment in CRF following exercise in individuals with type 2
diabetes does not necessarily entail a lack of improvement in
vascular health. From a clinical standpoint, when assessing the
successfulness of an exercise intervention in individuals with
type 2 diabetes, practitioners should not overlook the impact
of exercise training on other health indicators by simply focus-
ing on CREF, as other favourable health benefits are still obtain-
able with exercise in this patient population despite lack of
improvements in fitness.
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