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Abstract
Aims/hypothesis Growth differentiation factor 15 (GDF-15), a suggested biomarker for metformin use, may explain the potential
cardioprotective and anti-cancer properties of metformin. We conducted a Mendelian randomisation study to examine the role of
GDF-15 in risk of coronary artery disease (CAD) and breast and colorectal cancer. Secondary analyses included examination of
the association of GDF-15 with type 2 diabetes, glycaemic traits, BP, lipids and BMI.
Methods We obtained SNPs strongly (p value <5 × 10−8) predicting GDF-15 from a genome-wide association study (GWAS)
(n = 5440) and applied them to genetic studies of CAD (CARDIoGRAMplusC4D 1000 Genomes-based GWAS [n = 184,305]),
type 2 diabetes (DIAGRAM [DIAbetes Genetics Replication And Meta-analysis; n = 898,130]), glycaemic traits (MAGIC [the
Meta-Analyses of Glucose and Insulin-related traits Consortium; HbA1c: n = 123,665; fasting glucose: n = 46,186]), BP, breast
cancer and colorectal cancer (UK Biobank [n ≤ 401,447]), lipids (GLGC [Global Lipids Genetic Consortium; n ≤ 92,820]) and
adiposity (GIANT [Genetic Investigation of ANthropometric Traits Consortium; n = 681,275]). Causal estimates were obtained
using inverse variance weighting, taking into account correlations between SNPs. Sensitivity analyses included focusing on the
lead SNP (rs888663) and validation for CAD in the UK Biobank and for breast cancer in the Breast Cancer Association
Consortium.
Results Using 5 SNPs, increased GDF-15 was associated with lower CAD (OR 0.93 per SD increase, 95% CI 0.87, 0.99) and
breast cancer (OR 0.89 per SD increase, 95% CI 0.82, 0.96), with similar results from lead SNP analysis. However, the
associations with CAD (OR 0.99 per SD increase, 95% CI 0.93, 1.04) and breast cancer (OR 0.97 per SD increase, 95% CI
0.94, 1.01) in the validation studies were not as apparent. GDF-15 was not associated with type 2 diabetes, glycaemic traits, CAD
risk factors or colorectal cancer.
Conclusions/interpretation There is no convincing evidence that GDF-15 reduces risk of CAD or breast or colorectal cancer.
Whether the observed inverse association of metformin use with cancer risk is via other unexplored mechanistic pathways
warrants further investigation.
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GWAS Genome-wide association study
HRC Haplotype Reference Consortium
InSIDE Instrument strength independent

of direct effects
IVW Inverse variance weighting
LD Linkage disequilibrium
MAGIC Meta-Analysis of Glucose and

Insulin-related traits Consortium
NSPHS Northern Sweden Population Health

Study
ORIGIN Outcome Reduction with

Initial Glargine Intervention
PheWAS Phenome-wide association study
PIVUS Prospective Investigation of the

Vasculature in Uppsala Seniors
SAIGE Scalable and Accurate Implementation

of GEneralized mixed model
SBP Systolic BP
Sydney MAS Sydney Memory and Ageing Study

Introduction

Metformin is the first line medication for diabetes, given its
superiority and safety compared with other diabetes medica-
tions (e.g. sulfonylureas) [1], which suggests metformin re-
duces blood glucose levels via potentially less hazardous path-
ways than other medications [1]. Some RCTs have also

suggested a potential beneficial effect of metformin on cardio-
vascular disease (CVD) although the evidence remains incon-
clusive [2]. In addition, the relation of metformin use with can-
cer remains controversial because most studies suggesting a
protective effect are observational and hence are open to con-
founding by indication and to misallocation of exposure time
[3]. Assessing the impact of potential downstream factors of
metformin, such as growth differentiation factor 15 (GDF-15),
may provide additional insight to elucidate the health impacts
of metformin. GDF-15 (also known as macrophage inhibitory
cytokine-1 [MIC-1]) was found to be a strong biomarker of
metformin use, but not of sulfonylurea use, in a cross-sectional
analysis of the Outcome Reduction with Initial Glargine
Intervention (ORIGIN) trial. The association of metformin use
withGDF-15 remained after adjusting for glycaemic traits, such
as HbA1c and glucose, which suggests GDF-15 could be a
potential non-glycaemic effect of metformin use, possibly
explaining the effect of metformin on other health outcomes,
including coronary artery disease (CAD) and cancer [4].
Although GDF-15 is also associated with other cardiovascular
risk factors such as plasma creatinine, diuretic use and smoking,
metformin use appears to be the main contributor to GDF-15
[5]. Observationally, GDF-15 is positively related to CVD and
cancer [6, 7]. However, this association could be driven by
reverse causation, confounding and selection bias (i.e. selective
survival before recruitment). Elucidating the role of GDF-15 in
CVD and cancer may help clarify whether metformin could be
repurposed to further mitigate CVD and to reduce cancer risk.
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Mendelian randomisation studies are increasingly used to as-
certain causes of disease since they utilise genetic variants of
exposure randomly assigned at conception, and hence are less
vulnerable to confounding than observational studies [8]. A pre-
vious study examined the relation of two SNPs (rs62122429 and
rs62122430) relevant to GDF-15 with CAD in CARDIoGRAM
and found rs62122429 associated with CAD while rs62122430
was not [4]. This finding suggests GDF-15 may have a role in
CAD development, although a recent Mendelian randomisation
study did not provide strong evidence for the role of GDF-15 in
cardiometabolic diseases. Nevertheless, this study only used 3
SNPs as instruments and did not formally assess its role in cancer
risk, which is directly relevant to the evaluation of metformin’s
potential anti-cancer property [9]. Here, we conducted
Mendelian randomisation to evaluate the impact of GDF-15 on
CAD and cancer (breast and colorectal) risk. For completeness,
we also assessed its relation with type 2 diabetes and glycaemic
traits (HbA1c and fasting glucose), given GDF-15 is strongly
related to metformin use, and other established CAD risk factors
(systolic [SBP] and diastolic [DBP] BP, HDL-cholesterol, LDL-
cholesterol and BMI).

Methods

Study design This is a two sample Mendelian randomisation
study using summary statistics from genome-wide association
studies (GWAS). It has three main assumptions [8]. First, the
genetic instruments, i.e. SNPs, should be associated with
GDF-15. Second, the genetic instruments should be indepen-
dent of confounders. Third, the exclusion-restriction assump-
tion that the genetic instruments should only be linked with
the outcome via GDF-15.

Exposure: genetic predictors of GDF-15 The exposure in this
study was genetically predicted GDF-15, in SDs. The genetic
predictors of GDF-15 were extracted from a GWAS consisting
of four cohorts (n = 5440) of people of European descent: the
Framingham Offspring Cohort, the Prospective Investigation of
the Vasculature in Uppsala Seniors (PIVUS) Study, the Northern
Sweden Population Health Study (NSPHS), and the Sydney
Memory and Ageing Study (Sydney MAS) [10]. The mean
age was 62 years and 53% of the participants were women.
Serum/plasma GDF-15 was measured using immunoassays.
Imputation was based on the HapMap2 reference panel
(Framingham; PIVUS and Sydney MAS) and 1000 Genomes
Project Phase 3 reference panel (NSPHS). We used estimates
adjusted for age, sex, SBP, antihypertensive medication use, di-
abetes mellitus, smoking status and year of data collection
(NSPHS only). Population stratification was accounted for using
different methods in the studies, such as principal components
and kinship matrix adjustment [10]. Electronic supplementary
material (ESM) Table 1 shows the nine correlated SNPs,

identified in the GWAS, which explained 21.5% of the variance
of GDF-15. Six SNPs were in the PGPEP1 gene region whilst 3
SNPs were in the GDF15 gene region. We excluded 3 SNPs
(rs3746181, rs1363120 and rs1054564) in high linkage disequi-
librium (LD) (r2 ≥ 0.8) and with higher p values than the other
SNPs based on LD in European samples from the 1000
Genomes project. We also excluded a SNP (rs16982345) which
did not reach genome-wide significance (p value >5 × 10−8). As
such, five correlated SNPswere used as genetic instruments [11].

Outcomes The primary outcomes were CAD, breast cancer
and colorectal cancer. The secondary outcomes were type 2
diabetes, HbA1c (mmol/mol) and glucose (mmol/l), SBP and
DBP (mmHg), LDL-cholesterol (per SD change), HDL-
cholesterol (per SD change) and BMI (per SD change). The
studies used are described below.

Genetic associations with CAD Genetic associations with CAD
were obtained from CARDIoGRAMplusC4D 1000 Genomes-
based GWAS, a meta-analysis of GWAS of CAD studies
(cases = 60,801, controls = 123,504) of people of mainly
European descent (77%) with imputation using the 1000
Genomes Phase 1 v3 reference panel [12]. The definition of
CAD varied across studies, such as diagnosis of myocardial
infarction, acute coronary syndrome, chronic stable angina, or
coronary stenosis >50%. Diagnoses of CAD also varied across
studies, such as clinical diagnosis, procedures (coronary angi-
ography results or bypass surgery), use of medications or symp-
toms that indicate angina, or self-report of a doctor diagnosis, as
described elsewhere [12]. CARDIoGRAMplusC4D 1000
Genomes-based GWAS was adjusted for study-specific covar-
iates and genomic control.

Genetic associations with colorectal and breast cancer
Genetic associations with colorectal and breast cancer risk were
obtained from the UKBiobank summary statistics generated by
Scalable and Accurate Implementation of GEneralized mixed
model (SAIGE) and restricted to white British of European
ancestry (n ≤ 401,447) [13]. The mean age for all the UK
Biobank participants at recruitment was 57 years [14]. In brief,
SAIGE fits a null logistic mixed model to estimate the variance
component and the model parameters, followed by ascertain-
ment of the gene-phenotype association with the application of
saddlepoint approximation to the score test statistics [13, 14].
SAIGE is particularly suitable for studies with extreme imbal-
ance in case–control ratios and is able to control for sample
relatedness [13]. Imputation was based on the Haplotype
Reference Consortium (HRC) imputation reference panel.
Colorectal cancer (4562 cases, 382,756 controls) and breast
cancer (12,898 cases, 388,549 controls) in the UK Biobank
were defined using UK Biobank phenome-wide association
study (PheWAS) codes, which is an aggregate of relevant
International Classification of Diseases codes (153 for
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colorectal cancer; 174 for breast cancer) [15]. SAIGE was ad-
justed for sex, birth year and the first four principal components.

Genetic associations with type 2 diabetesGenetic associations
with type 2 diabetes were obtained from DIAbetes Genetics
Replication And Meta-analysis (DIAGRAM) Consortium, a
meta-analysis of 32 GWAS of type 2 diabetes studies (cases =
74,124, controls = 824,006) of European ancestry [16]. Type 2
diabetes was defined in various ways, such as previous diagno-
sis, the use of glucose-lowering medication, and self-report.
Imputation was performed based on the HRC reference panel
for all studies except deCODEwhich was imputed based on the
Icelandic panel. The GWAS was adjusted for study-specific
covariates, principal components, and corrected for genomic
control. In this study, we used summary statistics without ad-
justment for BMI to avoid the possibility of collider bias [16].

Genetic associations with HbA1c and glucose Genetic associa-
tions with HbA1c and glucose were obtained from the Meta-
Analysis of Glucose and Insulin-related traits consortium
(MAGIC), ameta-analysis of GWASofHbA1c in 159,940 adults
without diabetes, imputed using Phase 2 of the International
HapMap Project reference panel [17]. In this study, we only used
genetic associations from 123,665 participants of European an-
cestry. Genetic associations with HbA1c were adjusted for age,
sex, study-specific covariates and genomic control. Genetic as-
sociations with glucose were generated from a meta-analysis of
GWAS of fasting glucose in up to 46,186 participants of
European descent without diabetes, imputed using the HapMap
CEU (Utah residents with Northern and Western European an-
cestry from the Centre d’Etude du Polymorphisme Humain
(CEPH) collection) reference panel [18]. Adjustment was made
for age, sex, study-specific covariates and genomic control.

Genetic associations with HDL- and LDL-cholesterol Genetic
associations with lipids were obtained from the Global Lipids
Genetics Consortium (GLGC), a meta-analysis of GWAS of
different study designs, which included 188,577 participants
of European ancestry [19]. Genotyping was done using two
arrays: the GWAS array (n = 94,595) and the Metabochip ar-
ray (n = 93,982). Imputation was based on the CEU HapMap
release 22 reference panel. However, the SNPs used in this
study were only present in one of the panels (n ≤ 92,820).
Blood lipids were typically sampled after more than 8 h of
fasting. Participants were excluded if they took lipid lowering
medications in the majority of studies. LDL-cholesterol was
directly measured in 24% of the participants and was estimat-
ed using the Friedewald formula in the remaining 76% of the
participants. HDL-cholesterol was directly measured. The
GWAS was adjusted for age, sex and genomic control.

Genetic associations with BMI Genetic associations with BMI
were obtained from theGenetic Investigation of ANthropometric

Traits (GIANT) Consortium, which is a meta-analysis of GWAS
of different study designs (n = 681,275) [20]. Imputation was
based on HapMap CEU release 22 reference panel (GWAS by
Locke et al) [20] and the HRC imputation reference panel (UK
Biobank). BMI was calculated based on height and weight (ei-
ther measured or self-reported). The GWASwas adjusted for age
and other study-specific covariates (e.g. principal components),
and corrected for genomic control.

Genetic associations with SBP and DBP Genetic associations
with SBP and DBP (automated reading) were obtained from
summary statistics generated from the UK Biobank, restricted
to ~337,000 unrelated individuals of white British ancestry,
with imputation using the HRC imputation reference panel
[21]. Seated BP was measured using the Omron HRM-
7015IT digital BP monitor (Omron Healthcare, Kyoto,
Japan). Genetic associations with BP (mmHg) were obtained
using multivariable linear regression, adjusted for age, age
squared, sex, the interactions of age and age squared with
sex, and the first 20 principal components.

Statistical analysis

We calculated the mean F statistics of the instruments used in
this study to assess potential weak instruments bias [22, 23]. To
take into account correlations between the SNPs when calcu-
lating the estimates using inverse variance weighting (IVW),
we obtained the correlation matrix based on European 1000
Genomes data obtained from MR-Base. We then used IVW
with the correlation matrix in our main analysis to correct for
correlation between SNPs [24, 25]. We used fixed effects IVW
since variation in theWald estimates (gene-outcome association
divided by gene-exposure association) for each SNP are likely
due to sampling error only, given they were primarily from two
gene regions (PGPEP1 and GDF15). To assess the robustness
of results, we also included sensitivity analyses.

1. Validation of association with CAD using the UK Biobank,
and breast cancer using the Breast Cancer Association
Consortium As a validation, we examined the association of
GDF-15 with CAD using the UK Biobank, and with breast
cancer using the Breast Cancer Association Consortium
(BCAC) given the differences in study design, sample selec-
tion and analytic strategy between the disease specific GWAS
and the UK Biobank. We used SAIGE UK Biobank summary
statistics. The PheWAS code for CAD is 411 (cases = 31,355,
controls = 377,103) [13]. Genetic associations with breast
cancer were obtained from a large GWAS of breast cancer,
including BCAC, DRIVE and iCOGS (cases = 122,977, con-
trols = 105,974), with imputation based on the 1000 Genomes
Project Phase 3 panels [26]. These GWAS adjusted for up to
ten principal components and other study-specific covariates
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(e.g. study and country). For breast cancer we only included
associations from women of European descent.

2. IVW with multiplicative random effects We repeated the
analyses using IVW with multiplicative random effects. This
model gives the same point estimate as the fixed effect model
with the variance of the estimate increased when heterogene-
ity between SNP-specific Wald estimates is high (a sign of
potentially invalid SNPs). The multiplicative random effects
model is less sensitive to biases introduced by weaker SNPs
than additive random effects [27].

3. Lead SNP analysisWe repeated the analyses only using the lead
SNP (rs888663, p value with GDF-15: 2.64 × 10−35) to further
rule out the possibility of bias due to inclusion of invalid SNPs.

4. MR-Egger intercept test As another means of identifying
potential pleiotropy, we used MR-Egger intercept test, which
can be implemented with correlated variants and does not rely
on the instrument strength independent of direct effects
(InSIDE) assumption [28]. However, we did not perform
MR-Egger since the InSIDE assumption is unlikely to be sat-
isfied with correlated instruments and hence estimates from
MR-Egger are likely biased [28].

5. Mendelian randomisation restricted to instruments from
the same gene region We also repeated the analyses using
SNPs from each gene region separately. Consistent estimates
using SNPs from different gene regions would provide more
convincing evidence concerning the causal role of GDF-15.

Power calculation In the GDF-15 GWAS the variance ex-
plained by all 9 SNPs was 21.5% [10]; how much of that
variance is explained by the 5 SNPs used here is unclear. We
provide power calculations assuming the SNPs explained
21% of the variance and more conservatively 15% of the
variance (ESM Table 2) [29]. Assuming 15% of the variance
was explained by the SNPs, this study is powered to find
relatively small effects, such as an OR of 1.04 per SD change
in GDF-15 for CAD using CARDIoGRAMplusC4D 1000
Genomes-based GWAS, and 0.024 per SD change for lipids.

All analyses were performed using R Version 3.3.3 (R
Development Core Team, Vienna, Austria) with the R packages
(TwoSampleMR) and (MendelianRandomization) [24, 25].

Ethics approval This study only used publicly available data
and hence no ethics approval was required.

Results

One SNP (rs1227731) from GDF15 and 4 SNPs (rs888663,
rs749451, rs3195944 and rs17725099) from PGPEP1 were

used in the main analysis, as shown in ESM Table 1, and cor-
responding correlation matrix in ESM Table 3. ESM Table 4
and ESM Figs. 1–5 show the associations of the genetic vari-
ants with GDF-15 and with the outcomes. Figure 1 shows the
selection process for the GDF-15 SNPs and the GWAS used for
the outcomes. The mean F statistic for the instruments was 108,
suggesting weak instrument bias is unlikely.

Table 1 shows the relation of GDF-15 with CAD and its risk
factors using IVW with fixed effects. Higher GDF-15 was as-
sociated with lower CAD risk (OR 0.93 per SD increase, 95%
CI 0.87, 0.99). However, the association was not evident in the
UK Biobank (OR 0.99 per SD increase, 95% CI 0.93, 1.04).
GDF-15 was unrelated to type 2 diabetes risk (OR 1.02 per SD
increase, 95% CI 0.98, 1.06), HbA1c (0.084 per SD increase,
95%CI −0.046, 0.215) or glucose (0.004 per SD increase, 95%
CI −0.023, 0.031). Higher GDF-15 was associated with lower
HDL-cholesterol (−0.05 per SD increase, 95% CI −0.09,
−0.02), but not with LDL-cholesterol, BMI, SBP or DBP.
Higher GDF-15 was associated with lower breast cancer risk
(OR 0.89 per SD increase, 95% CI 0.82, 0.96) but the associ-
ation was non-significant for colorectal cancer risk (OR 0.91
per SD increase, 95%CI 0.80, 1.04) albeit directionally similar.
The estimate for breast cancer risk using BCAC was smaller
than the UK Biobank estimate and was non-significant (OR
0.97 per SD increase, 95% CI 0.94, 1.01).

ESM Table 5 shows the relation of GDF-15 with the out-
comes using IVW with multiplicative random effects, which
gave similar results as with fixed effects although with wider
confidence intervals.

Table 2 shows the relation of GDF-15 with the outcomes
using the lead SNP (rs888663) only. When compared with the
main results, the estimates were most consistent for CAD and
breast cancer, with directionally similar estimates for colorec-
tal cancer. The associations with other outcomes were non-
significant.

The MR-Egger intercept test did not provide strong evi-
dence of potential violation of the exclusion-restriction as-
sumption, except for DBP (p = 0.046), BMI (p < 0.001) and
HbA1c (p = 0.009), as shown in ESM Table 6.

ESM Table 7 shows the Mendelian randomisation analysis
restricted to instruments from the same gene region. The ma-
jority of estimates were directionally consistent, with the asso-
ciation of GDF-15 with lower HDL-cholesterol most evident.

Discussion

This is one of the first Mendelian randomisation studies ex-
amining the role of GDF-15 in CAD, breast and colorectal
cancer, as well as CAD risk factors, type 2 diabetes and
glycaemic traits. Although GDF-15 might have potential util-
ity in prediction, as shown in previous observational studies,
our study suggests it is unlikely that GDF-15 increases the risk
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of CAD, breast cancer and colorectal cancer [6, 7]. Although
our main analysis suggested a potential inverse association of

GDF-15 with CAD and breast cancer risk, these findings were
not consistently observed in the validation studies. Our study,
therefore, does not support that GDF-15, a suggested

Table 2 The impact of GDF-15 (per SD change) on CAD, type 2
diabetes and glycaemic traits, CAD risk factors, breast and colorectal
cancer risk using Mendelian randomisation with the lead SNP
(rs888663) as the instrument

Outcome Data source Wald estimate

OR/β 95% CI

CAD CARDIoGRAM 0.87 0.81, 0.95

CAD UK Biobank 0.93 0.87, 1.00

Type 2 diabetes DIAGRAM 1.00 0.96, 1.06

HbA1c (mmol/mol) MAGIC 0.0036 −0.167, 0.174
Fasting glucose (mmol/l) MAGIC 0.006 −0.031, 0.042
SBP (mmHg) UK Biobank −0.34 −0.69, 0.006
DBP (mmHg) UK Biobank 0.005 −0.19, 0.20
LDL-C (per SD change) GLGC −0.03 −0.08, 0.02
HDL-C (per SD change) GLGC −0.03 −0.07, 0.02
BMI (per SD change) GIANT −0.010 −0.024, 0.004
Breast cancer UK Biobank 0.80 0.72, 0.89

Breast cancer BCAC 0.99 0.94, 1.04

Colorectal cancer UK Biobank 0.88 0.74, 1.05

CARDIoGRAM, CARDIoGRAMplusC4D 1000 Genomes-based
GWAS; HDL-C, high density lipoprotein cholesterol; LDL-C, low den-
sity lipoprotein cholesterol

Table 1 The impact of GDF-15 on CAD risk, type 2 diabetes and
glycaemic traits, CAD risk factors, breast and colorectal cancer risk using
Mendelian randomisation

Outcome Data source IVW with fixed effects

Per SD increase GDF-15

OR/β 95% CI

CAD CARDIoGRAM 0.93 0.87, 0.99

CAD UK Biobank 0.99 0.93, 1.04

Type 2 diabetes DIAGRAM 1.02 0.98, 1.06

HbA1c (mmol/mol) MAGIC 0.084 −0.046, 0.215
Fasting glucose (mmol/l) MAGIC 0.004 −0.023, 0.031
SBP (mmHg) UK Biobank −0.09 −0.35, 0.18
DBP (mmHg) UK Biobank 0.10 −0.05, 0.25
LDL-C (per SD change) GLGC −0.01 −0.05, 0.03
HDL-C (per SD change) GLGC −0.05 −0.09, −0.02
BMI (per SD change) GIANT 0.002 −0.009, 0.01
Breast cancer UK Biobank 0.89 0.82, 0.96

Breast cancer BCAC 0.97 0.94, 1.01

Colorectal cancer UK Biobank 0.91 0.80, 1.04

CARDIoGRAM, CARDIoGRAMplusC4D 1000 Genomes-based
GWAS; HDL-C, high density lipoprotein cholesterol; LDL-C, low den-
sity lipoprotein cholesterol

9 SNPs identified from GDF-15 GWAS (n=5440)

Excluding strong LD SNPs (r
2
≥0.8) or those not reaching p=5×10

−8

Cancer

• Breast cancer

- UK Biobank (cases: 12,898; 

controls: 388,549)

- BCAC (cases: 122,977; 

controls: 105,974)

• Colorectal cancer

- UK Biobank (cases: 4562; 

controls: 382,756)

CAD risk factors

• HDL- and LDL-cholesterol

- GLGC (n=92,820)

• SBP and DBP

- UK Biobank (n≈337,000)

• BMI

- GIANT (n=681,275)

Type 2 diabetes

- DIAGRAM (cases: 74,124; 

controls: 824,006)

CAD

• CARDIoGRAMplusC4D 1000 

Genomes-based GWAS (cases: 

60,801; controls: 123,504)

• UK Biobank (cases: 31,355; 

controls: 377,103)

Glycaemic traits 

- MAGIC: HbA
1c

 (n=123,665)

- MAGIC: fasting glucose 

(n=46,186)

5 SNPs included in the analyses

Fig. 1 Selection process of SNPs for GDF-15 and the data sources used.
SNPs associated with GDF-15 were selected from a GWAS and used to
analyse genetic associations with the outcomes shown, using data from
various studies, as detailed in the flow chart. BCAC, Breast Cancer
Association Consortium; BMI; Body mass index; DBP, Diastolic blood
pressure; DIAGRAM, DIAbetes Genetics Replication and meta-analysis;

GIANT, Genetic Investigation of ANthropometric traits; GLGC, Global
Lipids Genetic Consortium; GWAS, Genome wide association studies;
HDL, High density lipoprotein; LD, Linkage disequilibrium; LDL, Low
density lipoprotein; MAGIC, Meta-Analyses of Glucose and Insulin-re-
lated traits Consortium; SBP, Systolic blood pressure
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biomarker for metformin use, is causally associated with
CAD, breast or colorectal cancer.

Previous observational studies mainly found higher GDF-
15 associated with higher CVD risk and cancer risk [30–32].
However, increased GDF-15 could be a symptom of disease,
i.e. reverse causation, where the disease increases GDF-15.
Some in vitro studies suggest GDF-15 is overexpressed in
cancer and myocardial GDF-15 mRNA is induced rapidly
on ischaemic injury [33, 34]. Differences in findings between
our study and previous studies could have occurred for several
reasons. GDF-15 could simply be an early marker of under-
lying disease, a reflection of confounding by ill-health [5], or a
consequence of selection or survivor bias in studies of older
people [35]. Mechanistically, GDF-15 could reduce CAD risk
via anti-inflammatory and/or anti-hypertrophic effects al-
though this is inconsistent with our findings [36]. Animal
studies suggest increases in GDF-15 may result in weight loss
via regulation of appetite, although these findings were not
always consistent and may depend on other conditions such
as interactions with other receptors [37], which may explain
the lack of association with BMI in our study. GDF-15 might
have different effects on cancer depending on the cancer stage
which needs to be clarified and the underlying mechanisms
elucidated in future studies [38]. Our study also suggests GDF-
15 is unrelated to type 2 diabetes and glycaemic traits, which is
inconsistent with previous observational studies [39]. However,
these studies could be confounded by other metabolic markers,
as well as by ill-health status. Given GDF-15 is a strong corre-
late of metformin use, it is also unlikely that increases in GDF-
15 lead to type 2 diabetes since this is inconsistent with the
effect of metformin on glycaemic traits [40].

Overall, our study does not support that increased GDF-15
level is a potential explanation for the observed inverse asso-
ciation between metformin use and CAD or some cancers.
Alternative pathways are in need of further investigation.
For example, metformin decreases plasminogen-activator in-
hibitor type 1 (PAI-1) [41], and sex hormones [42], which are
potential causes of CAD [43–45], as well as some cancers
[46]. Future studies should further systematically explore oth-
er potential pathways by which metformin may have an im-
pact such as via detailed metabolomic analyses using
Mendelian randomisation, which may be useful in identifying
new interventions to treat these diseases. Similar approaches
have already been used for statins [47], which are more effi-
cacious than other lipid lowering drugs in reducing CAD [48].

This is one of the first studies to evaluate the impact of GDF-
15, a biomarker for metformin, on CAD and cancer risk using
Mendelian randomisation, which is less susceptible to con-
founding than observational studies, nevertheless limitations
exist. First, the validity of the study depends on the chosen
genetic instruments. The instruments strongly predicted GDF-
15 and were unlikely confounded (with no evidence of associ-
ationwith Townsend deprivation index, age completed full time

education or ever smoking in the UK Biobank [p > 0.08]) [21,
24]. We cannot rule out the possibility of violation of the
exclusion-restriction assumption. For example, rs888663 is as-
sociated with CAD whilst rs1227731 and rs3195944 are asso-
ciated with erythrocytes [49, 50]. However, it is unclear wheth-
er these pleiotropic effects are downstream effects of GDF-15
(which does not violate the exclusion-restriction assumption) or
effects independent of GDF-15 (which violates the assump-
tion). We were unable to use weighted median or MR-Egger
estimates because of the use of correlated SNPs. Although the
MR-Egger intercept test suggested no violation of the
exclusion-restriction assumptions for the main outcomes
(CAD, breast and colorectal cancer), there was some evidence
of potential violation for DBP, BMI and HbA1c. As such, our
study needs confirmation when more genetic instruments for
GDF-15 from different gene regions have been identified in a
larger GWAS. Second, we were unable to directly evaluate the
impact of metformin on CAD and cancer risk, which would
require individual genetic data (e.g. UK Biobank) [14] and
definitive targets of metformin (e.g. AMP-activated protein ki-
nase). Such Mendelian randomisation studies would be able to
emulate more fully the impact of metformin. Third, some par-
ticipants in the UK Biobank were taking antihypertensives, so
the observed BP measurements for these participants were
underestimated, leading to misclassification. Fourth, the identi-
fied genetic instruments may not be the true genetic signals for
GDF-15 (i.e. false positives), leading to potential weak instru-
ment bias. However, this is unlikely given the mean F statistic
for the instruments used was much greater than 10. Fifth, our
study was unable to identify if exogenous (e.g. metformin) and
endogenous GDF-15 (naturally occurring) have different ef-
fects, which could be answered using other designs, such as
regression discontinuity applied to comprehensive electronic
health records. Sixth, the main analyses showed a potential
inverse association of GDF-15 with CAD and breast cancer
but these findings were not consistently observed in the
validation studies. Such differences may be driven by meth-
odological differences generating potential biases, such as
healthy volunteers in the UK Biobank or the lack of age
adjustment in some of the studies within BCAC since some
of them had few or no controls [26]. However, these differ-
ences also highlight the importance of validation, whenever
possible, for Mendelian randomisation. Seventh, although it
is possible that GDF-15 is influenced by previous health
status, i.e. reverse causation, we were unable to examine this
possibility using a bi-directional Mendelian randomisation
design as we do not have access to genetic summary statis-
tics for GDF-15. Finally, we were unable to assess differ-
ences by age or sex, because sufficiently large age- or sex-
specific studies are not available. We also had to assume a
linear relation of GDF-15 with the outcomes.

There is no convincing evidence that GDF-15 may reduce
risk of CAD, breast or colorectal cancer. Whether the inverse
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association of metformin use with cancer risk is an artefact of
biases or acts via other unexplored mechanistic pathways war-
rants future investigation, to help validate whether this medi-
cation can be repurposed for cancer prevention.
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