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Abstract
Aims/hypothesis This study aimed to: (1) identify metabolite patterns during late childhood that differ with respect to exposure to
maternal gestational diabetes mellitus (GDM); (2) examine the persistence of GDM/metabolite associations 5 years later, during
adolescence; and (3) investigate the associations of metabolite patterns with adiposity and metabolic biomarkers from childhood
through adolescence.
Methods This study included 592 mother–child pairs with information on GDM exposure (n = 92 exposed), untargeted
metabolomics data at age 6–14 years (T1) and at 12–19 years (T2), and information on adiposity and metabolic risk
biomarkers at T1 and T2. We first consolidated 767 metabolites at T1 into factors (metabolite patterns) via principal
component analysis (PCA) and used multivariable regression to identify factors that differed by GDM exposure, at α =
0.05. We then examined associations of GDM with individual metabolites within factors of interest at T1 and T2, and
investigated associations of GDM-related factors at T1 with adiposity and metabolic risk throughout T1 and T2 using
mixed-effects linear regression models.
Results Of the six factors retained from PCA, GDM exposure was associated with greater odds of being in quartile (Q)4 (vs
Q1–3) of ‘Factor 4’ at T1 after accounting for age, sex, race/ethnicity, maternal smoking habits during pregnancy, Tanner
stage, physical activity and total energy intake, at α = 0.05 (OR 1.78 [95% CI 1.04, 3.04]; p = 0.04). This metabolite
pattern comprised phosphatidylcholines, diacylglycerols and phosphatidylethanolamines. GDM was consistently associ-
ated with elevations in a subset of individual compounds within this pattern at T1 and T2. While this metabolite pattern
was not related to the health outcomes in boys, it corresponded with greater adiposity and a worse metabolic profile among
girls throughout the follow-up period. Each 1-unit increment in Factor 4 corresponded with 0.17 (0.08, 0.25) units higher
BMI z score, 8.83 (5.07, 12.59) pmol/l higher fasting insulin, 0.28 (0.13, 0.43) units higher HOMA-IR, and 4.73 (2.15,
7.31) nmol/l higher leptin.
Conclusions/interpretation Exposure to maternal GDM was nominally associated with a metabolite pattern characterised by
elevated serum phospholipids in late childhood and adolescence at α = 0.05. This metabolite pattern was associated with greater
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adiposity and metabolic risk among female offspring throughout the late childhood-to-adolescence transition. Future studies are
warranted to confirm our findings.
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Abbreviations
3DPAR 3-Day Physical Activity Recall
EPOCH Exploring Perinatal Outcomes among Children
GDM Gestational diabetes mellitus
ICC Intra-class correlation
GPC Glycero-phosphocholine
GPE Glycerophosphoethanolamine
IQR Interquartile range
KPCO Kaiser Permanente of Colorado
MET Metabolic equivalent
PCA Principal component analysis
Q Quartile
SAT Subcutaneous adipose tissue
SCD Stearoyl- CoA desaturase
T1 2006–2009 study period
T2 2012–2015 study period (follow-up)
VAT Visceral adipose tissue

Introduction

In utero exposure to gestational diabetes mellitus
(GDM) is a key risk factor of obesity at birth and
beyond [1, 2]. In addition to its detrimental effects on
offspring adiposity, maternal GDM is also associated
with poor metabolic health in offspring later in life,
including greater insulin resistance, impaired glucose
tolerance or type 2 diabetes, low insulin secretion and
alterations in adipokines [3–6]. The effects of maternal
GDM on biomarkers of metabolic risk in offspring have
been detected as early as 3 years of age [7] and many
studies have been able to establish associations of GDM
exposure with metabolic biomarkers independent of the
child’s body composition [6–8], suggesting a unique
effect of maternal GDM on in utero ‘programming’ of
the fetus’ future metabolic health.
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Metabolomics, the systematic and comprehensive study of
low-molecular-weight compounds in biological tissues and
fluids, has emerged as a powerful tool to shed light on path-
ways that link exposures to health outcomes [9]. The majority
of published studies on metabolomics in relation to GDM
have focused on identifying compounds in maternal fluids
(plasma, serum, amniotic fluid, urine) that are associated with
and/or predictive of GDM [10–17]. When reviewing the liter-
ature, we also identified two studies that compared cord blood
metabolite profiles of infants exposed vs those not exposed to
GDM [18, 19]. Both studies leveraged metabolomics data
assayed on targeted platforms, which provide information on
absolute concentrations of metabolites belonging to a specific
but limited set of biochemical pathways hypothesised to be
relevant to the research question based on a priori knowledge.
Given the scanty knowledge on metabolite profiles associated
with GDM exposure in offspring, metabolomics studies
employing untargeted, data-driven approaches are needed to
comprehensively assess GDM-related metabolic alterations in
offspring. Moreover, beyond evaluating associations of GDM
with the offspring metabolome during infancy, understanding
the influence of maternal GDM on metabolite profiles during
childhood and adolescence is important, given that these are
vulnerable life stages for the development of excess adiposity
[20] and metabolic disease risk [21]. A better understanding of
the mechanisms and pathways that link early-life exposures to
adverse health outcomes during these time frames will aid in
identifying modifiable determinants of these pathways.

In this prospective analysis of over 500 multi-ethnic mother–
child dyads, we extend current knowledge surrounding the path-
ways associated with and consequences of in utero exposure to
GDM via three research objectives. First, we sought to identify
fasting serum metabolite profiles during late childhood (age 6–
14 years) that differ with respect to in utero exposure to maternal
GDM. Next, we assessed the extent to which the relationship
between maternal GDM and the metabolites of interest persisted
over 5 years of follow-up, into adolescence (age 12–19 years).
Finally, in light of evidence in adults that certain metabolite
patterns precede worsening of conventional metabolic-disease
risk factors [22], we investigated the associations of GDM-
associated metabolites with adiposity and conventional
biomarkers of metabolic risk from late childhood through
adolescence, a vulnerable life stage for the development of
excess adiposity [20] and metabolic disease risk [21]. The
conceptual model for our research study is depicted in Fig. 1.

Methods

Study population

Study participants were from the Exploring Perinatal
Outcomes among Children (EPOCH) study, a historical
prospective cohort of youth with the original aim of
characterising long-term consequences of in utero exposure
to maternal diabetes. Details on eligibility and recruitment
have been previously published [23]. Between 2006 and
2009 (‘T1’), we recruited 604 participants whose mothers
were members of the Kaiser Permanente of Colorado
(KPCO) health plan. Of them, we excluded children of seven
women who had type 1 diabetes, followed by five without
sufficient blood volume for untargeted metabolomics profil-
ing for the present study. The analytic sample comprised 592
youth, aged 6–14 years (mean ± SD age, 10.4 ± 1.5 years;
interquartile range [IQR], 9.4–11.5 years), with metabolomics
data. Of the 592 participants at T1, 403 returned for a follow-
up visit approximately 6 years later, from 2012 to 2015 (‘T2’),
when participants were 12–19 years of age (mean ± SD age,
16.7 ± 1.2 years; IQR, 15.9–17.6 years) and had adequate
blood volume for metabolomics assays. Figure 2 shows the
study population flow. This study was approved by the
Colorado Multiple Institutional Review Board (protocol no.
05-0623). All participants provided informed consent.

In utero exposure to maternal GDM

Exposure to maternal GDM (yes vs no) was defined as a
physician’s diagnosis of gestational diabetes during the index
pregnancy. Diabetes status was ascertained from the KPCO
perinatal database, an electronic database that links prenatal
and neonatal medical records. All pregnant women who are
members of the KPCO Health plan are routinely screened for
GDM at 24–28 weeks of gestation using the standard two-step
protocol [24]. As previously described [25, 26], GDM was
diagnosed when two or more glucose values during the diag-
nostic 3 h 100 g OGTT met or exceeded the criteria for a
positive test [24].

Offspring blood collection

At T1 T2, trained research assistants collected an 8 h fasting
blood sample from the antecubital vein. All samples were

Exposure to
maternal GDM

Plasma
metabolites

Adiposity
Metabolic biomarkers

Childhood and adolescenceIn utero period

Fig. 1 Conceptual diagram of associations among exposure to maternal GDM, fasting metabolite patterns and health outcomes (adiposity and metabolic
biomarkers) throughout childhood and adolescence
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refrigerated immediately, processed within 24 h and stored at
−80°C until the time of analysis. These samples were used for
untargeted metabolomics profiling and metabolic biomarker
assays.

Untargeted metabolomics profiling

Metabolon (Morrisville, NC, USA) carried out untargeted
metabolomics profiling in fasting plasma collected at T1 and
T2 via a multi-platform mass spectroscopy (MS)-based tech-
nique. The procedure identified 1193 unique features at both
time points. A key strength of this study is that we sent
samples from two research visits for metabolomics profiling
at the same time so that technicians were able to balance
batches by research visit, thereby enabling comparability of
relative metabolite concentrations across the two time points.
The electronic supplementary materials (ESM) Methods
provides information on sample preparation and laboratory
procedures.

We sent participants’ serum for metabolomics profiling in
two separate batches: the first batch comprised a pilot sample
of 100 participants to assess feasibility and the second batch
comprised the remaining participants who were not included
in the pilot. Prior to formal statistical analysis, we removed
metabolites with ≥20% missing values [27] separately for
each batch (as is the current recommendation [28]), then
imputed the rest of the missing values using the k-nearest
neighbour algorithm (k = 10 neighbours used for imputation)
[29]. The first batch of participants had 913 metabolites after
removing those with high missingness, and the second batch
had 898 metabolites. We then merged the two batches for
subsequent data processing. Following the merge, we retained
metabolites that were present in both batches (767
compounds) and performed log10-transformation, followed
by metabolite normalisation and correction for batch effects
(as well as other biological and technical variability) using the
‘remove unwanted variation’ (RUV) method (the number of
factors of unwanted variation estimated from the data [k] = 2),
which has proven utility for high-dimensional biological data

[30]. All metabolite processing was performed using R
(Version 3.5.3; Vienna, Austria).

Conventional biomarkers of metabolic risk

Using fasting blood collected at T1 and T2, we assayed fasting
glucose enzymatically, and fasting insulin leptin, and
adiponectin via radioimmunoassays (Millipore, Darmstadt,
Germany). We calculated the HOMA-IR [31]. Fasting insulin,
glucose, and estimated insulin resistance are indicators of
glycaemic homeostasis in children [31–33] and are associated
with future cardiovascular risk [34]. Leptin and adiponectin
are adipocyte-derived peptide hormones that regulate weight
and metabolism through complementary actions [35].
Increasing evidence suggests that altered adipocytokine
levels, specifically elevated leptin, may actually predict subse-
quent weight gain [36].

Anthropometric and body composition assessment

At T1 and T2, trained research staff measured height (m)
and weight (kg) of participants in light clothing and with-
out shoes. We used these values to calculate BMI (kg/m2)
and evaluated this variable in native units, as well as
standardised as an age- and sex-specific z score using
the WHO growth reference for children aged 5–19 years
[37]. As previously described [26], research staff also
measured waist circumference (cm) (a correlate of central
visceral adiposity [38, 39]) according to the National
Health and Nutrition Examination Survey (NHANES)
protocol [40]. They also measured subscapular, tricep and
suprailiac skinfold thicknesses using Holtain callipers
(mm; Crymych, UK) the sum of which (‘skinfold sum’)
was used in the analysis as a proxy for subcutaneous
adiposity [39].

A trained technician performed magnetic resonance imag-
ing (MRI) of the abdominal region with a 3 T HDx Imager
(General Electric,Waukesha,WI, USA) with the participant in
the supine position. A series of spin-lattice relaxation time
coronal images were taken to locate the L4/L5 plane. One
axial, 10 mm, spin-lattice relaxation time image at the umbi-
licus or L4/L5 vertebrae was analysed per participant to deter-
mine visceral adipose tissue (VAT) and subcutaneous adipose
tissue (SAT).

Covariates

We calculated maternal pre-pregnancy BMI (kg/m2) using
clinically recorded pre-pregnancy weight from KPCO-
derived medical records and measured height at the T1 visit.
At T1, the women filled out a questionnaire regarding treat-
ment received for GDM. Treatment was categorised as diet
and/or exercise only (n = 61), diet and/or exercise with insulin

N=604 recruited at T1

n=12 excluded:
n=7 whose mothers had T1D
n=5 with insufficient blood
volume for metabolomics
assays  

n=403 with adequate blood
volume for metabolomics

assays at T2   

n=592 at T1

Fig. 2 Study participant flow diagram. T1D, type 1 diabetes

Diabetologia (2020) 63:296–312 299



(n = 20), and insulin only (n = 5). Due to the small sample size
for insulin only treatment, we combined this category with
diet and/or exercise when using this variable as a covariate
in the analysis. At T1, the women also reported on their educa-
tion level and smoking habits during pregnancy (smoked
while pregnant with index child, yes vs no) via a self-
administered questionnaire. In the analysis, we categorised
maternal education as a three-level variable: less than high
school, high school diploma or equivalent, and higher than
high school.

We calculated participants’ age at T1 and T2 as the differ-
ence between date of each research visit and delivery date.
Participants self-reported on their race/ethnicity at T1 as
non-Hispanic white, non-Hispanic black, Hispanic and non-
Hispanic other. At both research visits, participants reported
their pubertal development based on pictorial diagrams of the
Tanner stages [41], which had been validated against
physician-assessed Tanner staging and puberty-related
hormones [42]. We based pubertal status on pubic hair devel-
opment in boys and breast development in girls. For bivariate
analysis, we categorised a child as prepubertal (Tanner stage =
1), pubertal (Tanner stage = 2 or 3), and late/postpubertal
(Tanner stage = 4 or 5). In multivariable models, we entered
this variable ordinally. We obtained information on the partic-
ipants’ physical activity levels at T1 and T2 using the 3-Day
Physical Activity Recall (3DPAR) Questionnaire, which
captures habitual physical activity based on a 3-day reference
period [43]. Using 3DPAR, we derived mean energy expen-
diture (mean metabolic equivalents [METs]/day over a 3-day
period). At both visits, participants completed the Block Kid’s
Food Frequency Questionnaire (FFQ) [44]. We used these
data in conjunction with the United States Department of
Agriculture (USDA) Food Composition Database to estimate
total energy intake (kJ/day).

Data analysis

Prior to formal analysis, we examined bivariate associations of
in utero GDM exposure with maternal, perinatal and child
characteristics to identify potential confounders. This step, in
conjunction with our a priori knowledge of determinants of
metabolic health in youth [45, 46], informed the selection of
confounders (variables associated with the exposure and a
potential determinant of the outcome) and precision covariates
(physiological or lifestyle factors that may account for vari-
ability in the outcomes of interest) for multivariable analysis.
We then carried out the main analysis in three steps,
conforming to our study aims.

Step 1: identification of metabolites during late childhood
(T1) that differ by GDM exposure To reduce dimensionality
of the metabolomics data, we used principal components anal-
ysis (PCA) to consolidate the 767 metabolites into latent

variables, known as factors, that may be interpreted as metab-
olite patterns. The procedure generates as many factors as
there are original metabolites, so we used visual inspection
of the Scree plot for a ‘break’ (ESM Fig. 1), and standard
criterion of eigenvalues >1 to determine the number of factors
to retain (see ESM Methods for details on PCA).

Next, we examined associations of GDM exposure with
the retained factor scores at T1, which were operationalised
two ways: (1) as continuous outcomes (via linear regression);
and (2) as a dichotomous outcome (via logistic regression),
categorised as quartile (Q)4 vs Q1–3 of the factor score, to
allow for potential threshold effects commonly observed in
the analyses of potential biological pathways in relation to
exposures and health outcomes (e.g., DNA methylation in
relation to adiposity [47]). Given the relatively small number
of factor scores retained from the PCA, we considered GDM
to be associated with a factor score if its β value or OR coef-
ficient was significant (p < 0.05). In addition, we valued
consistency in estimates across multivariable adjustment as
this suggests a true relationship betweenGDM and the factors,
as opposed to a spurious association arising from inappropri-
ate covariate adjustment.

We then explored these associations using a series of multi-
variable models. Figure 3 shows a directed acyclic graph
(DAG) of our modelling strategy. Model 1 accounted for
key sociodemographic confounders: age, sex, and
race/ethnicity. Using this model, we tested for effect modifi-
cation by sex, for which we observed no evidence (p-
interaction > 0.30 for all), so we included both boys and girls in
subsequent models. In Model 2, we accounted for covariates
in Model 1 plus mother’s smoking habits during pregnancy,
an important variable to consider when assessing the impact of
the gestational environment on health outcomes in paediatric
and adolescent populations [48]. Model 3 further included
variables that could affect metabolite composition and thus
could account for variability in metabolites (precision covari-
ates): pubertal status, physical activity levels and total energy
intake. In Model 4, we further adjusted for GDM treatment.
Finally, in Model 5, we included Model 2 covariates plus pre-
pregnancy BMI, which is partly a confounder to the relation-
ship of interest but likely also an overlapping exposure due to
the shared intrauterine milieu between maternal overweight/
obesity and GDM [49].

Step 2: investigation of whether associations of GDM with
metabolites measured during childhood (T1) persists into
adolescence (T2) Based on the findings from ‘Step 1’, we
examined the associations of GDM with key metabolites
(i.e., those with factor loading >|0.50|) within factors of inter-
est at T1. We also examined associations of GDM with the
samemetabolites, but measured in plasma collected at T2. The
rationale behind this step was to assess for consistency of
associations of GDM with individual metabolites within a
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given factor, and to assess whether associations of GDM with
metabolites is similar across T1 and T2. For this step, we used
multivariable linear regression models that accounted for
maternal smoking habits during pregnancy, and child’s age,
sex and race/ethnicity.We noted all associations with p < 0.05,
but further focused on those that were statistically significant
after Bonferroni correction. Findings from this step provided
information on inter-individual consistency in associations of
GDM exposure with metabolite profiles over time. We also
calculated the intra-class correlation (ICC), which assesses
intra-individual stability of metabolite concentrations over
time.

Step 3: examination of associations of T1 metabolite patterns
with adiposity and metabolic biomarkers throughout T1 and
T2 Finally, we examined relationships between the GDM-
related metabolite patterns derived at T1 with adiposity and
metabolic biomarkers from T1 to T2 via mixed-effects linear
regression models. The outcomes were the repeated measure-
ments of each adiposity indicator or metabolic biomarker
across the two research visits (up to two measurements per
outcome per child). The explanatory variables included the
metabolite factor score of interest at T1, longitudinal assess-
ments of age, a random effect for the individual study identi-
fier and an unstructured covariance matrix. We chose this
approach over evaluating associations of factor scores with
health outcomes at T1 and T2 separately, or with change in
associations between T1 and T2, for model efficiency (i.e., if a
participant only had outcome data at T1, their information still
contributed to estimation of standard errors in the model).

Thus, all 592 participants were included in this analysis.
Using this model, we tested for an interaction with between-
factor scores and age and sex and noted several significant p-
interaction values with respect to sex, even after Bonferroni
correction (ESM Table 1), so we ran subsequent multivariable
models separately for boys and girls.

In multivariable analysis, we accounted for confounders
followed by precision covariates (Fig. 4). Model 1 included
child’s age, sex and race/ethnicity, Model 2 further accounted
for pubertal status and Model 3 included Model 2 covariates
plus physical activity and energy intake. When assessing
results, we considered all associations that were statistically
significant, at α = 0.05, but also noted significance after
Bonferroni correction to account for the number of outcomes
assessed by each set of multivariable models; these analyses
were carried out separately for boys and girls. In sensitivity
analyses, we also evaluated the impact of adjustment for
GDM treatment. Doing so did not change the results (data
not shown), thus we did not include this variable in the final
models.

We carried out all analyses using Statistical Analyses
System software (version 9.3; SAS Institute, Cary, NC,
USA), unless otherwise stated.

Results

The mean (± SD) age of participants at T1 was 10.4 ± 1.5 years
(range, 6.0–13.9 years), and at T2, it was 16.3 ± 1.2 years
(range, 12.6–19.6 years). Half of the participants were female,

Exposure to 
maternal GDM

Metabolite 
factors

Model 1: sociodemographic confounders
Child’s age
Sex
Race/ethnicity

Model 2: Model 1 + perinatal confounders
Mother’s smoking habits during 
pregnancy

Model 3: Model 2 + precision covariates 
Tanner stage
Physical activity
Total energy intake

Model 4: Model 3 + GDM treatment

Model 5: Model 2 + pre-pregnancy BMI 

In utero period Age 6–14 years

Potential effect 
modifier: sex

Fig. 3 Directed acyclic graph
(DAG) of confounders and
precision covariates in relation to
Step 1 of the analysis, which
involved investigating the
associations of exposure to
maternal GDM with metabolite
patterns at T1 (age 6–14 years)
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and 48.5% (n = 287) were non-Hispanic white. Approximately
16% (n = 92) of participants were exposed to maternal GDM.
Table 1 shows the characteristics of mother–child dyads strat-
ified by GDM exposure status. The GDM-exposed group
contained a higher proportion of smokers and non-Hispanic
white women vs the unexposed group. With respect to child
characteristics, we noted lower fasting glucose (p = 0.006),
insulin (p = 0.05) and HOMA-IR (p = 0.02) among GDM-
exposed vs unexposed participants at T1. The opposite
(albeit, non-significant) trends were observed at T2.

We retained six factors (metabolite patterns) that accounted
for 50% of variance in the original metabolomics data at T1
(Fig. 5), which is similar to other studies of untargeted meta-
bolomics data that used PCA for dimension reduction [50].
When we examined the associations of maternal GDM with
continuous factor scores using multivariable linear regression,
we did not detect any significant associations at α = 0.05 (i.e.,
no p values were <0.05). However, when we assessed rela-
tionships between GDM and odds of being in Q4 vs Q1–3 of
each factor score, we noted a consistent positive association
with ‘Factor 4’. In comparison with unexposed participants,
GDM-exposed youth had 1.64 (95% CI 0.98, 2.76; p = 0.06)
greater odds of being in Q4 vs Q1–3 for Factor 4 after
adjusting for age, sex and race/ethnicity (Model 1; Table 2
and Fig. 5). Adjustment for maternal smoking (Model 2) did
not materially change this estimate. Further adjustment for
pubertal status, physical activity, and total energy intake
(Model 3) slightly strengthened this association, such that it
was statistically significant at α = 0.05 (OR 1.78 [95% CI
1.04, 3.04]; p = 0.04). As expected, this estimate was attenu-
ated to non-significance after accounting for maternal pre-

pregnancy BMI (Model 5) (see Fig. 5 and Table 2), suggesting
that a large portion of the relationship between maternal GDM
and Factor 4 is accounted for by variability in maternal weight
status prior to pregnancy. For the above results, none of the
estimates were significant after Bonferroni correction.

The metabolite composition of Factor 4 is shown in Table 3;
this comprised phosphatidylcholines, lysophospholipids, diac-
ylglycerols and phosphatidylethanolamines. All top-loading
metabolites within Factor 4 were positive, indicating that a
higher score corresponds with higher serum concentrations of
the component metabolites.

Table 4 shows the relationship of maternal GDM with
key metabolites within Factor 4 at T1 (i.e., those with factor
loading values >|0.50| in the PCA conducted at T1), as well
as associations of GDM with the same metabolites at T2.
The β coefficients for GDM in relation to individual metab-
olites were similar to the association of GDM with the T1
factor score with respect to the direction of effects.
Additionally, GDM was related to the majority of metabo-
lites across T1 and T2 in a consistent manner with respect to
direction and magnitude of associations. Of the 21 GDM–
metabolite associations considered at each time-point,
several were significantly different with respect to GDM
exposure at both time points using α = 0.05, but only the
estimate for palmitoyl-arachidonoyl-glycerol (16:0/20:4)
reached statistical significance after Bonferroni correction
(0.09 [95% CI 0.03, 0.15]; p = 0.002). We noted that,
although the direction and magnitude of GDM–metabolite
associations exhibited preservation of inter-individual rank
across the two time points, the ICCs were low-to-modest,
with a median (range) of 0.21 (0.08–0.38).

Metabolite
factors

Adiposity
Metabolic biomarkers

o Model 1: Sociodemographic confounders
Child’s age
Sex
Race/ethnicity

o Model 2: Model 1 + physiological precision covariates
Tanner stage

o Model 3: Model 2 + lifestyle precision covariates
Physical activity
Total energy intake

Age 6–14 years Ages 6–14 and 12–19 years

Potential effect
modifier: sex

Fig. 4 Directed acyclic graph (DAG) of confounders and precision covariates in relation to Step 3 of the analysis, which involved investigating the
associations of metabolite factors at T1 (age 6–14 years) with health outcomes from T1 (age 6–14 years) to T2 (age 12–19 years)
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Table 1 Bivariate associations of in utero GDM exposure with background characteristics of 592 EPOCH participants

Characteristic GDM-exposed Unexposed p

n 92 500 –

Maternal characteristics

Maternal pre-pregnancy BMI (kg/m2) 27.8 ± 6.3 25.4 ± 5.8 0.001

Maternal pre-pregnancy weight status (%) 0.007

Underweight (BMI <18.5 kg/m2) 1.4 3.9

Normal weight (BMI 18.5–24.9 kg/m2) 36.5 53.8

Overweight (BMI 25.0–29.9 kg/m2) 28.4 24.0

Obese (BMI ≥30 kg/m2) 33.8 18.4

Maternal education level (%) 0.50

<High school 5.4 3.4

High school or equivalent 15.2 18.4

>High school 79.4 78.2

Smoked during pregnancy (%) 16.2 7.3 0.005

GDM treatment (%) 93.5 –

Diet and/or exercise 66.3 –

Diet and/or exercise with insulin, or insulin only 26.2 –

None 6.5 –

Child’s characteristics

Female (%) 46.5 50.9 0.46

Race/ethnicity (%) 0.05

Non-Hispanic white 60.6 45.4

Hispanic 30.3 40.0

Non-Hispanic black 5.1 8.5

Non-Hispanic other 4.0 6.1

Characteristics at T1

Age (years) 9.5 ± 1.7 10.6 ± 1.4 <0.0001

BMI (kg/m2) 18.9 ± 4.7 18.9 ± 4.5 0.91

BMI z scorea 0.37 ± 1.33 0.24 ± 1.21 0.33

Waist circumference (cm) 65.4 ± 12.9 65.5 ± 12.1 0.98

Skinfold sum (mm)b 46.0 ± 25.5 44.3 ± 25.4 0.54

SAT fat area (mm2) 125.3 ± 107.2 119.9 ± 108.5 0.67

VAT fat area (mm2) 24.1 ± 18.6 22.1 ± 16.0 0.30

Fasting glucose (mmol/l) 4.4 ± 0.6 4.6 ± 0.5 0.006

Fasting insulin (pmol/l) 66.1 ± 49.8 78.4 ± 57.2 0.05

HOMA-IR 1.88 ± 1.43 2.31 ± 1.68 0.02

Leptin (nmol/l) 27.1 ± 24.6 25.4 ± 25.8 0.57

Adiponectin (μmol/l) 77.7 ± 43.5 78.1 ± 37.1 0.93

Pubertal stage (%)c 0.001

Tanner stage 1 71.7 51.5

Tanner stage 2/3 22.8 42.3

Tanner stage 4/5 5.4 6.2

Energy expenditure (METs/day)d 1.85 ± 0.32 1.90 ± 0.31 0.13

Total energy intake (kJ/per day) 72,974 ± 1916 7523 ± 2351 0.38

Characteristics at T2

Age (years) 15.9 ± 1.0 16.8 ± 1.2 <0.0001

BMI (kg/m2) 23.4 ± 5.0 23.6 ± 5.7 0.78

BMI z scorea 0.54 ± 1.05 0.38 ± 1.13 0.26

Waist circumference (cm) 80.9 ± 11.5 80.8 ± 13.6 0.92

Skinfold sum (mm)b 37.0 ± 22.2 34.5 ± 21.3 0.37
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The associations between Factor 4 at T1 and health
outcomes across T1 and T2 within strata of sex are shown in
Table 5. In boys, Factor 4 was not associated with adiposity or
metabolic risk. In girls, a higher Factor 4 score corresponded
with significantly higher adiposity at α = 0.05 according to all

six adiposity indicators (BMI, BMI z score, waist circumfer-
ence, skinfold sum, SAT fat area and VAT fat area) as well as
with higher fasting insulin (β [95%CI] per 1-unit factor score:
8.75 [4.97, 12.53] pmol/l; p < 0.0001), higher HOMA-IR
(0.27 [0.13, 0.40] units; p = 0.0002) and altered adipokines,
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0.41

1.23

3.70

Factor 1 Factor 2 Factor 4Factor 3 Factor 5 Factor 6
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 (
95

%
 C

I)

14.8% 11.3% 6.1%8.9% 4.8% 4.1%
Variance accounted 

for by each factor

Unadjusted
Model 1
Model 2

Model 3

Model 5
Model 4

*

1.00

Fig. 5 PCAwas used to consolidate 767 metabolites into latent variables
(‘factors’) that may be interpreted as metabolite patterns. Factor scores
were selected based on visual inspection of the Scree plot and eigenvalues
>1. Six factors were retained for use in analysis. Associations of in utero
GDM exposure (yes [n = 92] vs no [n = 500]) with odds (OR) of being in
Q4 vs Q1–3 of each factor score at T1 (age 6–14 years) among the 592
EPOCH participants are shown. The variance accounted for by each
factor is indicated on the graph. Model 1: adjusted for child’s sex, age

and race/ethnicity; Model 2: Model 1 + maternal smoking habits during
pregnancy (smoking, yes vs no); Model 3: Model 2 + pubertal status
(Tanner stage), physical activity (mean METs/day over a 3-day period)
and total energy intake (kJ/day); Model 4: Model 3 + GDM treatment
(diet and/or exercise only, diet and/or exercise with insulin or insulin
alone, or no treatment); Model 5: Model 2 + maternal pre-pregnancy
BMI (kg/m2). The estimates are plotted on a loge scale and the horizontal
line represents the null (OR 1.00). *Significant at α = 0.05

Table 1 (continued)

Characteristic GDM-exposed Unexposed p

SAT fat area (mm2) 200.8 ± 141.0 200.7 ± 153.5 0.99

VAT fat area (mm2) 32.9 ± 19.2 32.8 ± 22.4 0.98

Fasting glucose (mmol/l) 5.2 ± 2.2 5.0 ± 0.9 0.16

Fasting insulin (pmol/l) 124.8 ± 70.9 114.7 ± 80.1 0.33

HOMA-IR 4.31 ± 3.76 3.85 ± 4.77 0.44

Leptin (nmol/l) 40.0 ± 40.0 41.9 ± 45.6 0.74

Adiponectin (μmol/l) 65.7 ± 32.8 64.1 ± 34.7 0.72

Pubertal stage (%)c 0.85

Tanner stage 1 0.0 0.0

Tanner stage 2/3 5.6 6.2

Tanner stage 4/5 94.4 93.8

Energy expenditure (METs/day)d 1.85 ± 0.27 1.91 ± 0.32 0.12

Total energy intake (kJ/per day) 7042 ± 3209 6916 ± 3033 0.76

Data are presented as mean ± SD or %
aAge- and sex-specific z scores according to the WHO Growth Reference for children aged 5–19 years [37]
b Sum of the subscapular, suprailiac and tricep skinfold thicknesses
c Based on breast development for girls and pubic hair development for boys
dMean metabolic equivalents/day over a 3-day period

Data were analysed using an independent t test for continuous variables and a Pearson’s χ2 test for categorical variables
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as indicated by higher leptin (4.54 [1.96, 7.11] nmol/l; p =
0.0006) and lower adiponectin (−4.00 [−6.76, −1.23]
μmol/l; p = 0.005) (Table 5, Model 1). Further adjustment
for pubertal status and lifestyle characteristics in Models 2
and 3 did not greatly change these findings. All above-
mentioned estimates remained statistically significant after
Bonferroni correction (α < 0.05/20 = 0.003) except for
adiponectin.

Discussion

Statement of principal findings

In this study of 592 mother–child dyads, associations of in
utero exposure to maternal GDM with offspring metabolite
profiles derived from PCA were largely null after correcting
for multiple comparisons and following adjustment for mater-
nal pre-pregnancy BMI. However, across several multivariable
models that accounted for key perinatal, sociodemographic,
biological and lifestyle covariates, we noted that GDM expo-
sure was consistently associated with a fasting serum phospho-
lipid metabolite pattern during late childhood. This metabolite
pattern was, in turn, associated with higher adiposity and a

worse metabolic risk profile from late childhood through
adolescence. We discuss these findings, below.

Associations of maternal GDM with offspring metabolite
profiles at age 6–14 years When assessing offspring metabo-
lite profiles during late childhood, we observed a consistently
positive relationship between maternal GDM and a phospho-
lipid metabolite pattern (‘Factor 4’) that persisted after
accounting for maternal smoking habits during pregnancy,
and offspring pubertal status, physical activity and energy
intake. However, none of the estimates qualified as statistical-
ly significant after correcting for multiple testing, and the
specific relationship between GDM and Factor 4 was attenu-
ated to non-significance after accounting for maternal pre-
pregnancy BMI. While it is difficult to derive a concrete
reason for the former other than limited statistical power, the
latter is likely due to the existence of overlapping biological
pathways linking maternal overweight/obesity and GDM to
offspring metabolism [51] given that maternal glucose is
elevated among overweight/obese women, even if they do
not qualify as having overt diabetes [49]. Thus, such adjust-
ment is likely to obscure, rather than isolate, the association of
maternal glucose levels with offspring outcomes. Additional
mechanistic work is required to untangle the unique influence

Table 3 Metabolite composition of the GDM-related metabolite pattern (‘Factor 4’) identified at T1

Metabolite Superpathway Subpathway Factor loading

Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [tier 2]a Lipid Diacylglycerol 0.64

1-Stearoyl-GPE (18:0) Lipid Lysophospholipid 0.64

1-Palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)a Lipid Phosphatidylcholine 0.63

1-Myristoyl-2-arachidonoyl-GPC (14:0/20:4)a Lipid Phosphatidylcholine 0.62

Palmitoleoyl-arachidonoyl-glycerol (16:1/20:4) [tier 2]a Lipid Diacylglycerol 0.62

1-Palmitoyl-2-arachidonoyl-GPI (16:0/20:4)a Lipid Phosphatidylinositol 0.62

1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine 0.60

1-Palmitoyl-GPE (16:0) Lipid Lysophospholipid 0.60

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 1]a Lipid Diacylglycerol 0.60

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 2]a Lipid Diacylglycerol 0.59

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier 2]a Lipid Diacylglycerol 0.59

Palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [tier 1]a Lipid Diacylglycerol 0.59

Diacylglycerol (16:1/18:2 [tier 2], 16:0/18:3 [tier 1])a Lipid Diacylglycerol 0.58

1-Myristoyl-2-palmitoyl-GPC (14:0/16:0) Lipid Phosphatidylcholine 0.57

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier 1]a Lipid Diacylglycerol 0.56

1-Palmitoleoyl-GPC (16:1)a Lipid Lysophospholipid 0.54

1-Palmitoyl-GPC (16:0) Lipid Lysophospholipid 0.53

1-Stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phosphatidylcholine 0.53

1-Stearoyl-2-oleoyl-GPE (18:0/18:1) Lipid Phosphatidylethanolamine 0.53

1-Linolenoyl-GPC (18:3)a Lipid Lysophospholipid 0.52

1-Palmitoyl-GPG (16:0)a Lipid Lysophospholipid 0.51

a Tier 2 identification in which no commercially available authentic standards could be found, but annotated based on accurate mass, spectral and
chromatographic similarity to tier 1-identified compounds

GPG, glycerophosphoglycerol; GPI, glycosylphosphatidylinositol
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of maternal blood glucose levels on offspring health
outcomes, independent of weight status entering pregnancy.

The top metabolites in Factor 4 included phospholipids of
the palmitoleic acid moiety, including 1-palmitoyl-2-
palmitoleoyl-glycero-phosphocholine (GPC) (16:0/16:1),
palmitoyl-arachidonoyl-glycerol (16:0/20:4), 1-myristoyl-2-
arachidonoyl-GPC (14:0/20:4), 1-palmitoyl-2-arachidonoyl-
glycosylphosphatidylinositol (GPI) (16:0/20:4), 1-palmitoyl-
2-oleoyl- glycerophosphoethanolamine (GPE) (16:0/18:1)
and 1-palmitoyl-GPE (16:0). This pattern also captured some
diacylglycerides, including palmitoyl-linoleoyl-glycerol
(16:1/18:2), which is a common emulsifier used in bakery
products, shortening, whipped toppings and other confections
[52]. Endogenously, alterations in phospholipid composition
could be indicative of either lipolytic or lipogenic activity,
both of which have implications for metabolic health, but we
are not able to make this distinction in this study. However, we

note that palmitate enrichment of fatty acids in this metabolite
pattern may be driven by stearoyl-CoA desaturase (SCD), an
endoplasmic reticulum enzyme that catalyses the rate-limiting
step in monounsaturated fatty acid formation, including
palmitoleate from stearoyl-CoA and palmitoyl-CoA [53].
Given that insulin resistance is related to disruptions to the
SCD pathway [54, 55], it makes sense that this metabolite
pattern differed with respect to status of in utero exposure to
GDM.

In a recently-published meta-analysis of four cohorts of
diverse ancestry, Lowe et al [18] analysed targeted metabolo-
mics data from cord blood of 1600 mother–infant pairs in
relation to maternal fasting glucose, glucose at 1-h and 2-h
post OGTT, and insulin sensitivity. Key findings included
associations of higher 1-h post-OGTT glucose with higher
cord blood levels of the ketone body 3-hydroxybutyrate and
its carnitine ester, as well as glycerol and 3-hydroxy-decanoyl

Table 4 Associations of in utero GDM exposure with Factor 4 metabolites at T1 (n = 592) and T2 (n = 403)

Factor 4 metabolites ICCa Associations of GDM exposure with Factor 4 metabolites

T1 T2

β (95% CI) p β (95% CI) p

Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [tier 2]b 0.23 0.09 (0.03, 0.15) 0.002*† 0.07 (0.01, 0.14) 0.03*

1-Stearoyl-GPE (18:0) 0.38 0.02 (−0.01, 0.05) 0.16 0.01 (−0.02, 0.04) 0.63

1-Palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)b 0.21 0.00 (−0.04, 0.04) 0.98 0.03 (−0.02, 0.08) 0.32

1-Myristoyl-2-arachidonoyl-GPC (14:0/20:4)b 0.16 0.04 (−0.01, 0.09) 0.11 0.04 (−0.02, 0.10) 0.17

Palmitoleoyl-arachidonoyl-glycerol (16:1/20:4) [tier 2]b 0.31 0.08 (0.02, 0.15) 0.02* 0.04 (−0.04, 0.11) 0.32

1-Palmitoyl-2-arachidonoyl-GPI (16:0/20:4)b 0.22 0.05 (0.00, 0.09) 0.04* 0.04 (−0.02, 0.09) 0.17

1-Palmitoyl-2-oleoyl-GPE (16:0/18:1) 0.20 0.03 (−0.02, 0.08) 0.24 0.03 (−0.03, 0.10) 0.31

1-Palmitoyl-GPE (16:0) 0.38 0.00 (−0.03, 0.04) 0.90 0.00 (−0.04, 0.04) 0.86

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 1]b 0.33 0.05 (0.01, 0.09) 0.02* 0.06 (0.02, 0.11) 0.009*

Oleoyl-arachidonoyl-glycerol (18:1/20:4) [tier 2]b 0.35 0.04 (0.00, 0.09) 0.07 0.05 (0.00, 0.10) 0.05*

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier 2]b 0.17 0.07 (0.02, 0.12) 0.01* 0.10 (0.03, 0.17) 0.005*

Palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [tier 1]b 0.28 0.08 (0.03, 0.14) 0.003* 0.07 (0.00, 0.14) 0.04*

Diacylglycerol (16:1/18:2 [tier 2], 16:0/18:3 [tier 1])b 0.29 0.07 (0.01, 0.12) 0.03* 0.04 (−0.03, 0.11) 0.24

1-Myristoyl-2-palmitoyl-GPC (14:0/16:0) 0.18 −0.02 (−0.07, 0.03) 0.38 0.02 (−0.05, 0.08) 0.59

Palmitoyl-oleoyl-glycerol (16:0/18:1) [tier 1]b 0.16 0.07 (0.02, 0.13) 0.01* 0.09 (0.02, 0.16) 0.008*

1-Palmitoleoyl-GPC (16:1)b 0.21 0.01 (−0.02, 0.04) 0.58 0.02 (−0.01, 0.05) 0.17

1-Palmitoyl-GPC (16:0) 0.08 0.01 (−0.01, 0.02) 0.32 0.00 (−0.01, 0.02) 0.73

1-Stearoyl-2-oleoyl-GPC (18:0/18:1) 0.21 0.00 (−0.03, 0.02) 0.95 0.00 (−0.03, 0.03) 0.85

1-Stearoyl-2-oleoyl-GPE (18:0/18:1) 0.18 0.04 (−0.01, 0.09) 0.15 0.03 (−0.03, 0.10) 0.28

1-Linolenoyl-GPC (18:3)b 0.09 0.00 (−0.04, 0.04) 0.90 0.01 (−0.04, 0.05) 0.73

1-Palmitoyl-GPG (16:0)b 0.15 0.03 (−0.01, 0.07) 0.16 0.00 (−0.04, 0.05) 0.87

Metabolite concentrations were log10-transformed prior to use in the regressionmodels that generated the estimates displayed in the table.β estimates are
adjusted for maternal smoking habits during pregnancy, and child’s age at research visit, sex and race/ethnicity
a ICC for each metabolite across T1 and T2
b Tier 2 identification (denoted by [2]) in which no commercially available authentic standards could be found, but annotated based on accurate mass,
spectral and chromatographic similarity to tier 1-identified compounds (denoted by [1])

*Significant at α = 0.05; † Significant after Bonferroni correction (α < 0.05/21 = 0.002 at each time point)

GPG, glycerophosphoglycerol; GPI, glycosylphosphatidylinositol
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carnitine, even after adjustment for maternal BMI at the time
of OGTT. Additionally, lower maternal insulin sensitivity was
differentially associated with cord blood levels of branched
chain amino acids and acylcarnitines. In another study of
mother–infant pairs (n = 119 from the PREOBE cohort in
Spain), Shokry et al [19] leveraged targeted metabolomics
data and identified associations of maternal GDMwith elevat-
ed levels of cord blood hexoses, and lower levels of free carni-
tines, acylcarnitines, long-chain non-esterified fatty acids,
phospholipids, Kreb’s cycle metabolites and β-oxidation

markers. While the metabolites in Factor 4 do not markedly
overlap with those identified in either of the above-mentioned
studies (with the exception of the relevance of compounds on
phospholipid pathways to GDM in Shokry et al [19]), it is
difficult to reconcile findings from untargeted platforms,
which capture relative concentrations of all detectable metab-
olites in a given biotissue or fluid, with those of targeted plat-
forms selected based on an investigator’s a priori hypothesis
of specific biological pathways. Further, it may not be appro-
priate to compare metabolites in fasting serum of youth with

Table 5 Associations of Factor 4 with adiposity and metabolic risk biomarkers from T1 (age 6–14 years) through T2 (age 12–19 years) among 592
EPOCH participants

Variable Model 1 Model 2 Model 3

β (95% CI) p β (95% CI) p β (95% CI) p

Boys (n = 295)

Adiposity

BMI (kg/m2) 0.22 (−0.18, 0.62) 0.29 0.23 (−0.17, 0.62) 0.27 0.21 (−0.19, 0.62) 0.30

BMI z scorea 0.09 (−0.01, 0.18) 0.07 0.09 (0.00, 0.18) 0.06 0.09 (−0.01, 0.18) 0.08

Waist circumference (cm) 0.42 (−0.61, 1.44) 0.42 0.43 (−0.60, 1.46) 0.41 0.41 (−0.64, 1.45) 0.45

Skinfold sum (mm)b 1.21 (−0.85, 3.27) 0.25 1.22 (−0.84, 3.29) 0.24 1.03 (−1.08, 3.13) 0.34

SAT fat area (mm2) 4.21 (−6.81, 15.22) 0.45 4.56 (−6.38, 15.50) 0.41 4.28 (−6.90, 15.45) 0.45

VAT fat area (mm2) 0.87 (−0.82, 2.57) 0.31 0.84 (−0.87, 2.55) 0.34 0.74 (−1.01, 2.49) 0.40

Metabolic biomarkers

Fasting glucose (mmol/l) −0.03 (−0.06, 0.01) 0.11 −0.02 (−0.06, 0.01) 0.13 −0.03 (−0.06, 0.00) 0.09

Fasting insulin (pmol/l) 2.13 (−2.19, 6.44) 0.33 2.26 (−2.00, 6.52) 0.30 2.09 (−2.29, 6.46) 0.35

HOMA-IR 0.03 (−0.12, 0.18) 0.71 0.03 (−0.11, 0.18) 0.65 0.03 (−0.12, 0.18) 0.73

Leptin (nmol/l) 1.22 (−0.85, 3.28) 0.25 1.21 (−0.85, 3.27) 0.25 1.06 (−1.06, 3.19) 0.32

Adiponectin (μmol/l) −1.03 (−3.79, 1.72) 0.46 −1.03 (−3.79, 1.74) 0.46 −1.23 (−4.06, 1.60) 0.39

Girls (n = 297)

Adiposity

BMI (kg/m2) 0.65 (0.31, 0.99) 0.0002*† 0.65 (0.32, 0.99) 0.0002*† 0.64 (0.31, 0.98) 0.0002*†

BMI z scorea 0.17 (0.08, 0.26) 0.0001*† 0.17 (0.09, 0.25) <0.0001*† 0.17 (0.08, 0.25) 0.0001*†

Waist circumference (cm) 1.66 (0.86, 2.45) <0.0001*† 1.67 (0.88, 2.45) <0.0001*† 1.63 (0.85, 2.41) <0.0001*†

Skinfold sum (mm)b 4.02 (2.33, 5.70) <0.0001*† 4.02 (2.34, 5.70) <0.0001*† 4.06 (2.38, 5.75) <0.0001*†

SAT fat area (mm2) 16.22 (8.00, 24.44) 0.0001*† 16.23 (8.03, 24.44) 0.0001*† 16.27 (8.21, 24.74) 0.0001*†

VAT fat area (mm2) 2.22 (0.85, 3.58) 0.002*† 2.21 (0.84, 3.58) 0.002*† 2.17 (0.78, 3.56) 0.002*†

Metabolic biomarkers

Fasting glucose (mmol/l) 0.00 (−0.04, 0.04) 0.99 0.00 (−0.04, 0.04) 0.99 0.01 (−0.04, 0.06) 0.80

Fasting insulin (pmol/l) 8.75 (4.97, 12.53) <0.0001*† 8.83 (5.17, 12.49) <0.0001*† 8.83 (5.07, 12.59) <0.0001*†

HOMA-IR 0.27 (0.13, 0.41) 0.0002*† 0.27 (0.13, 0.41) 0.0002*† 0.28 (0.13, 0.43) 0.0003*†

Leptin (nmol/l) 4.54 (1.96, 7.11) 0.0006*† 4.57 (2.02, 7.11) 0.0005*† 4.73 (2.15, 7.31) 0.0004*†

Adiponectin (μmol/l) −4.00 (−6.76, −1.23) 0.005* −4.03 (−6.80, −1.26) 0.005* −3.80 (−6.64, −0.96) 0.009*

Data are shown as β (95% CI) for Factor 4 at T1 with health outcomes from T1 to T2

Model 1: adjusted for age and race/ethnicity

Model 2: Model 1 + pubertal status (based on pubic hair development in boys and breast development in girls)

Model 3: Model 2 + physical activity (mean METs/day over a 3-day period) + total energy intake (kJ/day)
a Age- and sex-specific z score according to the WHO Growth Reference for children aged 5–19 years [37]
b Sum of the subscapular, suprailiac and tricep skinfold thicknesses

* Significant at α = 0.05; † Significant after Bonferroni correction (boys and girls were analysed separately within each model; α < 0.05/20 = 0.003)
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that of metabolites in cord blood, the latter of which are affect-
ed by a multitude of factors surrounding circumstances of
delivery, and variability in metabolite concentrations across
the maternal/fetal unit.

Associations of GDM with metabolites throughout late child-
hood and adolescence GDM exposure was associated with
key metabolites within Factor 4 at a similar direction, magni-
tude, and precision of estimates at T1 and T2, indicating a
persistent and consistent inter-individual effect of GDM on
metabolite profiles from late childhood through adolescence.
On the other hand, within-individual stability of the metabo-
lites across T1 and T2 was modest at best, as indicated by
relatively low ICCs. Our results suggest that, while the metab-
olites we examined may be informative for the study of
disease aetiology given that the inter-individual rank of
exposure/metabolite associations was preserved over time,
concentrations of the specific metabolites are not likely to be
reliable biomarkers of disease risk in youth within the age
range of this study population due to high intra-individual
variability.

Associations of metabolite patterns with adiposity and
conventional metabolic risk biomarkers We found that a
higher score for Factor 4 corresponded with greater adiposity,
reduced insulin sensitivity, higher leptin and marginally lower
adiponectin from late childhood through adolescence among
girls. Furthermore, all associations except for that of GDM
with adiponectin passed Bonferroni correction.

In a recent study in non-human primates, Polewski et al
identified differences in plasma phospholipid composition,
most notably perturbations in diacylglycerols that are
desaturation products of palmitic acid, as markers of worsen-
ing insulin resistance and onset of the metabolic syndrome
[56]. While the specific metabolites identified differed from
those of the present study, phospholipids are integral compo-
nents of the cell membrane and plasma and their metabolism
influences numerous biochemical pathways, including those
involved in glycaemic regulation [57]. The compounds of
particular interest in Factor 4 include diacylglycerol deriva-
tives of palmitoleic acid (e.g., palmitoleoyl-linoleoyl-glycerol
[16:1/18:2]), an unsaturated monounsaturated fatty acid that
has been found to exhibit similar detrimental effects to
palmitic acid on cardiovascular traits in adult men [58].
Although, this lipokine has also been linked to beneficial
effects on other aspects of metabolism (e.g., amelioration or
prevention of insulin resistance and diabetes) [59].

Given the established literature on the puberty-related
increase in adiposity [60] and insulin resistance [61], the
female-specific nature of our findings is likely to be related
to an association of maternal GDM with earlier adrenarche
and pubarche in daughters. Recent cohort studies, including
one in EPOCH [62], demonstrated that in utero exposure to

GDMwas associated with earlier puberty onset, with stronger
[62] or sole effects among female offspring [63–66]. This
phenomenon may operate through a programming effect of
maternal hyperglycaemia on offspring adrenal hormone
production [67]. Future studies with longer term follow-up
are necessary to establish whether the relationships of GDM
exposure with adiposity and metabolic risk in the offspring
persists beyond puberty. Additionally, studies should further
investigate potential sex-specific programming effects of in
utero GDM exposure on offspring adiposity and metabolic
health.

Strengths and weaknesses

Our study has several strengths. First, we were able to exam-
ine long-term effects of intrauterine exposure to maternal
GDM on fasting serum metabolites at, not just one, but two
time points, from late childhood through adolescence. Our
repeated metabolomics measurements enabled us to assess
both inter-individual preservation of the effect of GDM expo-
sure over time, as well as intra-individual variability of metab-
olites, of which the former is informative for understanding
disease aetiology, while the latter has important implications
for use of metabolites as prognostic biomarkers [9]. Second,
we had a large sample size, especially in comparison with
other studies of metabolomics in youth, where N is less than
300 [50, 68–72]. Third, we were able to use rich data on
sociodemographic and lifestyle characteristics to account for
variables that may confound associations of interest. Finally,
we had a diverse study sample, with ~50% of participants of
racial or ethnic minorities.

This study also has several limitations. First, we are not
able to make inference on metabolic flux given that the repeat-
ed metabolic assessments were separated by a 5-year period.
Second, the metabolite factor scores were based on metabo-
lites assayed at the same time as the first measurement of
adiposity and metabolic biomarkers and, thus, estimates could
be driven by cross-sectional relationships rather than being
true prospective associations. Third, missing values and recall
errors in self-reported covariates can introduce bias into esti-
mates of association. Fourth, removal of metabolites with high
missingness (≥20%) from our dataset resulted in retention of
~64% of the original features detected by the untargeted plat-
form. Since unsupervised dimension reduction techniques,
like PCA, rely on the intercorrelations among variables in
the dataset, removal of features is likely to have had an impact
on the composition of the factor scores in ways that we are not
able to directly assess given that many of these procedures
(including PCA) also require that there are no missing values
in the input dataset. Fifth, GDM status was based on a clinical
diagnosis of GDM following an OGTT, for which we do not
have access to actual blood glucose concentrations. Thus,
clinical misdiagnoses of GDM status could introduce non-
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differential bias into estimates of association pertaining to the
relationship between maternal GDM and the metabolite factor
scores. Sixth, while EPOCH participants were asked to arrive
for the research visit having fasted for at least 8 h, we do not
know for certain how long they had truly been fasting; this is
another source of non-differential bias, but this time with
respect to the associations of factor scores with adiposity
and metabolic risk from childhood through adolescence.
Seventh, we cannot discount the possibility of false-positive
findings given the large number of models tested, especially
given that our initial assessment of the relationship between
GDM exposure and offspring metabolite patterns was largely
null (with the exception of the association of GDM with
Factor 4 when dichotomised as Q4 vs Q1–3 using a nominal
α = 0.05). However, we put forth precautionary measures to
prevent type 1 error, including: (1) use of PCA as a data
reduction method to identify metabolite factors in offspring
that differed with respect to maternal GDM using a nominal p
value cut-off before assessing associations of GDMwith indi-
vidual metabolites; and (2) employment of more stringent p
value cut-offs in analyses of associations between GDM and
metabolites, and between the metabolite pattern factor score
and health outcomes. Finally, as with all cohort studies that
span a long period of time between assessment of the exposure
and measurement of the health outcome, there is potential for
residual confounding due to unmeasured lifestyle characteris-
tics (e.g., nutritional factors, more nuanced assessments of
physical activity and energy expenditure), and shared behav-
ioural and environmental characteristics between the mother
and child.

Conclusions and future directions

In the EPOCH cohort, we identified a phospholipid metab-
olite pattern following intrauterine exposure to maternal
GDM that was detectable from late childhood through
adolescence. This metabolite pattern was associated with
higher adiposity, worse insulin sensitivity and altered
adipocytokines across the adolescent transition among
girls exposed to in utero GDM vs those unexposed.
Future research is required to evaluate the extent to which
these metabolite patterns are clinically relevant and mean-
ingfully associated with health outcomes beyond the
adolescent transition.
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