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Abstract
Aims/hypothesis Gestational diabetes mellitus (GDM) affects up to 20% of pregnancies, and almost half of the women affected
progress to type 2 diabetes later in life, making GDM the most significant risk factor for the development of future type 2
diabetes. An accurate prediction of future type 2 diabetes risk in the early postpartum period after GDM would allow for timely
interventions to prevent or delay type 2 diabetes. In addition, new targets for interventions may be revealed by understanding the
underlying pathophysiology of the transition from GDM to type 2 diabetes. The aim of this study is to identify both a predictive
signature and early-stage pathophysiology of the transition from GDM to type 2 diabetes.
Methods We used a well-characterised prospective cohort of women with a history of GDM pregnancy, all of whom were enrolled
at 6–9weeks postpartum (baseline), were confirmed not to have diabetes via 2 h 75 gOGTTand tested anually for type 2 diabetes on
an ongoing basis (2 years of follow-up). A large-scale targeted lipidomic study was implemented to analyse ~1100 lipid metabolites
in baseline plasma samples using a nested pair-matched case–control design, with 55 incident cases matched to 85 non-case control
participants. The relationships between the concentrations of baseline plasma lipids and respective follow-up status (either type 2
diabetes or no type 2 diabetes) were employed to discover both a predictive signature and the underlying pathophysiology of the
transition from GDM to type 2 diabetes. In addition, the underlying pathophysiology was examined in vivo and in vitro.
Results Machine learning optimisation in a decision tree format revealed a seven-lipid metabolite type 2 diabetes predictive
signature with a discriminating power (AUC) of 0.92 (87% sensitivity, 93% specificity and 91% accuracy). The signature was
highly robust as it includes 45-fold cross-validation under a high confidence threshold (1.0) and binary output, which together
minimise the chance of data overfitting and bias selection. Concurrent analysis of differentially expressed lipid metabolite
pathways uncovered the upregulation of α-linolenic/linoleic acid metabolism (false discovery rate [FDR] 0.002) and fatty acid
biosynthesis (FDR 0.005) and the downregulation of sphingolipid metabolism (FDR 0.009) as being strongly associated with the
risk of developing future type 2 diabetes. Focusing specifically on sphingolipids, the downregulation of sphingolipid metabolism
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using the pharmacological inhibitors fumonisin B1 (FB1) and myriocin in mouse islets and Min6 K8 cells (a pancreatic beta-cell
like cell line) significantly impaired glucose-stimulated insulin secretion but had no significant impact on whole-body glucose
homeostasis or insulin sensitivity.
Conclusions/interpretation We reveal a novel predictive signature and associate reduced sphingolipids with the pathophysiology
of transition from GDM to type 2 diabetes. Attenuating sphingolipid metabolism in islets impairs glucose-stimulated insulin
secretion.

Keywords Gestational diabetes mellitus . Glucose-stimulated insulin secretion . Lipidomic study . Machine learning . Multiple
logistic regression . Pathophysiology . Predictive biomarker . Prospective cohort . Sphingolipidmetabolism . Type 2 diabetes

Abbreviations
BCAA Branched-chain amino acid
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FC Filtered classifier
FDR False discovery rate
FPG Fasting plasma glucose
GDM Gestational diabetes
GPI Glycosylphosphatidylinositol
GSIS Glucose-stimulated insulin secretion
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KEGG Kyoto Encyclopedia of Genes and Genomes
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LPC Lysophosphatidylcholine
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SM Sphingomyelin
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SWIFT Study of Women, Infant Feeding and Type 2
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Introduction

Gestational diabetes mellitus (GDM), defined as glucose in-
tolerance first recognised during pregnancy, affects up to14%
of pregnancies worldwide [1, 2]. Although the cause remains
uncertain, GDM is suspected to arise from the diminished
capacity of the pancreas to produce sufficient insulin and im-
paired insulin action related to pregnancy. GDM pregnancy
increases maternal complications [3] and infants of mothers
with GDM are at significantly higher risk of obesity,
dyslipidaemia and type 2 diabetes [4]. While maternal glucose
tolerance generally returns to normal after delivery, GDM is
associated with persistent long-term metabolic dysfunction
and elevated risk of overt diabetes [5]. Up to 50% of women
with GDMmay progress to type 2 diabetes within 5–10 years
postpartum [6, 7]. These women develop type 2 diabetes at a
relatively younger age (e.g. <40 years) than the general pop-
ulation and have a higher risk of cardiovascular disease, non-
alcoholic fatty liver, renal disease and early mortality [8–15].
The underlying cause of the transition from GDM to type 2
diabetes and the accurate prediction of this transition are there-
fore critical.

The ADA recommends that all women with GDM undergo
screening for type 2 diabetes via a 2 h 75 g OGTT at 6–
12 weeks postpartum followed by subsequent screening every
1–3 years via fasting plasma glucose (FPG) measurement and
2 h 75 g OGTT [16]. The discriminating power (AUC) of 2 h
plasma glucose in the OGTT is at best 65–77% across studies
[17–19]. Moreover, the compliance with ADA recommenda-
tions among this group for screening via an OGTT is very low
(~19%) in many settings [19, 20]. This low compliance could
in part be due to the time-consuming and/or unpleasant nature
of the tests or healthcare system limitations [19, 21–24]. A
simplified and more accurate prognostic test would be desir-
able to reclassify glucose tolerance after pregnancy and predict
future type 2 diabetes progression following GDM pregnancy.

It is well known that the elevation in blood glucose in type 2
diabetes occurs long after the underlyingmetabolic changes that
promote disease development. Thus, discovery-based metabo-
lomics is considered a promising approach for both the early
prediction and the identification of underlying pathways of fu-
ture type 2 diabetes onset. This methodology has led to the
identification of several biomarkers for future type 2 diabetes
incidence [25–27]. Our group previously identified metabolic
biomarkers of subsequent type 2 diabetes onset among women
with recent GDM enrolled in the Study of Women, Infant
Feeding and Type 2 Diabetes after GDM (SWIFT) prospective
cohort [19]. Using clinical variables combined with metabolic
biomarkers, including lipid species, we developed a simple
four-structure metabolic signature—phosphatidylcholine (PC)
aeC40:5, hexoses, branched-chain amino acids (BCAAs) and
sphingomyelin (SM) (OH)C14:1—that predicted type 2 diabe-
tes incidence with 83% discrimination power (AUC) in a nested

pair-matched (1:1) case–control study of 244 SWIFT partici-
pants, where 12% of 1010 women with GDM progressed to
type 2 diabetes within about 2 years post-delivery [19]. A small-
er nested case–control study of metabolomics (lipidomics),
targeting >300 lipid species in blood samples taken from 104
women with GDM at 12 weeks post-delivery, of whom 21
(20%) progressed to type 2 diabetes within 12 years, showed
83.6% accuracy in type 2 diabetes prediction based on three
l ip ids—phospha t idy le thanolamine (PE) P-36 :2 ,
phosphatidylserine (PS) 38:4 and cholesteryl ester (CE)
20:4—in combination with six other risk factors (age, BMI,
pregnancy fasting glucose, postpartum fasting glucose, total
triacylglycerols [TAGs] and total cholesterol) [28]. These prom-
ising findings provide evidence that novel metabolite markers
combined with other factors can facilitate the prediction of type
2 diabetes risk.

Metabolomic studies can also be used to illuminate the
pathophysiology of type 2 diabetes and its progression.
Both stearoylcarnitine and BCAA levels increased in
those who developed type 2 diabetes [29, 30], possibly
linked to impaired pancreatic beta cell function [31].
Several specialised lipid metabolites (sphingomyelins [SMs],
phosphatidylcholines [PCs] and lysophosphatidylcholines
[LPCs]) were inversely associated with type 2 diabetes risk
[32]. Our previous metabolomics study in the SWIFT cohort
of women with GDM also showed decreased levels of several
specialised lipid metabolites (sphingolipids and PCs) in the
transition from GDM to type 2 diabetes [19]. These lipid me-
tabolites are known core components of cell membranes and
may be linked to type 2 diabetes progression [32, 33].

There is substantial evidence to suggest that lipid imbal-
ances both predict and cause type 2 diabetes. Given the appar-
ent links between lipid biosynthesis, metabolism and beta cell
dysfunction leading to type 2 diabetes, the role of lipids has
been collectively understudied with respect to diabetes risk.
Herein, we used lipidomics to screen a large and broad spec-
trum of lipid metabolites in relation to subsequent type 2 dia-
betes development. This lipidomic study sought to identify
lipid biomarkers and putative early-stage pathophysiology
that may predict and influence future progression to type 2
diabetes in women after GDM pregnancy.

Methods

Study population

The prospective SWIFT cohort enrolled a racially and ethni-
cally diverse group of 1035 women, with GDM (age 20–
45 years), who delivered singleton pregnancies at ≥35 weeks
of gestation at Kaiser Permanente Northern California
(KPNC) hospitals between 2008 and 2011 [34, 35]. Each
participant provided informed consent at the in-person
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examination at 6–9 weeks postpartum (baseline) before col-
lection of blood specimens from a 2 h 75 g OGTT, completion
of surveys, anthropometric and body composition measure-
ments, and annual in-person follow-up examinations for
2 years. The KPNC Institutional Review Board approved the
study protocol. The study recruitment, selection criteria, meth-
odologies and other detailed information have been described
previously [34–36]. At each 2 h 75 g OGTT, trained research
staff collected fasting blood samples and processed and stored
plasma samples at −80°C for future studies.

Study design

For this study, we selected the incident diabetes cases among
Hispanic and Asian groups, and pair-matched (1:1.5) them to
control women without progression to diabetes during the 2
year follow-up by age (±2 years), race and ethnicity
(completely matched), pre-pregnancy BMI (±0.96 kg/m2)
and glucose tolerance at 6–9 weeks postpartum (completely
matched). We selected only matched pairs of Hispanic (n =
90) and Asian (n = 50) women to ensure homogeneity of race
and ethnic groups. The nested case–control design with pair-
matching greater than 1:1 does not allow direct comparisons

of incidence rates among the ethnic and racial groups for this
subset analysis. The fasting plasma samples were collected
from these 140 women at the baseline examination (at 6–
9 weeks postpartum), all confirmed not to have type 2 diabetes
at the baseline exam via the 2 h 75 g OGTT. Details of the
SWIFT prospective cohort design and follow-up are pub-
lished elsewhere [30, 37–40]. For women who progressed to
type 2 diabetes during the 2 years follow-up period (n = 55),
termed here as the ‘follow-up’ time point, the newly diag-
nosed incident type 2 diabetes was referred to as ‘case’.
Women who did not develop type 2 diabetes during the
follow-up period (n = 85) are referred to as ‘control’ (Fig. 1).
Please see electronic supplementary materials (ESM)
Methods for details.

Targeted lipid profiling (targeted-lipidomics analysis)

Fasting plasma samples collected at 6–9 weeks postpartum
during the SWIFT study were sent to Metabolon
(Morrisville, NC, USA) for a single-blind targeted-lipidomics
analysis of 1100 lipid species on each plasma sample. For
details of lipidomics see ESM Methods.

Pregnancy 6–9 weeks postpartum 2 years postpartum

Non-T2DM
(n=140) Non-T2DM

(n=85)

T2DM
(n=55)

GDM women
(SWIFT cohort) Control

Case
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Fig. 1 The schematic flow diagram of the study design. This was a nested
case–control study within the SWIFT study, a prospective cohort of 1035
women diagnosed with GDM and followed up to 2 years postpartum. A
total of 140 women were selected out of the 1035 SWIFT participants.
These women did not have type 2 diabetes mellitus (T2DM) at 6–9 weeks
postpartum (study baseline) based on 2 h 75 g OGTT. Of the 140 selected,
55 women were diagnosed as having T2DM, via 2 h 75 g OGTTs, within

2 years post baseline. This group was termed as ‘case’. The remaining 85
women did not develop T2DMbased on the results of the 2 h 75 g OGTTs
within 2 years post baseline. This group was termed ‘control’ (non-
T2DM). The fasting plasma from the baseline examination was used for
LC-MS-based targeted lipidomics aimed at finding the relation in terms
of a predictive signature and the earlier stage pathophysiology of T2DM
prospectively within the 2 year follow-up period
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Data preparation and statistical analysis of the quality
of the final dataset

A stringent protocol was followed to prepare the final dataset,
which was further scrutinised for quality in terms of the pres-
ence of confounding factors and the certainty of the class
separation through principal component analysis (PCA) and
a partial least squares-discriminant analysis (PLS-DA), re-
spectively, using MetaboAnalyst 3.0 (https://www.
metaboanalyst.ca/) in default setting (e.g. tenfold cross-
validation). For details of this protocol, see ESM Methods.

Differential expression analysis and pathway analysis

A non-parametric test (Wilcoxon–Mann–Whitney test, α val-
ue set at p < 0.05) followed by multiple comparisons with
false discovery rate (FDR) analysis (α value set at p < 0.05)
was carried out to identify the differentially expressed lipid
metabolites between the case and control. These differentially
expressed lipid metabolites were used for the pathway analy-
sis by adopting two approaches: (1) a direct approach where
differentially expressed lipid metabolites were used in both
over-representation pathway analysis using Kyoto
Encyclopedia of Genes and Genomes (KEGG; Kanehisa
Laboratories, Kyoto, Japan) pathways and metabolite set en-
richment pathways (MSEP) analysis and (2) an in silico ap-
proach where the interacting proteins with the differentially
expressed lipid metabolites were used. All analyses were car-
ried out using one of the following platforms (or a combina-
tion of them): MetaboAnalyst 3.0, MBrole 2.0 (Madrid,
Spain), and String 10.5 platforms (https://string-db.org). For
details of the pathway analyses, see ESM Methods.

Predictive analytics

The biomarker analysis module ofMetaboAnalyst 3.0 was used
for univariate receiver operating characteristic (ROC) analysis.
In the multivariate ROC analysis, the stepwise (both ways)
multiple logistic regression (MLR) was carried out in R-
studio (Boston, MA, USA) using the ‘glm’ function under the
removal of data redundancy protocol and significant contribu-
tor calculation (R-script is available in ESM Methods).
Machine learning analyses were carried out through WEKA
3.8 (University of Waikato, Hamilton, NZ). The final classifier
was further optimised for balancing between the chance of data
overfitting, higher ROC possibility and F-score (a measurement
of a test’s accuracy based on precision and sensitivity).
Optimisation was carried out by applying K-fold cross-valida-
tion, confident threshold 1.0 and binary output selection. A
series of cross-validation up to K = 100 was conducted to test
the stress tolerability of the signature. Forty-five-fold cross-
validation (K = 45) was chosen as per ‘one standard error rule’
for final reporting. High confidence threshold (1.0) ensures the

proper cleaning of bias from the final signature. Binary output
selection further protects the signature from data overfitting and
bias selection. The discriminating power of ROC analysis is
presented in the form of anAUC. See ESMMethods for details.

In vivo and in vitro functional studies

Animal care C57BL/6 J male mice were obtained from
Charles River (Sherbrook, QB, Canada) at the age of 8 weeks
for both in vivo and in vitro islets studies.Micewere housed in
the Division of Comparative Medicine facility, University of
Toronto. All mouse procedures and maintenance were con-
ducted in compliance with protocols approved by the
Animal Care Committee at the University of Toronto and
the guidelines of the Canadian Council of Animal Care.

Intraperitoneal injections and monitoring The mice were
injected intraperitoneally either by using 1 mg kg−1 day−1

fumonisin B1 (FB1) (Cayman, Michigan, USA) or vehicle
(DMSO–saline [154 mmol/l NaCl]) for 3 weeks. Weight gain
and blood glucose were monitored on a weekly basis.

Insulin tolerance test and IPGTT Both ITTs and GTTs were
conducted using standard protocols that are described else-
where [41].

Sphingolipid profiling and insulin staining of pancreas After
3 weeks of treatment, mice were euthanised to collect plasma
and pancreatic tissue. Plasma samples (n = 3) were subjected to
sphingolipid profiling through LC-MS/MS at the Analytical
Facility for Bioactive Molecules, SickKids, Toronto. The
pancreases (n = 7) were fixed for insulin staining by using the
standard protocol [37] of the Centre for Phenogenomics (TCP),
Sinai Health System Institute, Toronto. The 40× images of pan-
creatic slices were produced at TCP and analysed by Aperio
ImageScope software package (Wetzlar, Germany).

In vitro glucose-stimulated insulin secretion Glucose-stimu-
lated insulin secretion (GSIS) was assessed, as previously de-
scribed [41], in bothMin6K8 cells (a gift from S. Seino [Kobe
University, Kobe, Japan] and J. Miyazaki [Osaka University,
Suita, Japan] and isolated male murine C57BL/6 islets in vitro
after treatment with either 1 μmol/l FB1 or 50 nmol/l myriocin
(Cayman, Ann Arbor, MI, USA) for 24 h.

Results

Baseline sociodemographic and clinical characteristics
of participants

This nested pair-matched case–control study included a subset
of 140 Asian and Hispanic women from the SWIFT cohort
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(Fig. 1). Sociodemographic and clinical characteristics of case
and control groups are summarised in Table 1. There were no
statistically significant differences observed in either pre-
pregnancy or baseline (6–9 weeks postpartum) BMI, total
energy intake or physical activity. Baseline FPG (p < 0.01),
2 h plasma glucose (p < 0.001), fasting insulin (p < 0.01) and

fasting TAG (p < 0.05) measurements and median HOMA-IR
(p < 0.01) were significantly higher in the type 2 diabetes case
group. The case group was more likely than matched control
participants to have been treated with insulin or oral medica-
tions during pregnancy and were more likely to have a family
history of diabetes.

Table 1 Prenatal and baseline (6–
9 weeks postpartum) characteris-
tics of incident type 2 diabetes
cases and matched control (no
diabetes) within 2 years post
baseline among women with
GDM

Characteristic Incident
diabetes

(n=55)

Controls

(n=85)

Unadjusted
p value

Prenatal and sociodemographic characteristics

Age, years 34.8 (5.1) 34.3 (4.6) 0.55

Race/ethnicity, n (%) 0.05

Hispanic 30 (54.5) 60 (70.6)

Asian 25 (45.5) 25 (29.4)

Parity, n (%) 0.22

Primiparous (1 birth) 16 (29.1) 17 (20.0)

Multiparous (>2 births) 39 (70.9) 68 (80.0)

GDM prenatal treatment, n (%) 0.006

Diet only 26 (47.3) 55 (64.7)

Oral medications 26 (47.3) 28 (32.9)

Insulin 3 (5.5) 2 (2.4)

Gestational age at GDM diagnosis, weeks 21.3 (9.1) 24.1 (7.8) 0.05

Pre-pregnancy BMI, kg/m2 32.0 (5.2) 32.5 (5.4) 0.61

Family history of diabetes, n (%) 40 (72.7) 48 (56.5) 0.05

BMI and behaviours at 6–9 weeks postpartum

BMI, kg/m2 32.3 (5.2) 32.3 (5.2) 0.99

Smoker (current or past), n (%) 0 (0.0) 1 (1.2) 0.61

Physical activity, met-h/week 52.8 (35.5) 45.4 (30.2) 0.06

Total dietary energy intake, kJ/day 3609.96 (1590.76) 3538 (1514.19) 0.79

Infant feeding status, n (%) 0.59

Exclusive lactation 8 (14.5) 19 (22.4)

Mostly lactation 24 (43.6) 32 (37.6)

Mostly formula/mixed 12 (21.8) 21 (24.7)

Exclusive formula 11 (20.0) 13 (15.3)

Plasma variables at 6–9 weeks postpartum

FPG, mmol/l 5.68 (0.55) 5.4 (0.47) 0.001

2 h post-load glucose in 75 g OGTT, mmol/l 7.73 (1.66) 6.48 (1.7) <0.001

Fasting insulin, pmol/l 231.27 (134.73) 174.32 (100.70) 0.005

Fasting TAGs, mmol/l 1.73 (1.11) 1.32 (0.74) 0.01

Fasting HDL-cholesterol, mmol/l 1.25 (0.29) 1.34 (0.33) 0.22

HOMA-IR, median (IQR)a 7.5 (4.5–10.3) 5.1 (3.6–8.0) 0.003

HOMA-B, median (IQR)a 259.0 (191.4–365.8) 235.9 (170.4–343.6) 0.15

Data are presented as mean (SD) or n (%) unless otherwise noted

Plasma values are from the SWIFT database

p values are for incident diabetes (case) vs no diabetes (control), paired t test
a Kruskal–Wallis test applied

IQR, interquartile range
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Statistical analysis of the quality of the final dataset
from lipidomics

The final dataset was composed of 626 detectable lipid me-
tabolites. The unsupervised PCA showed two major principal
components, with the first comprising 32.8% of the total study
population and the second comprising 11.8%. Since the
lipidomic analysis was performed at baseline before the earli-
est diagnosis, it would be overly optimistic to get a higher
value for the major principal components. Other components
were small contributors in the separation of the study popula-
tion (ESM Fig. 1a). The supervised PLS-DA, where the
groups were pre-identified as control and case, showed distin-
guishable separation and was presented in a two-dimensional
score plot (ESM Fig. 1b). A cross-validation analysis deter-
mined that the performance of PLS-DA had a 63% and 64%
accuracy for these two clusters, respectively, based on R2 and
Q2 (ESM Fig. 1c). Furthermore, the empirical Bayes estima-
tion (here with 1000 random permutations) was applied to
confirm that the distinct separation between the two groups
found in PLS-DAwas not due to random chance. The empir-
ical p value was significant (0.014; ESM Fig. 1d), indicating
that the separation was true for 986 times out of 1000. The
distribution of (quantile) normalised and log2-transformed da-
ta is showed in ESM Fig. 1e.

Univariate and multivariate ROC analysis
and predictive capability of metabolites to predict
future type 2 diabetes

The strategies for predictive biomarker discovery are illustrat-
ed in Fig. 2a. FPG, HOMA-IR and 2 h post-load glucose in
75 g OGTT are frequently used for diagnostic purposes and
their values for cases vs controls already showed a significant
difference at baseline (p < 0.01, p < 0.01 and p < 0.001, re-
spectively). In addition, the total fasting TAG levels were sig-
nificantly higher in cases vs controls (p < 0.05). However, the
ROC-AUCs of FPG, HOMA-IR, 2 h glucose and total fasting
TAGs were 0.64, 0.65, 0.71 and 0.61 respectively (Fig. 2b–e,
ROC analyses) in classic univariate ROC analyses. These low
AUC values indicated a relatively weak ability to predict type
2 diabetes. Although mean differences were statistically sig-
nificant (p < 0.01, p < 0.01, p < 0.001 and p < 0.05, respective-
ly) (Fig. 2b–e, box plots), low AUC scores led to limitations.
Each lipid metabolite was also subjected to classic univariate
ROC analysis to find the lipid metabolite with the highest
predictive capability for future type 2 diabetes status.
Among all lipid metabolites, TAG 54:0-FA 16:0 scored the
highest AUC of 0.69 (Fig. 2f). Although its mean difference
for cases vs controls was statistically significant (p < 0.001)
(Fig. 2f, box plot), its relatively low ROC-AUC score

indicated weak predictability. The low ROC-AUC of TAG
54:0-FA 16:0 was in part due to high heterogeneity in the
distribution of its concentration within the population. The
low AUCs in univariate ROC analyses suggested that one
analyte-based diagnostic would not be the best approach to
predict type 2 diabetes incidence.

Since type 2 diabetes is a multifactorial disease, multivar-
iate analyses could have better strength in predicting future
type 2 diabetes onset. Thus, a popular multivariate ROC anal-
ysis, stepwise multiple (both ways) logistic analysis [38, 39],
was carried out here to select a signature panel (containing
multiple variables) to improve the discrimination power
(AUC). In the stepwise MLR analysis with both statistically
significant biochemical clinical variables (FPG, 2 h glucose,
HOMA-IR and total TAG) and clinical factors (family history
of diabetes and type of GDM treatment), a panel of three
clinical variables (FPG, 2 h glucose and family history of
diabetes) produced an AUC of 77% (95% CI 69%, 85%)
(Fig. 2g). In the stepwise MLR analysis with lipids, a panel
of 12 lipid metabolites produced an AUC of 84% (95% CI
77%, 90%) (Fig. 2h).

The predictive signatures/biomarkers in machine
learning approach and comparison with other
methods

The artificial intelligence-assisted machine learning algo-
rithms were further employed using Weka 3.8 to find a pre-
dictive signature with a better predictability than the multivar-
iate signature panel. The highest ROC-AUC was found in the
filtered classifier algorithm. The ROC-AUC of this panel was
0.92 for both case and control participants (Fig. 3a, b) with
91% accuracy (Fig. 3e). It revealed a predictive signature
consisting of seven lipid metabolites with a decision tree hav-
ing 17 nodes (branching points) and nine leaves (decision
points) (Fig. 3c). Although both biochemical and historical
clinical variables (total TAGs, FPG, 2 h glucose, HOMA-IR,
family history of diabetes and type of GDM treatment) were
evaluated with the lipid dataset, they did not appear in the
predictive signature, indicating the superior predictive power
of lipid metabolites over these clinical variables as well as
matching variables (age, race/ethnicity and BMI) in this
nested case–control study sample. This signature was validat-
ed through a rigorous cross-validation protocol, where a 45-
fold cross-validation was selected by adopting one standard
error calculation (Fig. 3d). The K = 45 cross-validated model
showed no significant difference in misclassification errors in
comparison with the K = 20- to 100-fold cross-validated
models, having relatively lower standard mean errors and no
overfitting due to being outside of the saturation of accuracy
(K = 60 to 90). K = 85 cross-validation, which produced the
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lowest misclassification errors (or highest accuracy), was the
most over-fitted model. The K = 45 cross-validated model was
further optimised under confidence threshold 1.0 and binary

output selection criteria. Altogether, this ensured the signature
did not suffer from data overfitting and bias selection. The
comparison among the best signatures found using different
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Fig. 2 Predictive signatures/biomarkers for progression to type 2 diabe-
tes. (a) Schematic flow diagram of the predictive signatures/biomarkers.
(b) Univariate ROC analysis and box plot for FPG. The FPG value at 5.7
mmol/l (red circle) is the optimal cut-off for the mean AUC 0.64 within
the 95% CI. (c) Univariate ROC analysis and box plot for HOMA-IR.
The HOMA-IR value at −0.17 (red circle) is the optimal cut-off and
provides the mean AUC 0.65 within the 95% CI. (d) Univariate ROC
analysis and the box plot for 2 h post-load glucose in 75 g OGTT (2 h
Glu). The 2 h glucose value at 6.58 mmol/l (red circle) is the optimal cut-
off and provides the mean AUC 0.71 within the 95% CI. (e) Univariate
ROC analysis and box plot for total fasting TAGs (T-TAG). The T-TAG
value at 1.12 mmol/l (red circle) is the optimal cut-off and provides the
mean AUC 0.61 within the 95% CI. (f) Univariate ROC analysis and box
plot for the top AUC exhibiting lipid metabolite TAG54:0-FA16:0. The
value at −0.03 mmol/l (red circle) is the optimal cut-off and provides the
meanAUC 0.69within the 95%CI. In the box plots (b–f), the distribution

of population (case and control) based on FPG, HOMA-IR, 2 h glucose,
T-TAG and TAG54:0-FA16:0 is shown, with the y-axis in mmol/l, except
for HOMA-IR (unitless). The bottom and top of the box are the Q1 and
Q3 (25th and 75th percentile), respectively, and the central band is the
median (Q2 or 50th percentile). The bottom whisker is located within 1.5
IQR of the lower quartile, and the upper whisker is located within 1.5 IQR
of the upper quartile. Outliers are presented in the outside of whiskers.
The red line in each box plot shows the point that separates the whole
population into two groups, case and control, to provide maximum class
separation. A two-tailed, paired t test was carried out for each comparison;
unadjusted p values: *p<0.05, **p<0.01, ***p<0.001 vs control. (g) In
stepwise MLR with clinical variables, the signature with three variables
(2 h glucose, FPG and family history of diabetes) provides themeanAUC
77%. (h) In stepwise MLR with lipid metabolites, the signature with 12
variables (lipids, shown on the right) provides the mean AUC 84%
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approaches is summarised in Fig. 3e. Comparisons were made
in terms of accuracy, sensitivity, specificity, precision and
AUC. The machine learning approach-derived signature had
an AUC of 0.92, an accuracy of 91% (correctly predicted 127
out of 140 participants), a sensitivity of 87% (correctly pre-
dicted 48 cases out of 55) and a specificity of 93% (predicted
79 controls correctly out of 85).

Differential expression and putative pathway analysis
based on lipidomics

A total of 75 lipid metabolites were differentially expressed
significantly between the case and control groups (Table 2).
The putative pathway analysis (Fig. 4a) involved both a direct
approach (based on differentially expressed lipids) and an in
silico approach (based on the interacting putative proteins of
the differentially expressed lipids). In the case group, 46 lipid
metabolites were significantly upregulated and 29 were sig-
nificantly downregulated (Fig. 4b). The significantly upregu-
lated lipid metabolites were predominantly TAG lipid species
whereas the significantly downregulated lipid metabolites

consisted of CE, ceramide (Cer), NEFA, lactosylceramide
(LCer), LPC, lysophosphatidylethanolamine (LPE), PE and
SM lipid species (Fig. 4b). The volcano plot for all lipid me-
tabolites and heat map for the differentially expressed lipid
metabolites are presented in ESM Fig. 2a, b. The volcano plot
showed a subtle fold change between the two groups at this
stage before type 2 diabetes development. The heat map of
differentially expressed significant lipid metabolites showed
the heterogenicity over the studied population.

To identify lipid pathways associated with altered lipid me-
tabolites, KEGG pathway analysis was carried out. A signif-
icant downregulation of sphingolipid metabolism (FDR
0.009) and upregulation of fatty acid biosynthesis (FDR
0.005) (Fig. 4c) was observed. To understand the predicted
consequence of such modulation, metabolite set enrichment
analysis was performed. The analysis identified the upregula-
tion of α-linolenic acid and linoleic acid metabolism (FDR
0.002) as the predicted net consequence of upregulated fatty
acid biosynthesis (Fig. 4c). The lipid metabolites belonging to
the identified different pathways are summarised in ESM Fig.
3a. The upregulated fatty acid synthesis was identified due to
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Fig. 3 The machine learning approach in predictive signature discovery.
(a, b) ROC curve for type 2 diabetes (T2DM) cases (a) and control
participants (b) in the filtered classifier algorithm. The mean AUC was
0.92 for both case (a) and control (b) within the 95% CI. (c) The decision

tree generated from the filtered classifier algorithm. (d) The selection of
cross-validation through the ‘one standard error’ rule where K=45 was
selected. (e) Comparison table for the top biomarkers found using the
different approaches
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Table 2 Significantly altered lipids

Metabolite Log2(control) Log2(case) p value FDR % Fold change

NEFA(22:5) 8.78 ± 0.27 7.52 ± 0.33 0.001515 0.033614 −14.31743265
NEFA(24:1) 9.15 ± 0.21 8.13 ± 0.31 0.0017857 0.033614 −11.12784437
LCer(24:1) 7.78 ± 0.08 7.34 ± 0.11 0.0018148 0.033614 −5.753291789
LPC(20:2) 9.06 ± 0.06 8.69 ± 0.09 0.00052268 0.030943 −4.138335102
LCer(16:0) 10.57 ± 0.06 10.13 ± 0.10 0.00088813 0.032209 −4.127533649
PE(P-16:0/22:4) 10.67 ± 0.07 10.28 ± 0.10 0.0034702 0.036819 −3.61847002
LPE(20:4) 8.91 ± 0.06 8.59 ± 0.07 0.00038527 0.030943 −3.610292601
CE(24:0) 11.52 ± 0.09 11.11 ± 0.11 0.0030654 0.03489 −3.547716326
Cer(20:0) 7.68 ± 0.06 7.40 ± 0.07 0.0032393 0.035451 −3.546116404
LPC(17:0) 11.36 ± 0.05 10.97 ± 0.08 0.00014128 0.030943 −3.457629226
PC(17:0/20:4) 11.82 ± 0.07 11.42 ± 0.09 0.002219 0.033614 −3.35741171
PC(17:0/18:1) 10.47 ± 0.06 10.14 ± 0.08 0.0023824 0.033614 −3.20304988
TAG53:6-FA20:4 7.59 ± 0.05 7.35 ± 0.07 0.0047343 0.045298 −3.12092987
Cer(16:0) 8.86 ± 0.05 8.58 ± 0.07 0.0059226 0.049437 −3.096206958
LPC(15:0) 10.13 ± 0.05 9.83 ± 0.08 0.0024855 0.033825 −2.998355538
PC(17:0/18:2) 12.05 ± 0.05 11.70 ± 0.08 0.0027807 0.034136 −2.876227347
CE(22:0) 10.02 ± 0.06 9.74 ± 0.08 0.0055482 0.047578 −2.875955107
LPC(20:4) 12.12 ± 0.06 11.78 ± 0.08 0.00066194 0.031875 −2.833247208
TAG51:4-FA16:1 8.74 ± 0.04 8.53 ± 0.05 0.0029816 0.03489 −2.447692333
TAG56:8-FA20:4 11.48 ± 0.07 11.20 ± 0.07 0.0054754 0.047578 −2.431224594
Cer(24:1) 11.27 ± 0.05 10.99 ± 0.07 0.0025927 0.034136 −2.40946479
Cer(22:0) 10.90 ± 0.05 10.64 ± 0.06 0.0021259 0.033614 −2.388285567
PC(18:1/20:4) 14.44 ± 0.06 14.12 ± 0.07 0.0020069 0.033614 −2.216220196
CE(17:0) 13.39 ± 0.05 13.10 ± 0.07 0.0017626 0.033614 −2.180721528
NEFA(20:4) 13.86 ± 0.06 13.56 ± 0.08 0.0048608 0.045298 −2.164188978
SM(20:1) 13.28 ± 0.05 12.99 ± 0.07 0.0011837 0.032216 −2.158837007
TAG56:7-FA20:4 12.64 ± 0.05 12.40 ± 0.06 0.0037147 0.038121 −1.898035015
LPC(18:1) 14.57 ± 0.05 14.32 ± 0.07 0.0036636 0.038121 −1.681348124
CE(20:4) 18.04 ± 0.05 17.82 ± 0.07 0.0038012 0.03838 −1.222413179
TAG52:1-FA18:1 15.17 ± 0.05 15.43 ± 0.07 0.0027793 0.034136 1.713236292

TAG52:1-FA16:0 14.67 ± 0.06 14.96 ± 0.08 0.001687 0.033614 1.944418393

TAG50:2-FA18:2 15.18 ± 0.06 15.50 ± 0.09 0.0032829 0.035451 2.114527145

TAG52:1-FA18:0 14.30 ± 0.06 14.62 ± 0.08 0.0010336 0.032209 2.212793769

TAG54:0-FA18:0 9.15 ± 0.05 9.36 ± 0.06 0.00461 0.045091 2.279869606

TAG54:3-FA20:3 9.32 ± 0.04 9.54 ± 0.06 0.0010983 0.032209 2.335706924

DAG(16:0/16:0) 10.18 ± 0.04 10.42 ± 0.07 0.0049268 0.045298 2.353844253

TAG50:1-FA18:1 15.73 ± 0.07 16.13 ± 0.10 0.001065 0.032209 2.532191884

TAG50:1-FA16:0 16.44 ± 0.08 16.88 ± 0.11 0.0012743 0.033238 2.672266116

TAG54:1-FA20:1 8.42 ± 0.05 8.65 ± 0.05 0.001354 0.033614 2.734967661

TAG54:1-FA16:0 9.25 ± 0.04 9.51 ± 0.05 0.00017355 0.030943 2.783365984

TAG48:1-FA18:1 13.51 ± 0.09 13.91 ± 0.12 0.0042533 0.042263 2.918331137

TAG54:5-FA22:5 9.76 ± 0.05 10.05 ± 0.07 0.0015687 0.033614 2.983386082

TAG53:1-FA16:0 8.74 ± 0.05 9.00 ± 0.06 0.0024163 0.033614 3.049782827

TAG50:1-FA18:0 12.11 ± 0.07 12.48 ± 0.11 0.0030653 0.03489 3.065694283

TAG52:0-FA18:0 11.63 ± 0.06 12.00 ± 0.09 0.00046749 0.030943 3.180424891

TAG48:1-FA14:0 13.20 ± 0.09 13.63 ± 0.12 0.0019504 0.033614 3.263747973

TAG52:0-FA16:0 11.01 ± 0.06 11.37 ± 0.08 0.00059315 0.030943 3.267105816

TAG52:3-FA20:3 10.12 ± 0.06 10.45 ± 0.10 0.0032846 0.035451 3.286875028

TAG52:2-FA20:2 9.42 ± 0.06 9.73 ± 0.08 0.0029404 0.03489 3.325497646
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the significantly higher concentrations of myristic acid
(C14:0), palmitic acid (C16:0), stearic acid (C18:0) and oleic
acid (C18:1). The discovery of upregulated α-linolenic acid
and linoleic acid metabolism was based on the significantly
higher concentrations of linoleic acid (C18:2), dihomo-γ-
linoleic acid (C20:3), eicosapentaenoic acid (C20:5) and
docosahexaenoic acid (C22:5). In the case of downregulated
sphingolipid metabolism, a number of significantly decreased
ceramides [Cer(16:0), Cer(20:0), Cer(22:0) and Cer(24:1)],
lac tosylceramides [LCer(16:0) , LCer(24:1)] and
sphingomyelin [SM(20:1)] species were identified. The spe-
cific alterations in these pathways were linked to increased
type 2 diabetes risk (ESM Fig. 3a).

Using an in silico approach employing KEGG pathway map-
ping (ESM Fig. 3b), we identified the upregulation of specific
inflammation pathways (loci-1) and the downregulation of
sphingolipid metabolism and related pathways (loci-4) as the
dominant changes associated with future type 2 diabetes status.
Loci-2, the upregulated fatty acid biosynthesis, was found

between the connectomes of loci-1 and loci-4. Additionally, the
downregulated glycosylphosphatidylinositol (GPI) anchor bio-
synthesis (loci-3) represents an island locus. GPI proteins are
essential for Cer-remodelling and transportation of Cers from
the endoplasmic reticulum to the Golgi apparatus where
glycosphingolipids and sphingomyelins are formed [40].

In vivo inhibition of sphingolipid metabolism

Our population-based lipidomics data indicate that a number of
Cers, SMs and LCers are significantly downregulated years
before type 2 diabetes onset (Fig. 4b), suggesting that the down-
regulation of sphingolipid metabolism could be in part respon-
sible for the future onset of type 2 diabetes among women with
previous GDM. To investigate this possibility, an approach was
taken to inhibit sphingolipid metabolism. FB1, a pharmacolog-
ical inhibitor of sphingolipid biosynthesis, was used to induce
overall downregulation of sphingolipid metabolism in C57BL/
6 mice (n ≥ 14). Due to the very short half-life of FB1 (liver

Table 2 (continued)

Metabolite Log2(control) Log2(case) p value FDR % Fold change

TAG52:1-FA20:1 9.30 ± 0.06 9.61 ± 0.07 0.00046754 0.030943 3.498632494

TAG51:0-FA17:0 8.45 ± 0.06 8.76 ± 0.08 0.002781 0.034136 3.554896904

TAG48:1-FA16:0 14.10 ± 0.10 14.60 ± 0.14 0.0023153 0.033614 3.601714649

TAG50:0-FA16:0 13.54 ± 0.08 14.04 ± 0.12 0.00058382 0.030943 3.7388893

TAG49:0-FA18:0 7.86 ± 0.08 8.15 ± 0.14 0.0047979 0.045298 3.753109428

TAG51:0-FA16:0 8.98 ± 0.06 9.33 ± 0.08 0.0024164 0.033614 3.834911298

TAG51:0-FA18:0 8.30 ± 0.07 8.62 ± 0.08 0.0022509 0.033614 3.905248088

TAG50:3-FA20:3 8.05 ± 0.05 8.37 ± 0.17 0.0049929 0.045298 3.908510498

TAG52:7-FA16:0 8.48 ± 0.06 8.82 ± 0.08 0.00091569 0.032209 4.049985051

TAG50:0-FA18:0 12.15 ± 0.09 12.67 ± 0.12 0.0005839 0.030943 4.28559829

TAG46:1-FA14:0 10.96 ± 0.11 11.45 ± 0.15 0.0051951 0.046459 4.462184493

TAG50:0-FA14:0 7.94 ± 0.06 8.30 ± 0.08 0.00042461 0.030943 4.569745222

TAG49:0-FA16:0 10.02 ± 0.09 10.49 ± 0.12 0.0020077 0.033614 4.690186781

TAG54:6-FA22:6 9.70 ± 0.07 10.16 ± 0.11 0.00048272 0.030943 4.693395231

TAG54:0-FA16:0 7.06 ± 0.06 7.39 ± 0.06 0.00012953 0.030943 4.706367554

TAG47:0-FA15:0 8.07 ± 0.08 8.45 ± 0.15 0.0053337 0.047027 4.740641233

TAG52:5-FA20:5 8.51 ± 0.06 8.92 ± 0.10 0.0022509 0.033614 4.912457436

TAG48:0-FA14:0 10.32 ± 0.10 10.83 ± 0.13 0.001115 0.032209 4.935500085

TAG48:0-FA16:0 13.19 ± 0.11 13.85 ± 0.16 0.0010184 0.032209 4.962787325

TAG49:0-FA17:0 8.85 ± 0.08 9.29 ± 0.11 0.0021262 0.033614 5.001577158

TAG47:0-FA16:0 9.16 ± 0.09 9.63 ± 0.12 0.0027423 0.034136 5.16498652

TAG48:0-FA18:0 9.94 ± 0.10 10.46 ± 0.13 0.0020367 0.033614 5.194763489

TAG52:6-FA22:6 7.90 ± 0.07 8.35 ± 0.10 0.00074973 0.032209 5.694221781

TAG46:0-FA16:0 11.35 ± 0.14 12.06 ± 0.19 0.0022508 0.033614 6.258605708

TAG46:0-FA14:0 10.46 ± 0.13 11.16 ± 0.17 0.001132 0.032209 6.695044875

TAG44:0-FA16:0 9.52 ± 0.14 10.17 ± 0.17 0.0059229 0.049437 6.783708462

Data are shown as mean ± SE, presented in ascending order of % fold change

DAG, diacylglycerol; FA, fatty acid
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4.07 h, kidney 7.07 h, plasma 3.15 h [42]), our treatment could
only transiently block sphingolipid metabolism. This transient
downregulation of sphingolipid metabolism was chosen to de-
pict the very early stage of type 2 diabetes pathophysiology.
Figure 5a illustrates the sphingolipid metabolism pathway as
a target of these inhibitors, with FB1 (1 mg/kg) being delivered
intraperitoneally to mice as depicted in Fig. 5b. Serum samples
were collected at the end of the treatment and sphingolipid
species were profiled by MS (n = 3 per group). The FB1-
treated mice showed significant accumulation of sphingosine
(So) species So(d18:1) (Fig. 5c, d). In the SWIFT cohort

lipidomics study, four Cers—Cer(16:0), Cer(20:0), Cer(22:0)
and Cer(24:1)—were found to be significantly downregulated.
In the FB1-treated mice, although levels of these four lipid
metabolites decreased, the decrease was statistically significant
only for Cer (16:0) (Fig. 5e).

Effects of downregulation of sphingolipid metabolism
on glucose homeostasis

At the end of the 3 weeks of treatment, mice (n ≥ 14) were
evaluated for weight gain, FPG, fasting insulin and OGTT
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and ITT were performed. No significant difference were
observed between control and treatment groups for weight
gain, FPG and fasting insulin (ESM Fig. 4a–c). During
the GTT, no difference in blood glucose was observed
when comparing control and FB1-treated mice (Fig. 5f).
During the ITT, the treatment group (FB1) showed overall

reduced responsiveness to insulin in comparison with the
control group, most notably (significant) during the later
stages of the ITT (Fig. 5g). Interestingly, the islets in the
pancreas of FB1-treated mice (n ≥ 5) displayed a small but
significant reduction in the insulin-positive area compared
with the control mouse islets (Fig. 5h–j).
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Pancreatic beta cell function in vitro in response
to sphingolipid metabolism downregulation

To assess the effects of downregulated sphingolipid metabo-
lism on beta cell function and insulin secretion more directly,
murine (C57B/L6) islets and Min6 K8 cells were treated

in vitro with either FB1 (1 μmol/l) or a second inhibitor
myriocin (50 nmol/l) and GSIS was assessed (Fig. 6). In
Min6 K8 cells, both inhibitors significantly decreased GSIS
without affecting basal (low glucose) insulin secretion (Fig.
6a–d). The inhibitors also significantly decreased insulin se-
cretion in response to cell depolarisation with KCl (Fig. 6e, g)
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Fig. 6 GSIS studies in vitro. (a–h) In Min6 K8 cells, FB1 treatment
(green) did not alter basal (LG) insulin secretion (a) but significantly
decreased GSIS (high glucose [HG]-stimulated) (b). Myriocin treatment
(pink) did not alter basal insulin secretion (c) but significantly decreased
GSIS (d). FB1 treatment significantly decreased KCl-stimulated insulin
secretion (e) and total insulin (f). Myriocin treatment significantly de-
creased both KCl-stimulated insulin secretion (g) and total insulin (h).
In Min6 K8 cells, 0 mmol/l glucose was used for LG and 10 mmol/l
glucose was used in HG stimulation. For KCl stimulation, 25 mmol/l
KCl was added to HG solution. (i–l) In murine islets, FB1 treatment
significantly decreased both basal insulin secretion (i) and GSIS (j).

Myriocin treatment significantly increased basal insulin secretion (k)
and significantly decreased GSIS (l). In murine islets, 2.8 mmol/l glucose
was used for LG and 16.7 mmol/l glucose was used in HG stimulation.
For KCl stimulation, 25 mmol/l KCl was added to HG solution. Vehicle
included 0.04% (v/v) DMSO for FB1 treatments (blue) or 0.0001 (v/v)
DMSO for myriocin treatments (white). Data are presented as mean ±
SEM (n=3 for FB1 inMin6 cells, n=5 for myriocin inMin6 cells, n≥6 for
FB1 in C57BL/6 murine islets, n=3 for myriocin in C57BL/6 murine
islets). A two-tailed, unpaired t test was carried out for each comparison
(unadjusted p values: *p<0.05, **p<0.01, ***p<0.001 vs vehicle)
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and decreased total insulin content in Min6 K8 cells (Fig. 6f,
h). In murine islets, both inhibitors significantly decreased
GSIS (Fig. 6j, l). Moreover, myriocin caused a significant
increase in basal insulin secretion (Fig. 6k). In murine islets,
neither KCl-stimulated insulin secretion nor total insulin con-
tent were significantly altered by either treatment (data not
shown).

Discussion

By employing artificial intelligence-based machine learning,
we identified a predictive signature with an overall discrimi-
nating power (AUC) of 0.92with 91% accuracy. The accuracy
of this predictive signature is not compromised by either sen-
sitivity (87%) or specificity (93%). This accuracy is better
than that provided by well-known clinical diagnostics, includ-
ing fasting glucose, 2 h post-load glucose in 75 g OGTT,
HOMA-IR, family history of diabetes and type of GDM treat-
ment, as well as that reported in some recently published
metabolomics-based diagnostic studies [19, 43, 44].
Moreover, unlike other signatures [19, 28], a strength of our
predictive signature is that it does not rely on clinical variables
since case and control participants were matched on early
postpartum glucose tolerance (normal or impaired), age and
BMI to reduce confounding of metabolite prediction by these
clinical risk factors. The strong suit of the signature was the
45-fold cross-validation under a high confidence threshold
(1.0) and binary output, which together minimise the chance
of data overfitting and bias selection. This protocol ensures the
reliability of this signature in making a predictive decision for
any unknown blood sample. However, this predictive signa-
ture applies specifically to Hispanic and Asian women in
predicting early progression to type 2 diabetes within 2 years
following GDMpregnancy. Only two racial and ethnic groups
were selected for this study, to achieve sample homogeneity.
In future, these analyses may be extended to other race groups
in the SWIFT cohort, in order to test the signature’s ability to
predict progression to overt diabetes after GDM pregnancy
within a much longer follow-up period of 10 years.

For the first time in a population-based study, we identified
downregulation of sphingolipid metabolism as an antecedent
early-stage event in women with previous GDM who devel-
oped type 2 diabetes (Fig. 4), together with other known path-
ways (e.g. upregulated fatty acid biosynthesis and upregulated
α - l inolenic acid and l inole ic acid metabol ism) .
Downregulated sphingolipid metabolism was identified based
on a number of significantly downregulated nodes in the path-
way (Table 2 and Fig. 4b). However, several cross-sectional
clinical studies have shown that Cer levels (a single upstream
node of the whole pathway) are higher in obese individuals
with type 2 diabetes [45, 46]. These studies evaluated obesity
as a covariant in their analyses. However, in this study, obesity

was controlled by pair-matching of BMI between groups.
Moreover, we employed a prospective postpartum GDM co-
hort, leaving open the possibility that some nodes of
sphingolipid metabolism may arise after disease onset.

To understand the role of sphingolipid metabolism in the
early-stage pathophysiology of type 2 diabetes, we used FB1
to inhibit de novo sphingolipid biosynthesis transiently in
mice without high-fat diet intervention. The in vivo studies
showed that transient inhibition of sphingolipid metabolism
has no significant effect on insulin sensitivity, except in the
late-phase (indicating disrupted hepatic glucose uptake and/or
high gluconeogenesis) in the treatment group. However, this
modulation of sphingolipid metabolism appeared to reduce
pancreatic beta cell area. Further studies are required to deter-
mine whether this impairment of insulin biosynthesis will
eventually lead to glucose intolerance in the long term.

The role of downregulated sphingolipid metabolism in
overt type 2 diabetes phenotypes has been studied. Park et al
[47] showed that Cer synthase 2 null mice with impaired syn-
thesis of sphingolipids C22-24 develop glucose intolerance
due to abrogated Akt phosphorylation of the insulin receptor
in the liver. Alexaki et al [48] showed that adipocyte-specific
Sptlc1-knockout mice exhibit insulin resistance with age-
dependent loss of adipose tissue, increased macrophage infil-
tration and tissue fibrosis. Furthermore, Lee et al [49] showed
that adipocyte-specific Sptlc2-knockout mice display systemic
insulin resistance and hyperglycaemia. Taken together with our
observations, chronic sphingolipid metabolism downregula-
tion could thus potentially interfere with liver, muscle, adipose
and beta cell function, contributing to type 2 diabetes onset.

The inhibition of sphingomyelin synthase in INS-1 beta
cells significantly reduced insulin exocytosis [50].
Kavishwar and Moore [51] identified sphingolipid patches
on the surfaces of pancreatic beta cells as a predictor of their
functional capacity; the patches decreased in diabetes, sug-
gesting the importance of sphingolipids in this cell type. In
this study, both FB1 and myriocin decreased GSIS. Moreover,
myriocin treatment yielded significantly increased basal insu-
lin secretion in murine islets. Furthermore, downregulation of
sphingolipid metabolism reduced insulin content. Although
both FB1 and myriocin showed similar effects on GSIS
in vitro, potential noise from off-target effects of these two
inhibitors cannot be ruled out. Stanford et al [52] reported
similar results (i.e. decreased GSIS in Min6 cells and murine
islets) after inhibiting specific components of sphingolipid
metabolism. Recently Ye et al [53] showed that during diet-
induced obesity, mice with knockout of pancreatic beta cell-
specific LDL receptor-related protein 1 (a pleiotropic mediator
of cholesterol, insulin, energy metabolism and other cellular
processes) were unable to compensate beta cell function partly
due to downregulation of sphingolipidmetabolism. Therefore,
downregulated sphingolipid metabolism may play a causal
role in pancreatic beta cell dysfunction.
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