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Abstract
Aims/hypothesis The association between dietaryMn and type 2 diabetes is unclear.We aimed to elucidate whether dietaryMn is
associated with type 2 diabetes, to investigate whether this association is independent of dietary total antioxidant capacity (TAC)
and to explore the underlying mechanisms in their association.
Methods Two prospective cohorts of 3350 and 7133 Chinese adults (20–74 years old) were enrolled including, respectively, 244
and 578 individuals newly diagnosed with type 2 diabetes, with mean values of 4.2 and 5.3 years of follow-up. Cox’s
proportional-hazards regression and linear regression were performed to investigate the association between dietary Mn and
type 2 diabetes (diagnosed by OGTT) or HbAlc and to analyse the joint association between dietary Mn and TAC. Restricted
cubic spline (RCS) regression was applied to the non-linear association between dietary Mn and incidence of type 2 diabetes.
Mediation analysis was applied to explore potential mediators in their association in a subgroup of 500 participants.
Results Dietary Mn intakes were 4.58 ± 1.04 and 4.61 ± 1.08 (mean ± SD) mg/day in the two cohorts. Dietary Mn was inversely
associated with type 2 diabetes incidence and HbAlc concentration in both cohorts (ptrend < 0.01 and <0.01 for type 2 diabetes,
and ptrend < 0.01 and =0.02 for HbAlc, respectively, in each cohort) independent of TAC, adjusted for age, sex, BMI, tobacco use,
alcohol consumption, physical activity, diabetes inheritance, total energy, carbohydrate, total fatty acids, fibre, calcium, Mg,
hypertension, hyperlipidaemia, and impaired glucose tolerance or FBG (all at baseline). Their inverse association was stronger in
the presence of diets with high, compared with low, TAC. In RCS, intakes of >6.01 and 6.10–6.97 mg/day were associated with a
significantly lower type 2 diabetes incidence in the two respective cohorts. Mediation analysis showed that high plasma Mn and
low oxidative stress (increased Mn superoxide dismutase and decreased 8-hydroxydeoxyguanosine) contributed to the associa-
tion between dietary Mn and both type 2 diabetes and HbAlc.
Conclusions/interpretation Dietary Mn was inversely associated with type 2 diabetes independently of TAC. In addition, this
association was stronger in a high- rather than low-TAC diet. Plasma Mn and oxidative stress were mediators in the association
between dietary Mn and type 2 diabetes. Future studies on absolute Mn intake should be conducted to study the potential non-
linearity and optimal levels of dietary Mn and type 2 diabetes.
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MnSOD Mn superoxide dismutase
PBG Postprandial blood glucose
P-insulin Postprandial insulin
RCS Restricted cubic spline
SBP Systolic blood pressure
SEM Structural equation modelling
SOD Superoxide dismutase
TAC Total antioxidant capacity

Introduction

In China, the prevalence of diabetes has reached 10.9%, con-
tributing to the largest number of individuals with diabetes
around the world [1]. Diet and nutrients are established risk
factors for type 2 diabetes and offer potentially modifiable
prevention and treatment strategies [2].

Mn is one of the essential micronutrients for humans [3]
and dietary consumption is a principal source of Mn in the
body [3]. Animal studies have found an association between
dietary Mn and glucose metabolism: low dietary Mn can im-
pair insulin secretion and glucose metabolism [4], while Mn
supplementation modifies the enzyme profiles of carbohy-
drate metabolism [5] and improves high-fat-diet-induced beta
cell injury and insulin resistance in animal models of diabetes
[6]. However, acute oral Mn supplementation does not con-
sistently affect glucose tolerance in non-diabetic or type 2
diabetic individuals [7], and few studies have reported the
possible effect of dietary Mn in type 2 diabetes. The

association between dietary Mn and type 2 diabetes in human
studies is unclear, especially in longitudinal cohort studies.

Plasma Mn and Mn superoxide dismutase (MnSOD) have
been recommended as potential biomarkers for Mn nutritional
status in the human body [3], and both of them have been
associated with type 2 diabetes. Low serum Mn has been as-
sociated with a high risk of type 2 diabetes [8]. However,
higher levels of Mn in serum [9] and urine [10, 11] have also
been reported in individuals with diabetes, and similar whole-
bloodMn levels between diabetic and non-diabetic individuals
have been observed [12]. MnSOD plays a major role in the
downregulation of oxidative stress [13], a pathogenic factor of
type 2 diabetes [14]. Whether serum Mn and oxidative stress
contribute to the association between dietary Mn and type 2
diabetes has not been reported. No data in humans have been
reported to explain the possible mechanism of their associa-
tion. It is important to clarify these connections to understand
the effect of dietary Mn on type 2 diabetes. In epidemiological
research, mediation analysis has been paid much attention re-
cently when assessing whether and how the effect of an expo-
sure on an outcome could be explained by an intermediate
variable [15]. It can be employed to explore the mediators in
the association between dietary Mn and type 2 diabetes.

Dietary Mn has been reported to increase MnSOD and
participate in antioxidant defences in the human body [6].
However, many antioxidants in the diet were also proposed
to affect plasma antioxidant capacity and oxidative stress [16]
and were inversely associated with type 2 diabetes [17].
Whether dietary antioxidants affect the association between
dietary Mn and type 2 diabetes is ambiguous. Dietary total
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antioxidant capacity (TAC), which is the capacity of total food
antioxidants to scavenge free radicals [18], is a potential mar-
ker of diet quality [19]. Thus, TAC was used in our current
study to investigate whether the association between dietary
Mn and type 2 diabetes was independent of TAC.

In this research, two prospective cohort studies in China
were used.We intended to investigate whether dietaryMnwas
associated with type 2 diabetes and whether their association
was independent of TAC, carbohydrate, fatty acids, fibre, cal-
cium and Mg. The non-linear association between dietary Mn
and type 2 diabetes was also examined. Mediation analysis
was used to explore the mediators in their association.

Methods

Study population

Two prospective study cohorts were recruited in Harbin, the
capital and largest city of Heilongjiang province in north
China, to investigate the impacts of diet and nutrition on
chronic non-communicable diseases. They were the Harbin
People’s Health Study (HPHS) [20, 21] and the Harbin
Cohort Study on Diet, Nutrition and Chronic Non-
communicable Diseases (HDNNCDS) (registered at http://
www.chictr.org.cn/showproj.aspx?proj=6833 as ChiCTR-
ECH-12002721) [22]. Participants in the HPHS and the
HDNNCDS were recruited in 2008 and 2010, and the first
follow-up surveys were conducted in 2012 and 2015–2016,
with an average of 4.2 and 5.3 years follow-up, respectively.
The follow-up rates were 92.1% and 91.6% in the HPHS and
the HDNNCDS, respectively. At baseline, all participants
were aged 20 to 74 years old, without type 1 diabetes and
malignancies, and had lived in Harbin for more than 2 years.
In the present study, we further excluded the following indi-
viduals: those with type 2 diabetes (self-reported or diagnosed
based on OGTT) at baseline (n = 571 and 1189); those taking
glucose-lowering medication (n = 42 and 111); those with di-
etary restriction for diseases or weight loss (n = 167 and 394);
those with extremely high or low total energy intake
(<3347 kJ or >18,828 kJ); as well as those with more than
ten blank items in the dietary questionnaire (n = 28 and 86).
Finally, 3350 and 7133 participants were included in the
HPHS and the HDNNCDS, respectively.

The two studies were approved by the ethics committee of
Harbin Medical University and were conducted in accordance
with the Declaration of Helsinki. All participants signed in-
formed consent.

Data collection and calculation

Each participant completed a questionnaire, including demo-
graphic data (name, age, sex, education level, home address

and phone number), lifestyles (smoking, alcohol consumption
and physical activity), current and family disease histories,
and dietary habits [20, 21, 23]. Dietary habits were recorded
through a food frequency questionnaire (FFQ). Before dietary
surveys, two random subgroups of residents (from the HPHS
and the HDNNCDS, respectively) were recruited and were
asked to complete two FFQs (FFQ1 and FFQ2) and a 3-day
dietary record to validate the reliability of the FFQs. There
was satisfactory consistency for intake of nutrients and foods
[20, 23]. The energy-adjusted correlation coefficients for nu-
trients and foods in the HPHS were 0.53–0.77 and 0.55–0.76
between the two FFQs, and were 0.48–0.69 and 0.45–0.66
between FFQ2 and dietary records; and in the HDNNCDS
were 0.52–0.78 and 0.61–0.70 between the two FFQs, and
were 0.52–0.71 and 0.61–0.69 between FFQ2 and dietary
records. For dietary Mn and TAC, the energy-adjusted corre-
lation coefficients between the two FFQs and FFQ2 and die-
tary records were 0.63 and 0.60, and 0.57 and 0.58 in the
HPHS; and 0.68 and 0.66, and 0.62 and 0.61 in the
HDNNCDS. More detailed information can be found in elec-
tronic supplementary material (ESM) Methods.

The FFQ covered 103 food items assigned to 14 food groups:
rice, wheaten foods, potato and its products, beans, vegetables,
fruits, livestock, poultry, dairy, eggs, fish, snacks, beverage and
ice cream. The frequency and amount of each food item were
recorded to calculate food and nutrient intakes. In accordance
with the nutrient contents in the Chinese Food Composition
table [24], dietary nutrient intakes were calculated by summing
the amounts from each food item. Dietary TAC was calculated
according to the content of redox-active compounds [25].

Anthropometric measurement and biochemical
assessment

Anthropometric measurements, including height, weight,
waist circumference and blood pressure, were all measured
by professional examiners. BMI was calculated as weight
(kg) divided by the square of height (m). Fasting (more than
10 h) and postprandial (2 h after an OGTT) blood samples
were collected. Fasting blood glucose (FBG), 2 h postprandial
blood glucose (PBG), triacylglycerol, total cholesterol, HDL-
cholesterol (HDL-c) and LDL-cholesterol (LDL-c) were de-
termined by an automatic analyser (Hitachi 7100, Tokyo,
Japan). Fasting and postprandial insulin (F-insulin and P-
insulin respectively) were measured by a chemiluminescence
immune analyser (Elecsys 2010, Roche Diagnostics,
Indianapolis, IN, USA). Insulin resistance index (HOMA-
IR) and β cell function (HOMA-β) were calculated using
the following equations: HOMA-IR = (FBG × F-insulin)/
(22.5 × 7.175), and HOMA-β = (20 × F-insulin/7.175)/(FBG
− 3.5) (FBG in mmol/l, F-insulin in pmol/l) [26]. HbAlc was
determined by high-performance liquid chromatography
(VARIANT II, Bio-Rad, Hercules, CA, USA).
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Five hundred participants without type 2 diabetes at baseline
from theHDNNCDSwere randomly selected to further explore
the possible mediation effects of plasma Mn and oxidative
stress in the association between dietary Mn intake and type 2
diabetes. PlasmaMnwasmeasured by flame-atomic absorption
spectrophotometry (Unicam-929 spectrophotometer, Unicam,
Cambridge, UK) [27]. Total plasma superoxide dismutase
(SOD) and MnSOD were determined using the SOD activity
kit employing tetrazolium salt to detect superoxide generated
by xanthine oxidase and hypoxanthine (Cayman Chemical,
Ann Arbor, MI, USA). One unit of SOD was defined as the
amount of enzyme needed to exhibit 50% dismutation of the
superoxide radical [28]. The intra-assay and inter-assay
variances were 4.6% and 5.1%, respectively. Plasma 8-
hydroxydeoxyguanosine (8-OHdG) was determined by
enzyme-linked immunosorbent assay [29].

Definition of diseases

Type 2 diabetes was defined as FBG ≥7.0 mmol/l and/or PBG
≥11.1 mmol/l and/or self-reported medication for diabetes.
Impaired glucose tolerance was defined as PBG 7.8–
11.1 mmol/l (based on OGTT) andwithout self-reported medi-
cation for diabetes, and impaired FBG was defined as FBG
6.1–6.9 mmol/l and without self-reported medication for dia-
betes. Obesity was defined as BMI ≥28 kg/m2. Hypertension
was defined as systolic blood pressure (SBP) ≥140 mmHg,
and/or diastolic blood pressure (DBP) ≥90 mmHg, and/or
self-reported medication for hypertension. Hyperlipidaemia
was defined as triacylglycerols ≥2.26 mmol/l and/or total cho-
lesterol ≥6.22 mmol/l and/or HDL-c <1.04 mmol/l and/or
LDL-c ≥4.14 mmol/l and/or self-reported medication for
hyperlipidaemia.

Statistics

DietaryMnwas adjusted for total energy in the residual model
for the positive association between dietary nutrients and total
energy [30]. Continuous and frequency variables were
expressed as mean ± SD and percentage, and their variations
between type 2 diabetic and non-type 2 diabetic individuals
were examined by the unpaired t test and the χ2 test, respec-
tively. Cox’s proportional-hazards regression was employed
to explore the association between tertiles of dietaryMn intake
and type 2 diabetes incidence, and data were expressed as RR
(95% CI). Linear regression was used to explore the associa-
tion between dietary Mn and HbAlc concentration. We tested
statistical interactions between Mn and TAC using continuous
cross-product terms by the likelihood ratio test in models to
examine their joint associations. If the interaction term was
significant, we depicted the joint associations by stratifying
all participants into two categories of sex (male and female)
or TAC (high and low) and repeating the analyses above.

Restricted cubic spline (RCS) regression [31] was performed
to find the non-linear association between dietaryMn and type
2 diabetes. The reference value was 4.5 mg/day dietary Mn,
which is classed as an adequate dietary intake [32], and knots
were placed at the 5th, 25th, 50th, 75th and 95th percentiles of
dietary Mn. All analyses were conducted in the HPHS and the
HDNNCDS separately.

Mediation analyses were performed to examine any media-
ting effects of BMI, waist circumference, blood pressure, in-
sulin, HOMA-IR, HOMA-β and blood lipids in the associa-
tion between dietary Mn and type 2 diabetes incidence or
HbAlc concentration in the HPHS and the HDNNCDS.
Structural equation modelling (SEM) [33] was conducted
among participants with plasma Mn, MnSOD and 8-OHdG
values to investigate whether plasma Mn and oxidative stress
were mediators in the association between dietary Mn and
type 2 diabetes or HbAlc concentration. Dietary Mn and type
2 diabetes/HbAlc were set as independent and dependent
variables, respectively. Serum Mn, MnSOD and 8-OHdG
were set as mediator variables. Plasma MnSOD and 8-
OHdG were log10-transformed because of their skewed distri-
butions and all variables were standardised.

All missing covariate values (<4% for dietary covariates;
<1% for other covariates) were replaced by the population me-
dian, or exclusion of the missing data had no appreciable effect.

SPSS 22.0 (Beijing Stats Data Mining, Beijing, China) and
the packages Hmisc (for RCS) and lavaan (for mediation
analysis and SEM) in R version 3.0.3 (http://www.r-project.
org/) were used in statistical analysis. All p values were two-
tailed and p < 0.05 was considered statistically significant.

Results

Baseline characteristics of all participants

The average dietary Mn intakes in the HPHS and the
HDNNCDS were 4.58 ± 1.04 and 4.61 ± 1.08 (mean ± SD)
mg/day, respectively. Table 1 lists the main food groups that
contributed to ≥1% dietary Mn intake. In the HPHS, rice con-
tributed the most (43.52%), followed by vegetables (20.19%),
wheat (19.21%), fruit (6.24%) and beans (5.85%). In the
HDNNCDS, the main food sources of Mn were rice (45.38%),
wheat (18.82%), vegetables (18.61%), beans (6.19%) and fruit
(5.78%). Participants with different dietary Mn intakes had
significantly different dietary food group intakes (Table 1).

The demographic characteristics of all participants at base-
line are summarised in Table 2. During follow-up, 244 and
578 individuals developed type 2 diabetes in the HPHS and
the HDNNCDS, respectively. They had lower dietary Mn in-
takes and were older compared with the non-diabetic partici-
pants. Individuals with diabetes tended to have higher BMI,
waist circumference, SBP, DBP, FBG, PBG, F-insulin, P-
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insulin, HOMA-IR, HbAlc, total cholesterol, triacylglycerols,
LDL-c and prevalence of obesity, hypertension and hyperli-
pidaemia, but lower HOMA-β, compared with non-diabetic
individuals. The dietary intakes of participants with and with-
out type 2 diabetes are shown in ESM Table 1.

Association between dietary Mn and type 2 diabetes

All participants were divided into three groups by tertiles of
dietary Mn, the first (T1), second (T2) and third (T3) intake
groups, and their risk for type 2 diabetes was compared by

Cox’s proportional-hazards regression (Table 3). In the HPHS,
the RRs (95% CI) of T2 (4.22–4.91 mg/day) and T3
(≥4.91 mg/day) were 1.16 (0.81, 1.67) and 0.52 (0.33, 0.82),
compared with T1 (<4.22 mg/day), adjusted for age, sex,
BMI, smoking, alcohol consumption, physical activity, diabe-
tes inheritance, total energy, carbohydrate, total fatty acids,
fibre, calcium, TAC, Mg, hypertension, hyperlipidaemia and
impaired glucose tolerance or FBG (all at baseline), and the
ptrend was <0.01. In the HDNNCDS, the RRs (95% CI) of T2
and T3 (4.27–4.98 and ≥4.98 mg/day) were 0.99 (0.75, 1.31)
and 0.61 (0.43, 0.88), compared with T1 (<4.27 mg/day) after

Table 1 Dietary sources of Mn and dietary characteristics of participants in different Mn intake groups

Contribution to dietary
Mn intakes (%)

Dietary Mn intake tertiles p value

T1 T2 T3

HPHS

Food groups

Rice (g/day) 43.52 151.32 ± 103.53 187.52 ± 110 273.55 ± 157.93 <0.01

Wheat (g/day) 19.21 122.91 ± 94.42 130.53 ± 87.85 146.92 ± 120.31 <0.01

Potato (g/day) 1.53 69.07 ± 78.27 49.38 ± 45.71 49.28 ± 49.20 <0.01

Beans (g/day) 5.85 46.12 ± 47.81 42.73 ± 42.28 52.27 ± 55.25 <0.01

Vegetable (g/day) 20.19 167.76 ± 108.97 241.66 ± 115.96 461.83 ± 293.21 <0.01

Fruit (g/day) 6.24 136.93 ± 135.07 154.52 ± 145.37 190.30 ± 210.38 <0.01

Livestock (g/day) 1.04 100.50 ± 83.33 56.29 ± 53.30 43.16 ± 41.77 <0.01

Energy and macronutrients

Energy (kJ/day) 9258.07 ± 3253.46 8491.55 ± 2453.99 10,154.93 ± 2866.27 <0.01

Carbohydrate (g/day) 311.26 ± 129.11 319.86 ± 106.51 414.25 ± 135.71 <0.01

Carbohydrate (%) 54.23 ± 8.00 60.79 ± 5.54 65.36 ± 5.63 <0.01

Lipid (g/day) 81.94 ± 26.39 63.33 ± 16.52 62.54 ± 15.57 <0.01

Lipid (%) 33.64 ± 6.76 27.90 ± 4.66 23.07 ± 4.38 <0.01

Protein (g/day) 69.94 ± 35.15 59.37 ± 21.48 72.91 ± 26.77 <0.01

Protein (%) 12.13 ± 2.91 11.31 ± 1.87 11.57 ± 2.31 <0.01

HDNNCDS

Food groups

Rice (g/day) 45.38 162.34 ± 109.86 203.45 ± 129.76 286.15 ± 167.22 <0.01

Wheat (g/day) 18.82 125.21 ± 98.01 133.37 ± 101.19 141.45 ± 119.03 <0.01

Potato (g/day) 1.63 79.20 ± 88.90 52.21 ± 52.16 50.66 ± 53.36 <0.01

Beans (g/day) 6.19 47.72 ± 51.13 43.06 ± 44.52 61.82 ± 75.17 <0.01

Vegetable (g/day) 18.61 167.35 ± 113.96 220.02 ± 127.80 433.66 ± 284.27 <0.01

Fruit (g/day) 5.78 141.11 ± 133.87 144.25 ± 138.24 169.91 ± 170.55 <0.01

Livestock (g/day) 1.09 108.85 ± 93.80 57.29 ± 53.14 46.94 ± 50.29 <0.01

Energy and macronutrients

Energy (kJ/day) 9896.48 ± 3237.54 8814.58 ± 2775.60 10,240.25 ± 2911.37 <0.01

Carbohydrate (g/day) 333.23 ± 131.24 332.9 ± 121.64 415.43 ± 136.69 <0.01

Carbohydrate (%) 54.40 ± 8.43 60.81 ± 6.11 65.06 ± 5.98 <0.01

Lipid (g/day) 86.82 ± 27.64 65.18 ± 17.74 63.87 ± 16.85 <0.01

Lipid (%) 33.34 ± 7.22 27.98 ± 5.28 23.40 ± 4.76 <0.01

Protein (g/day) 75.61 ± 35.95 61.05 ± 23.56 72.97 ± 24.26 <0.01

Protein (%) 12.25 ± 3.03 11.21 ± 1.89 11.54 ± 1.99 <0.01

Continuous variables were expressed as the mean ± SD
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adjustment for all the above potential confounders as in the
HPHS (ptrend < 0.01).

No significant joint associations were found between die-
tary Mn and sex in the HPHS or the HDNNCDS (pinteraction =
0.92 and 0.22, respectively). The joint associations of dietary
Mn intake and TAC was significant, and pinteraction was <0.01
and 0.01 in the HPHS and the HDNNCDS, respectively. The

two cohorts consistently showed that dietary Mn intake was
inversely associated with type 2 diabetes incidence in diets
with low and high TAC, and the inverse association was stron-
ger in diets with high compared with low TAC (Fig. 1).
Detailed information is shown in ESM Table 2.

In multivariable linear regressions (Table 3), we analysed
the association between dietary Mn intake and HbAlc,

Table 2 Baseline demographic and biochemical characteristics of participants with/without diagnosed type 2 diabetes during follow-up

HPHS HDNNCDS

Participants without T2D Participants with T2D Participants without T2D Participants with T2D

Participants (n) 3106 244 6555 578

Dietary Mn intakes (mg/day) 4.60 ± 1.05 4.41 ± 1.02* 4.61 ± 1.07 4.48 ± 1.07*

Age (years) 49.51 ± 10.09 51.08 ± 10.94* 49.76 ± 9.19 52.53 ± 9.16*

Male (%) 31.78 35.53 32.82 47.81*

Education (%)

Middle school and below 34.08 47.06* 28.15 35.40*

Senior middle school 35.26 26.47 34.68 33.21

College and above 30.65 26.47 37.16 31.39

Smoker (%)

Current 14.21 10.53 15.54 20.51*

Ever 2.39 2.63 2.76 3.66

Never 83.40 86.84 81.70 75.82

Alcohol consumption (%) 30.59 28.38 34.09 37.64*

Physical activity (%)

Light 82.54 89.55* 81.31 80.90*

Moderate 16.43 10.45 17.28 16.10

Vigorous 1.03 0.00 1.42 3.00

BMI (kg/m2) 24.71 ± 3.30 26.58 ± 4.08* 24.69 ± 3.44 26.01 ± 3.47*

Waist circumference (cm) 83.43 ± 9.76 88.27 ± 11.15* 84.64 ± 10.04 89.69 ± 9.59*

SBP (mmHg) 129.19 ± 19.80 137.46 ± 24.08* 133.69 ± 18.05 141.98 ± 19.01*

DBP (mmHg) 78.79 ± 11.03 81.15 ± 9.32* 81.13 ± 8.97 85.16 ± 10.49*

FBG (mmol/l) 5.15 ± 0.67 5.52 ± 0.76* 5.03 ± 0.69 6.09 ± 1.25*

PBG (mmol/l) 6.00 ± 1.53 7.10 ± 2.30* 5.79 ± 1.76 9.58 ± 3.43*

F-insulin (pmol/l) 59.01 ± 60.59 77.35 ± 44.96* 56.63 ± 33.73 68.21 ± 37.26*

P-insulin (pmol/l) 258.25 ± 240.82 370.37 ± 323.31* 285.25 ± 208.94 350.77 ± 256.80*

HOMA-IR 1.74 ± 1.96 2.41 ± 1.27* 1.61 ± 1.05 2.35 ± 1.40*

HOMA-β 151.65 ± 106.36 137.41 ± 76.41* 167.40 ± 113.27 125.55 ± 107.05*

HbAlc (mmol/mol) 38.86 ± 5.46 47.94 ± 10.60* 36.14 ± 4.86 43.79 ± 11.48*

HbAlc (%) 5.71 ± 0.50 6.54 ± 0.97* 5.46 ± 0.44 6.26 ± 1.05*

Total cholesterol (mmol/l) 4.87 ± 0.93 5.02 ± 0.74* 5.13 ± 1.01 5.45 ± 1.28*

Triacylglycerol (mmol/l) 1.68 ± 1.31 2.11 ± 1.66* 1.63 ± 1.49 2.83 ± 3.89*

HDL-c (mmol/l) 1.29 ± 0.34 1.29 ± 0.39 1.29 ± 0.33 1.18 ± 0.30*

LDL-c (mmol/l) 3.91 ± 1.06 4.15 ± 0.86* 3.00 ± 0.86 3.12 ± 0.88*

Obesity (%) 15.84 28.95* 15.93 25.27*

Hypertension (%) 33.73 50.00* 33.80 55.47*

Hyperlipidaemia (%) 40.71 47.37* 47.94 69.37*

Dietary energy intake (kJ/day) 9290.66 ± 2930.65 9336.82 ± 3067.05 9622.38 ± 3019.69 10,057.99 ± 3348.31*

Continuous and frequency variables were expressed as the mean ± SD and percentage. * p < 0.05 when compared with individuals without type 2 diabetes

T2DM, type 2 diabetes
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adjusted for all the above potential confounders. In the HPHS
and the HDNNCDS, the standardised regression coefficients
(β) of dietary Mn to HbAlc were −0.190 (ptrend <0.01) and
−0.060 (ptrend =0.02), respectively. The two cohorts showed a
statistically significant inverse association between dietary
Mn and HbAlc.

In RCS (Fig. 2), the RRs for type 2 diabetes were decreased
with an increase in dietary Mn, and intakes of >6.01 mg/day
had a significant RR lower than 1.00 in the HPHS; and the RR
was decreased when dietary Mn intake was <6.64 mg/day and
increased when intake was >6.64 mg/day. Significantly
decreased RR (<1.00) was observed when intake ranged from
6.10 to 6.97 mg/day in the HDNNCDS.

Mediators in the association between dietary Mn
and type 2 diabetes

Mediation effects of anthropometric and biochemical indica-
torsMediation analyses were employed to examine the media-
tion effects of anthropometric and biochemical indicators, in-
cluding BMI, waist circumference, SBP, DBP, F-insulin, P-inu-
lin, HOMA-IR, HOMA-β, total cholesterol, triacylglycerol,
HDL-c and LDL-c, in the association between dietary Mn and
type 2 diabetes or HbAlc concentration at follow-up (ESMTable
3). In the HPHS, F-insulin, P-insulin, HOMA-IR, total choles-
terol and LDL-c were all significant mediators in the association
between dietaryMn and type 2 diabetes. In the HDNNCDS, the
mediation effects of all the above indicators were non-signifi-
cant. For HbAlc, the mediation effects of F-insulin, P-insulin,
HOMA-IR, HOMA-β, total cholesterol and LDL-c were sig-
nificant in the HPHS, but not in the HDNNCDS.

Mediation effects of plasma Mn and oxidative stress We in-
vestigated the roles of plasma Mn and MnSOD in the asso-
ciation between dietary Mn and type 2 diabetes in 500 ran-
domly selected participants, and 41 diabetic individuals were
diagnosed during follow-up. The dietary Mn, plasma Mn,
MnSOD, 8-OHdG, demographic and biochemical indicators
of the population are summarised in ESM Table 4. In linear
regression (ESM Table 5), dietary Mn was significantly
positively associated with plasma Mn and MnSOD with the
standardised β values of 0.53 and 0.31, respectively, adjusted
for age, sex, BMI, smoking, alcohol consumption, physical

Table 3 Association between dietary Mn and type 2 diabetes incidence/HbAlc in HPHS and HDNNCDS

Participants/N Model 1 Model 2 Model 3

Type 2 diabetes RR (95% CI)

HPHS

Dietary Mn intake (mg/day) <4.22 84/1118 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

4.22–4.91 107/1118 1.34 (0.98, 1.83) 1.14 (0.79, 1.63) 1.16 (0.81, 1.67)

≥4.91 53/1114 0.60 (0.41, 0.88) 0.51 (0.32, 0.81) 0.52 (0.33, 0.82)

ptrend <0.01 <0.01 <0.01

HDNNCDS

Dietary Mn intake (mg/day) <4.27 194/2387 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

4.27–4.98 224/2393 1.03 (0.83, 1.28) 1.07 (0.83, 1.36) 0.99 (0.75, 1.31)

≥4.98 160/2353 0.73 (0.58, 0.93) 0.69 (0.51, 0.95) 0.61 (0.43, 0.88)

ptrend 0.01 0.02 <0.01

HbAlc β (p value)

HPHS 244/3350 −0.048 (0.01) −0.170 (<0.01) −0.190 (<0.01)

HDNNCDS 578/7133 −0.063 (<0.01) −0.080 (<0.01) −0.060 (0.02)

Data are presented as RR (95% CI) or β (p value)

Model 1 was adjusted for age, sex, BMI, tobacco use, alcohol consumption, physical activity, diabetes inheritance

Model 2 was further adjusted for total energy, carbohydrate, total fatty acids, fibre, calcium, TAC and Mg

Model 3 was adjusted for all variables inModel 2 as well as baseline diseases (hypertension, hyperlipidaemia and impaired glucose tolerance or FBG) for
the type 2 diabetes analysis and baseline HbAlc concentration for the HbAlc analysis
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Fig. 1 Joint associations of dietary Mn and TAC on type 2 diabetes
incidence. Tertile-specific RRs were given for T1, T2 and T3 of dietary
Mn intake, in contexts of low- and high-TAC diet in the HPHS (a) and the
HDNNCDS (b). Square, low-TAC diet; circle, high-TAC diet; pinteraction
< 0.01 in both the HPHS and the HDNNCDS. The models were adjusted
for age, sex, BMI, tobacco use, alcohol consumption, physical activity,
diabetes inheritance, total energy, carbohydrate, total fatty acids, fibre,
calcium, TAC, Mg and diseases (hypertension, hyperlipidaemia and im-
paired glucose tolerance or FBG) (all at baseline). T2DM, type 2 diabetes
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activity, diabetes inheritance, dietary total energy, carbohy-
drate, total fatty acids, fibre, calcium, TAC and Mg (Model
2). The standardised β values were 0.55 and 0.30, still signif-
icant, even after we further adjusted for hypertension, hyper-
lipidaemia, and impaired glucose tolerance or FBG (Model 3).
An inverse association was also observed between dietary Mn
and 8-OHdG after adjusting for the above potential con-
founders with the standardised β of −0.29 (Model 3).

In SEM (Fig. 3), there were significant direct and indirect
effects of dietary Mn on type 2 diabetes. The indirect effects
were mediated by plasma Mn, MnSOD and 8-OHdG, and
they were plasma Mn → type 2 diabetes, plasma MnSOD
→ type 2 diabetes, plasma Mn → MnSOD → 8-OHdG →
type 2 diabetes. For HbAlc, the direct and indirect effects of
dietaryMnwere significant. The indirect effects of dietaryMn
on HbAlc were plasma Mn → HbAlc, MnSOD → HbAlc,
plasma Mn → MnSOD → 8-OHdG→ HbAlc.

Discussion

To our knowledge, this is the first population-based study to
investigate the association between dietary Mn and type 2
diabetes and to explore the underlying mechanisms of the
association. In two prospective cohorts of Chinese adults,
dietary Mn was inversely associated with type 2 diabetes

independently of TAC and their association was more pro-
nounced in the context of a higher-TAC diet. Increased plasma
Mn and decreased oxidative stress partly mediated their
association.

In this study, two prospective cohorts were used. In the
HPHS, an inverse association was found between dietary
Mn and type 2 diabetes (diagnosed by fasting glucose and
OGTT). Surprisingly, the same result was observed in the
HDNNCDS. The two cohorts consistently indicated the sig-
nificant inverse association between dietary Mn and type 2
diabetes. Furthermore, their association was more pronounced
in participants with higher-TAC diets. In human bodies, the
enzymatic and non-enzymatic antioxidants co-existed and
jointly contributed to antioxidative defence. Mn participates
in MnSOD, an important enzymatic antioxidant [18]. The
components of TAC, mainly including flavonoids, phenolic
acids, carotenoids and polyphenols, participate in non-
enzymatic antioxidant defence [34] and have also been repor-
ted to modify systemic inflammation [35]. These may help
explain the potential joint association of Mn and TAC in type
2 diabetes. However, more studies are needed to give a clear
description of the joint association between Mn and TAC and
a potential mechanism.

In the two cohorts, the average dietary Mn intakes were
both approximately 4.6 mg/day, similar to those in Asian
countries [36, 37]. The RCS, which characterises a dose–
response association between a continuous exposure and an
outcome [38], showed that Mn intakes of >6.01 and 6.10–
6.97 mg/day, much higher than adequate intake (4.5 mg/
day), were associated with low type 2 diabetes incidence in
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Fig. 2 Association between dietary Mn intake and type 2 diabetes inci-
dence in RCS in the HPHS (a) and the HDNNCDS (b). Solid line, RR;
dotted lines, 95% CI; RR, risk ratio for type 2 diabetes incidence. T2DM,
type 2 diabetes
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the HPHS and the HDNNCDS, respectively. Based on these
results, we suggest increasing dietary Mn intake. Previous
studies may provide some supporting evidence for the benefits
of increasing dietary Mn intake. In mice susceptible to fat-
induced diabetes, Mn supplementation improved the activity
of MnSOD in liver mitochondria, insulin secretion and glu-
cose homeostasis, and decreased lipid peroxidation [6]. In ad-
dition, a U-shaped spline was observed in the HDNNCDS, but
not in the HPHS. The sample size and heterogeneity between
the two cohorts may be important reasons. Previous studies
have shown possible U-shaped association between plasma
Mn and type 2 diabetes: both low and high levels of plasma
Mn have been associated with higher odds of type 2 diabetes
in a case–control study [8]; and serum Mn in the 4th quartile
(Q4) (the highest compared with the lowest serum level, OR
1.15) has higher odds than Q3 (OR 0.76) in a cross-sectional
study [39]. All these findings show that extreme Mn levels
may be associated with high type 2 diabetes risk. However,
the optimal dietary Mn intake is hard to determine for scarce
data. Future studies with more data on absolute Mn intake are
needed to study the potential non-linearity between dietary
Mn, type 2 diabetes and optimal intake levels.

To further explore the potential mechanisms in the associa-
tion between dietary Mn and type 2 diabetes, mediation ana-
lysis was performed. Mn is an essential mineral nutrient and
the plasmaMn level reflectsMn nutritional status in the human
body [3]. Mn supplementation can increase plasma Mn [40].
Meanwhile, low plasmaMnwas associatedwith increased risk
for type 2 diabetes [39], and individuals with type 2 diabetes
have had lower plasma Mn level than healthy non-diabetic
control individuals [41]. Consequently, we speculated that
plasma Mn played a role in the association between dietary
Mn and type 2 diabetes. However, no study has been under-
taken. To verify this speculation, we performed mediation
analysis. Our data showed that high dietary Mn contributed
to high plasma Mn, which then contributed to low type 2
diabetes incidence. These findings revealed the mediating role
of plasma Mn in their association.

MnSOD is a typicalMn-dependent metalloenzyme and acts
as a primary antioxidant in the mitochondrial matrix [42].
Animal studies reported increased activity of MnSOD in pan-
creatic beta cells after Mn supplementation [6], and MnSOD
can scavenge reactive oxygen species and decrease oxidative
stress [42], which could inactivate a series of stress pathways
contributing to the onset and progression of diabetes, such as
NF-κB, c-Jun N-terminal kinase (JNK)/stress-activated pro-
tein kinase (SAPK), and p38 mitogen-activated protein kinase
(MAPK) [43]. Thus, we hypothesised that decreased oxidative
stress was a mediator in the association between dietary Mn
and type 2 diabetes. In this study, we specifically measured
serum oxidative stress (indicated by MnSOD and 8-OHdG)
and mediation analysis showed that dietary Mn increased se-
rum MnSOD and decreased 8-OHdG, in turn decreasing type

2 diabetes risk. This indicated that oxidative stress mechanis-
tically mediated their association.

Some studies have reported that dietary Mn was associated
with abdominal obesity, blood pressure and blood lipid [44,
45]. Whether they were also mediators in the association
between dietary Mn and type 2 diabetes was unclear. In this
study, we also examined the mediation effects of BMI, waist
circumference, blood pressure, insulin, HOMA-IR, HOMA-β
and blood lipid in their association. However, no mediation
effects were observed. Thus, we could not conclude whether
these indicators were mediators in their association.

In summary, the mediation analysis, with plasma Mn and
oxidative stress included in the regressionmodel of dietaryMn
and type 2 diabetes, revealed that dietary Mn was inversely
associated with type 2 diabetes, and that plasma Mn and oxi-
dative stress partly mediated their association. However, these
are not the sole explanations for the association between die-
tary Mn and type 2 diabetes. Other mechanisms not included
in the current study may exist. For example, previous studies
have reported that dietary Mn may activate enzymes involved
in glucose metabolism [46], influence insulin signalling path-
ways [4] and downregulate reactive oxygen species indepen-
dently of MnSOD [47]. More studies are warranted to under-
stand the mechanisms underlying their association.

HbAlc is a measure of total glycaemic exposure with less
day-to-day perturbation than fasting glucose or OGTT, and is
an alternative screening tool for diabetes [48]. It is noteworthy
that significant inverse associations between dietary Mn and
HbAlc, and significant mediation effects of plasma Mn and
oxidative stress were observed, which added credence to the
findings in type 2 diabetes.

In the current study, cereals, vegetables, beans and fruit
were the main food sources of dietary Mn, which were con-
sistent with previous studies. It has been suggested that cereals,
vegetables and beans are the major food groups contributing to
dietary Mn in Korean children [49], and more than 42% of
dietary Mn was reported from rice in south China [44].
Although refined grains were positively associated with type
2 diabetes, the potential protective effect of food groups rich in
Mn has been documented [50]. Therefore, more food groups
rich in Mn, including whole grains, vegetables and fruits,
should be recommended.

One strength of our study is the diagnosis of type 2 diabetes
with fasting blood glucose, OGTT and HbAlc in both prospec-
tive cohorts. In addition, we measured plasma Mn and oxida-
tive stress and examined the underlying mechanism of the
association between dietary Mn and type 2 diabetes. There
were some limitations. The study participants were all
Chinese, which made the study less generalisable to the world
population. Our results were also limited by the possibility of
residual or unaccounted-for confounders, althoughwe adjusted
for many potential demographic, lifestyle, diet and disease-
history confounders. Additionally, dietary intakes were

Diabetologia (2018) 61:1985–1995 1993



recorded by FFQ, which could not accurately estimate absolute
nutrient intakes.

In conclusion, our findings from two prospective cohorts
provide the first strong evidence supporting the inverse asso-
ciation between dietary Mn and type 2 diabetes, which was
independent of TAC, and which was more pronounced in the
presence of a high-TAC diet. Plasma Mn and oxidative stress
partially mediated their association. Our findings highlight the
importance of dietary Mn intake in type 2 diabetes. Future
studies on absolute Mn intake should be conducted to study
their non-linear association and optimal dietary intakes.
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