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Abstract
Aims/hypothesis There is an extensive body of literature sug-
gesting the involvement of multiple loci in regulating the ac-
tion of metformin; most findings lack replication, without
which distinguishing true-positive from false-positive find-
ings is difficult. To address this, we undertook evidence-
based, multiple data integration to determine the validity of
published evidence.
Methods We (1) built a database of published data on gene–
metformin interactions using an automated text-mining ap-
proach (n = 5963 publications), (2) generated evidence scores
for each reported locus, (3) from which a rank-ordered gene
set was generated, and (4) determined the extent to which this
gene set was enriched for glycaemic response through repli-
cation analyses in a well-powered independent genome-wide
association study (GWAS) dataset from the Genetics of
Diabetes and Audit Research Tayside Study (GoDARTS).

Results From the literature search, seven genes were identi-
fied that are related to the clinical outcomes of metformin.
Fifteen genes were linked with either metformin pharmacoki-
netics or pharmacodynamics, and the expression profiles of a
further 51 genes were found to be responsive to metformin.
Gene-set enrichment analysis consisting of the three sets and
twomore composite sets derived from the above three showed
no significant enrichment in four of the gene sets. However,
we detected significant enrichment of genes in the least
prioritised category (a gene set in which their expression is
affected by metformin) with glycaemic response to metformin
(p = 0.03). This gene set includes novel candidate genes such
as SLC2A4 (p = 3.24 × 10−04) and G6PC (p = 4.77 × 10−04).
Conclusions/interpretation We have described a semi-
automated text-mining and evidence-scoring algorithm that fa-
cilitates the organisation and extraction of useful information
about gene–drug interactions. We further validated the output
of this algorithm in a drug-response GWAS dataset, providing
novel candidate loci for gene–metformin interactions.
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MAGENTA Meta-Analysis Gene-set Enrichment of
variaNTAssociations

MATE Multi drug and toxin extrusion
OCT Organic cation transporter
PD Pharmacodynamics
PK Pharmacokinetics
PMAT Plasma membrane monoamine transporter
SHBG Sex-hormone binding protein
STK Serine/threonine kinase

Introduction

Metformin has been used for 60 years by more than 150 mil-
lion people worldwide. It is the first-line monotherapy pre-
scribed at diagnosis in people with type 2 diabetes [1], and
also slows progression to type 2 diabetes in people with ele-
vated but non-diabetic glucose levels who are unable or un-
willing to adhere to lifestyle modification [2–4].

Despite the popularity of metformin in diabetes treatment,
its mechanisms of action are poorly understood; suppression
of endogenous glucose production via activation of AMP-
kinase (AMPK) has been hypothesised [5]. However, a pre-
served glucose-lowering effect has been reported in AMPK
knockout mice [6]. Alternative, non-AMPK-dependent,
mechanisms include inhibition of mitochondrial glycerophos-
phate dehydrogenase activity [7] and adenylate cyclase-
mediated inhibition of the gluconeogenic pathway in favour
of glycolysis [8]. In a recent study performed on
Caenorhabditis elegans and extended to human cell lines,
Wu et al identified two new targets of metformin action: the
nuclear pore complex and the gene encoding acyl-CoA dehy-
drogenase 10 [9].

Diabetes treatment guidelines adopt a one-size-fits-all ap-
proach, and do not take into account interindividual variation
in response. Yet there is considerable between-patient varia-
tion in treatment effects, with some responding poorly or not
at all and others being highly sensitive to the drug or
experiencing extreme adverse drug reactions [10]. Up to
30% of individuals treated with metformin develop nausea,
bloating, abdominal pain and/or diarrhoea, and 5–10% are
unable to continue with metformin treatment [11].
Heritability studies indicate that genetic variation underlies
around 34% of the variability in metformin response [12].

Previous candidate gene-based pharmacogenetic studies of
metformin have largely focused on loci encoding transporter
proteins; little emphasis has been placed on genes in the phar-
macodynamics (PD) domain, and much of the published data
are inconclusive and sometimes controverted [10].
Hypothesis-free genome-wide association studies (GWASs)
on metformin have identified a genome-wide significant var-
iant, rs11212617, near the ATM gene for metformin-induced
glycaemic response [13]. Given that this SNP lies in a large

block of genes that are in linkage disequilibrium, the authors
performed cellular work and suggested ATM to be the causal
gene.

AMPK, the energy sensor, is the downstream target of met-
formin and is believed to be involved in the PD of metformin.
Selective inhibition of ataxia telangiectasia mutated (ATM)
protein by KU-55933 resulted in a marked reduction in
metformin-induced AMPK activation, suggesting involvement
of ATM in AMPK activation. However, cellular studies
showed marked inhibition of organic cation transporter
(OCT)1, an important mediator of metformin uptake by the
liver, by KU-55933, suggesting that the observed attenuated
AMPK phosphorylation could also be due to inhibition of
OCT1 [14]. A recent GWAS study from the MetGen consor-
tium reported an association between an intronic SLC2A2 var-
iant, rs8192675, and the glycaemic response to metformin [15].

Owing to the vast literature on gene–metformin interactions,
obtaining an unbiased overview of the evidence is extremely
difficult. While meta-analysis delivers trustworthy findings if
well conducted, heterogeneity in study designs, analytic strate-
gies, population characteristics and data selection biases present
challenges to such analyses [16].Thus, to facilitate this process,
automated approaches to integrate evidence from multiple
sources, cataloguing the levels of evidence, validating in a
real-world dataset, and using this to prioritise genes for
follow-up are increasingly favoured [17, 18].

Here, we established a semi-automated text-mining pipe-
line to prioritise biological candidate genes that show evi-
dence of interaction with metformin based on strength of ev-
idence from published studies. We then evaluated the
prioritised gene sets by examining their enrichment using a
well-powered external dataset.

Methods

Data collection

Selection and download of articles Articles that make refer-
ence to studies of genes and metformin in humans, identified
through PubMed, were identified using the Fast Automated
Biomedical Literature Extraction (FABLE) tool [19].
Accordingly, 13,914 articles were identified, of which 5963
reported independent information (Fig. 1). PubMed article
identifiers (PMIDs) were collected for automated download
of full text articles using Batch Entrez and EndNote. These
tools permit access to articles from journals that are either
open access or to which our institution (Lund University)
subscribes. In most cases, PDFs are the default source of in-
formation from published articles. Thus, batch conversion of
PDF to text format was done using Xpdf 3.04 (ftp.foolabs.
com, accessed from 1 February to 30 June 2014).
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Gene and drug dictionary construction Gene and drug
names are often described using more than one naming con-
vention, abbreviation and/or synonym in the biomedical liter-
ature. Therefore, we compiled a comprehensive dictionary of
gene names and abbreviations by extracting gene synonyms
from NCBI Gene (www.ncbi.nlm.nih.gov/gene/), UCSC
Genome Brower (www.genome.ucsc.edu/), SymAtlas
(www.biogps.org/), Google (www.google.com/), GeneCards
(www.genecards.org/) and iLINCS (www.ilincs.org/ilincs/),
which was subsequently used to standardise data for a given
gene. A drug dictionary capturing generic name, brand names,
synonyms and International Union of Pure and Applied
Chemistry (IUPAC) names of metformin was also developed
from drug cards of the Drug Bank (www.drugbank.ca/) (see
electronic supplementary material [ESM] Table 1). All these
databases were accessed from 1 February to 30 June 2014.

Sentence extraction Sentence extraction involves text seg-
mentation, tokenisation and named entity recognition.
Sentence segmentation and tokenisation were achieved using
the Lingua::EN::Sentence module in the Perl software pack-
age, which is freely available from the Comprehensive Perl
Archive Network (CPAN) (http://search.cpan.org/~shlomoy/
Lingua-EN-Sentence-0.14/lib/Lingua/EN/Sentence.pm,
accessed from 1 February to 30 June 2014). Gene and drug
names were tagged using a Perl-based mark-up algorithm that
uses a set of hashes and regular expressions. Sentences that
contain a drug and a gene (i.e. a gene–drug dyad) were ex-
tracted from the corpus of each article (e.g., from titles, ab-
stracts or main body of texts).

Annotation of extracted sentencesAnalyses are based on the
assumption that gene–drug dyads coalesce within a single
sentence. Thus, each sentence was manually annotated to de-
scribe relationships between genes and metformin according
to the annotation guideline given from the gene–drug interac-
tion corpus and comparative evaluation by the Discovery
through Integration and Extraction of Genomic and Clinical

Knowledge (http://diego.asu.edu/, accessed 15 August 2014)
[20]. ‘Interaction’ words are those that describe the presence
of an interaction. For the purpose of these annotations,
interactions refer to the action, effect or influence of the gene
on a clinical outcome, pharmacokinetics (PK) or PD of the
drug. Furthermore, the action, effect or influence of the drug
on gene expression is also included as a component of
interaction.

Annotation categoriesMain annotations used to confirm the
presence or absence of interaction between genes and metfor-
min can be direct or indirect, and explicit or inferred. For the
current analysis, three categories of data about interactions
were documented: direct explicit, indirect explicit and indirect
inferred. Only direct and explicit interactions were taken for-
ward for further analysis. Different annotation subcategories
were also used, along with interactions if they existed in
sentences. These include ‘increased interaction’, ‘decreased
interaction’ or ‘negation’. Negation indicates an absence of
interaction and is usually represented by negative words such
as ‘not’ or ‘never’ (ESM Table 2).

Developing the evidence-scoring algorithm

An iterative ranking algorithm was developed based on the
pharmacogenomic relatedness, frequency and consistency of
evidence for co-occurring gene–drug pairs. Each gene was giv-
en a score based on the strength of evidence for interaction with
metformin. The scoring algorithm is adapted from the Coriell
Personalized Medicine Collaborative pharmacogenomics ap-
praisal [17]. Accordingly, each gene was given a score
consisting of seven categories, ranging from 1 (representing
the strongest evidence; presence of consistent clinical data) to
7 (the weakest evidence; published evidence showing lack of
effect of the gene on drug response). See the ESMMethods for
further details.

Once all the evidence for a given gene had been gathered, a
single score was assigned based on the greatest strength of
evidence. For evidence scores 1–3, the drug–phenotype asso-
ciation should be consistent across different studies. If the data
were found to be inconsistent, the clinical relevance of the
gene was considered unknown and a score of 4–6, as appro-
priate, was returned. A score of 7 was given if the clinical
relevance was clearly refutable based on the available evi-
dence. Table 1 outlines criteria for each score with their as-
sessment outcomes.

Genome-wide association data

Cohort description The validation cohort was from the
Genetics of Diabetes and Audit Research Tayside Study
(GoDARTS) consisting of 2568 adults of European ancestry
diagnosed with type 2 diabetes who had been on stable

FABLE

13,914 articles

Sentence extraction

3575 full text PDF2388 abstracts

Converted to text file

Duplicates removed

5963

Fig. 1 Identification, screening and selection of published articles

Diabetologia (2017) 60:2231–2239 2233

http://www.ncbi.nlm.nih.gov/gene
http://www.genome.ucsc.edu
http://www.biogps.org
http://www.google.com
http://www.genecards.org
http://www.ilincs.org/ilincs
http://www.drugbank.ca
http://search.cpan.org/%7Eshlomoy/Lingua-EN-Sentence-0.14/lib/Lingua/EN/Sentence.pm
http://search.cpan.org/%7Eshlomoy/Lingua-EN-Sentence-0.14/lib/Lingua/EN/Sentence.pm
http://diego.asu.edu


metformin treatment for at least 6 months with no history of
insulin use before or during the study period [13]. All partic-
ipants had a baseline HbA1c > 7% (53 mmol/mol) and < 14%
(129.5 mmol/mol).

Genotyping and quality control Genotyping and quality
control procedures for the GoDARTS cohort are described
elsewhere [13, 14, 21]. See ESM Methods for further details.

Glycaemic response definition and model A linear regres-
sion model of glycaemic response was fitted as the maximum
HbA1c reduction recorded within 1–18 months of the metfor-
min index date adjusted for baseline HbA1c, creatinine clear-
ance, adherence, dose, drug group and baseline gap (the num-
ber of days between baseline HbA1c measure and metformin
index date). The final glycaemic response model was: HbA1c

reduction = baseline HbA1c + creatinine clearance + adher-
ence + average daily dose + drug group + baseline gap +
genotype.

Each SNP was tested for association with a continuous
measure of glycaemic response (HbA1c reduction) with
SNPTEST v2.5 (https://mathgen.stats.ox.ac.uk/genetics_
software/snptest/snptest.html) [22] using multiple linear
regression assuming an additive model. Association test
results were combined with fixed-effects inverse-variance-
weighted meta-analysis using Genome-Wide Association
Meta Analysis software v2.1.34 (www.geenivaramu.ee/en/
tools/gwama) [23]. Software was accessed from 1 February
to 30 June 2014.

Gene-set enrichment analysis

We carried out enrichment analysis using Meta-Analysis
Gene-set Enrichment of variaNT Associations (MAGENTA
v2.4) (https://software.broadinstitute.org/mpg/magenta/,
accessed from 1 February to 30 June 2014) [24] to test
whether literature-identified gene sets were enriched with

glycaemic response to metformin in a well-powered GWAS
from the GoDARTS consisting of 2568 individuals with
type 2 diabetes treated with metformin. Five sets of genes
identified from the literature were used for gene-set enrich-
ment analysis (GSEA): (1) genes directly related to clinical
outcomes of metformin; (2) genes associated with either the
PK or PD of metformin but not directly related to the clinical
outcome; (3) genes whose expression is affected by the
presence of metformin and not included in either (1) or (2)
above; (4) genes related to clinical outcome, PK or PD (1 + 2);
and (5) genes related to a clinical outcome and/or PK/PD/
expression (1 + 2 + 3). See ESM Methods for further details.

Results

Data retrieval and extraction

From our screen of articles with a key word ‘metformin’ in
FABLE, we identified 5963 unique articles published from
1968 to January 2014 (Fig. 1). Among these, 3575 (60%)
were accessed as full text articles (ESM Fig. 1) and the re-
maining 2388 (40%) as abstracts (ESM Fig. 2). Although
other parts may contain biologically relevant information,
the best keyword per total word was obtained from abstracts
[25]. ESM Fig. 3 shows the distribution of full text articles and
abstracts by year of publication. A total of 2009 sentences
were extracted with 3063 co-occurrences of metformin and
genes. After removing non-interaction shared entities, and hy-
pothetical, possible and indirect interactions, 1074 direct and
explicit co-occurrences were annotated.

Genes related to clinical outcomes as a consequence
of metformin treatment

From the search outlined above, seven genes were identified
that appear to modify the effects of metformin on diabetes-

Table 1 Evidence code assignment for gene–metformin interaction

Evidence code definition

Evidence code Study category Study objective/findings Assessment outcome

1 Clinical outcomes studies Consistent effect of genetic variant on drug of interesta Clinically relevant

2 PK or PD study Consistent effect of genetic variant on drug of interesta Clinically relevant

3 Molecular/cellular functional studies Consistent effect of genetic variant on drug of interesta Potential clinical relevance

4 Clinical outcomes studies Inconsistent effect on drug of interest Clinical relevance unknown

5 PK or PD study Inconsistent effect on drug of interest Clinical relevance unknown

6 Molecular/cellular functional studies Inconsistent effect on drug of interest Clinical relevance unknown

7 Clinical outcomes studies, PK or
PD study

Demonstrates no effect of the genetic variant on
drug response

Clinical relevance unsupported

aFor evidence scores 1, 2 and 3, the drug–phenotype association should be consistent across different studies. If not, a score of 3–6 is assigned, as
appropriate
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related clinical outcomes. These genes were assigned evi-
dence code 1 and thus found to be clinically relevant (ESM
Table 3). These genes included encoding proteins that affect
metformin transport (SLC22A1, SLC22A2, SLC47A1). While
SLC22A1 and SLC22A2 encode OCT1 and OCT2, respective-
ly, SLC47A1 encodes multi drug and toxin extrusion
(MATE)1.

OCT1 transports metformin in the gut and facilitates its
hepatic uptake [26, 27]. OCT2 and MATE1, expressed in
the kidney, are widely reported to be involved in the renal
excretion of metformin [28, 29]. Multiple variants in these
genes are reported to affect functionality and therapeutic re-
sponse to metformin [10]. STK11, PRKAA2, ATM and SHBG
genes also showed consistent evidence of interactions with
metformin on clinical outcomes. ATM encodes for serine/thre-
onine protein kinase that belongs to the PI3/PI4-kinase family.
This gene is primarily involved in DNA damage response but
also involved in insulin signalling and beta cell dysfunction
[30].

The liver kinase beta 1 (LKB1)–AMPK pathway controls
hepatic glucose homeostasis and may play a role in the ther-
apeutic effects of insulin-sensitising glucose-lowering agents
[31]. While STK11 encodes LKB1, PRKAA2 encodes AMPK
alpha 2 subunit. LKB1 is the upstream kinase of AMPK, an
element involved in cellular metabolism and energy homeo-
stasis [32]. Zhou et al reported that AMPK could be a key
molecular effector of metformin. Activation of AMPK by
metformin was shown to be associated with a subsequent
reduction in the production of glucose in the liver [33].
SHBG encodes the sex hormone binding protein (SHBG),
and variation at this locus has been related to polycystic ovary
syndrome [34]. According to Ding et al, the level of circulat-
ing SHBG is inversely related to insulin resistance and may be
causally related to type 2 diabetes [35].

Genes related to PK and/or PD of metformin

Those genes that affected transport of the drug in the body or
influenced metformin action but did not appear to consistently
affect clinical outcomes were assigned a score of 2 (ESM
Table 4). Of these, SLC47A2, SLC22A3 and SLC29A4 encode
transporter proteins MATE2, OCT3 and plasma membrane
monoamine transporter (PMAT), respectively. These genes
were found to be predictive of the PK parameters of metfor-
min. MATE2 is a transporter protein expressed in the brush
border of the kidney [36]. Stocker et al reported an association
of this protein with renal clearance and subsequent glucose-
lowering effect of metformin [37]. OCT3, expressed in the
brush border of the intestine and the basolateral hepatocyte
membrane, could have a role in the gut absorption and hepatic
intake of metformin [38, 39]. Significant interindividual vari-
ation in hepaticOCT3mRNA levels and association of genet-
ic variants in OCT3 (mRNA) with reduced OCT3 mRNA

expression in the liver has previously been reported [40].
PMAT is mainly expressed in the luminal side of the intestine
and is involved in the intestinal absorption of metformin [40].
The remaining 12 genes were associated with the PD of the
drug.

Genes whose expression is influenced by metformin

Genes that encode proteins in which their cellular and molec-
ular function is consistently affected in the presence of met-
formin may have potential clinical relevance. Accordingly,
they were assigned a score of 3. ESM Table 5 shows a total
of 51 genes that have potential relevance in predicting clinical
outcome and/or PK or PD properties of the drug.

Gene-set enrichment analysis

We performed GSEA to test the enrichment of literature-
identified metformin-related gene sets in a hypothesis-free
GWAS from the GoDARTS. Overall, five sets of genes were
constructed (Table 2 and Fig. 2) and tested for enrichment. We
obtained the nominal enrichment p value for each gene (ESM
Table 6) and then gene set after running MAGENTA
(Table 3).

Four of the five gene sets showed no significant enrich-
ment; the one that contained genes whose expression was
affected by the presence of metformin showed significant en-
richment (p < 0.05) (Table 3). In this gene set, six out of 17
genes above the 75th percentile enrichment cut-off (the ex-
pected number of genes above the cut-off being 11) were
determined to have true associations with the glycaemic re-
sponse to metformin. SLC2A4 (p = 3.24 × 10−04), G6PC
(p = 4.77 × 10−04) andMAPK1 (p = 1.51 × 10−03) were among
the top-ranking genes in this gene set. These genes encode
GLUT4, glucose 6-phosphatase (G6PC) and mitogen-
activated protein kinase 1 enzymes, respectively.

Discussion

Patients vary greatly in their glycaemic response, optimal dos-
age and adverse drug reactions following metformin therapy
[41]. Genetics accounts for about 34% of this variability [12].
Hence, there is a case for more personalised therapy in dis-
eases such as type 2 diabetes. Understanding how genetic
variation impacts the effects of glucose-lowering drugs or
helps to refine the characterisation of type 2 diabetes might
improve treatment effectiveness and decrease adverse drug
reactions, morbidity, mortality and cost of treatment.

Although there are publications in relation to the PK, PD
and clinical outcomes of metformin, there is no database that
concisely summarises the mechanisms describing gene–drug
interactions. In most cases, specific evidence of interactions is
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buried deep within the literature, making it extremely difficult
to comprehend the overall weight of evidence for given inter-
actions. This problem is not specific to gene–metformin inter-
actions, but is one that is common to the gene–drug and gene–
environment interaction literature per se. In this paper, how-
ever, we focus on interactions between metformin and genes
that impact clinical outcomes, PK and/or PD of the drug using
a comprehensive text-mining strategy.

Our analyses identified seven genes ranked as ‘top priority’
to predict metformin-related clinical outcomes. These genes
constituted three solute carrier family genes (SLC22A1,
SLC22A2 and SLC47A1) that are related to the PK of

metformin, and four PD-related genes (ATM, STK11,
PRKAA2 and SHBG). Fifteen genes were found to affect the
PK/PD of metformin without being consistently related to
clinical outcomes. A third gene set in which expression or
activation is affected by the presence of metformin has also
been identified from the text-mining. A GSEA using GWAS
data from GoDARTS showed significant enrichment of the
third category for glycaemic response.

Genes that showed consistent changes in cellular and mo-
lecular functions in the presence of metformin may have po-
tential clinical relevance in the search for biomarkers that pre-
dict the therapeutic outcome of metformin. This includes

Table 2 Literature-identified gene sets used for MAGENTA analysis

Gene set Genes

A SLC22A1, SLC47A1, STK11, ATM, PRKAA2, SLC22A2, SHBG

B SLC47A2, SLC22A3, SLC29A4, DDIT3, FBP1, FOXO3, I2BR, INS, RPS6KB1, INSR, IRS2, KAT2A, KLF15, NR0B2, SIRT1

C MTOR, SERPINE1, AKT1, SLC2A2, PIK3, CFTR, ERBB2, G6PC, GLP1, HIF1A, IL6, PCK1, PCK2, RPS6KB1, TXNIP, COX2,
CYP3A4, IGFBP1, MAPK1, MAPK3, PPARGC1A, SREBF1, AGER, BGLAP, GAPDH, KLF15, MYC, SEPP1, ABCB1, ALPP,
CASP3, CCNE1, CYP19A1, DDIT4, IL1RN, IRS2, SLC2A4, MAPK8, MEF2A, NFKB, NR1I2, PKLR, PPARA, PPP2R4, RAB4A,
STAT3, TNFA, TP53, TSC1, TSC2, TIMP2

D (A + B) SLC22A1, SLC47A1, STK11, ATM, PRKAA2, SLC22A2, SHBG, SLC47A2, SLC22A3, SLC29A4, DDIT3, FBP1, FOXO3, I2BR,
INS, RPS6KB1, INSR, IRS2, KAT2A, KLF15, NR0B2, SIRT1

E (A + B + C) SLC22A1, SLC47A1, STK11, ATM, PRKAA2, SLC22A2, SHBG, SLC47A2, SLC22A3, SLC29A4, DDIT3, FBP1, FOXO3, I2BR,
INS, RPS6KB1, INSR, IRS2, KAT2A, KLF15, NR0B2, SIRT1, MTOR, SERPINE1, AKT1, SLC2A2, PIK3, CFTR, ERBB2, G6PC,
GLP1, HIF1A, IL6, PCK1, PCK2, RPS6KB1, TXNIP, COX2, CYP3A4, IGFBP1, MAPK1, MAPK3, PPARGC1A, SREBF1,
AGER, BGLAP, GAPDH, KLF15, MYC, SEPP1, ABCB1, ALPP, CASP3, CCNE1, CYP19A1, DDIT4, IL1RN, IRTK, SLC2A4,
MAPK8, MEF2A, NFKB, NR1I2, PKLR, PPARA, PPP2R4, RAB4A, STAT3, TNFA, TP53, TSC1, TSC2, TIMP2

A, genes directly related to clinical outcomes of metformin; B, genes associated with either the PK or PD of metformin; C, genes whose expression is
affected by metformin; D, genes related to the clinical outcome, PK or PD; E, genes related to clinical outcome and/or PK/PD/expression
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EFig. 2 Literature-identified gene
sets used for MAGENTA
analysis. A, genes directly related
to clinical outcomes of
metformin; B, genes associated
with either the PK or PD of
metformin; C, genes whose
expression is affected by
metformin; D, genes related to the
clinical outcome, PK or PD; E,
genes related to clinical outcome
and/or PK/PD/expression
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SLC2A4 and G6PC. SLC2A4 encodes GLUT4, which plays a
crucial role in regulating blood glucose homeostasis by facil-
itating insulin-stimulated glucose transport into skeletal mus-
cles [42]. Metformin is shown to modulate translocation of
GLUT4 in skeletal muscle and adipocytes [43]. G6PC gene
encodes G6PC, a rate-limiting enzyme in hepatic glucose pro-
duction. It is involved in glucose production via the gluconeo-
genesis and glycogenolysis pathways. Cellular studies have
shown metformin to suppress glucose phosphatase enzyme
expression independent of AMPK [44]. While the top genes
according to the GSEA were SLC2A4 and G6PC, there is a
possibility that the true signal could be from neighbouring
genes. ESM Fig. 4 shows regional association plots around
SLC2A4 and G6PC.

The stringent significance threshold for a GWAS could
overlook moderate-association signals that may have detri-
mental collective effects in certain pathways. Therefore, inte-
grating GSEA guided by carefully curated evidence from the
literature, as we did here, is likely to identify signals that are
overlooked in a GWAS. In this study, we tested enrichment of
text-mining-based prioritised gene sets on a GWAS of metfor-
min response. Gene sets that were given high priority (those
related to clinical outcome, PK or PD) showed no significant
enrichment for multiple modest associations. This is probably
due to the fact that our scoring system is subject to the publi-
cation bias that is well known to affect candidate gene associ-
ation studies. For example, there are many small studies
reporting the association between variants in metformin trans-
porter genes and glycaemic response, resulting in a higher
priority of PK genes in our gene set ranking. However, a
meta-analysis of most published studies, in up to 8000
metformin-treated individuals with type 2 diabetes from the
MetGen consortium, showed the putative pharmacogenetics
variants in five transporter genes had no significant impact on
the glycaemic response to metformin [45], which is in line
with our GSEA. The ranking system prioritises published ev-
idence dominated by PK studies. Yet PK variants do not seem
to alter metformin response [45]. Therefore, this is largely due
to candidate gene-based approaches. The molecular and

cellular-based approaches looked at mostly PD studies and
hence cast the net wider, so being less focused on the
transporters.

The enrichment of association signals within the low-
priority gene set highlights the need to follow up association
signals for loci with multiple modest effects for glycaemic
response that have been previously overlooked, such as
SLC2A4 and G6PC, which rank high in the GWAS, with p-
values of 3.24 × 10−04 and 4.77 × 10−04, respectively.
Although the pipeline described here has generated novel

evidence of gene–metformin interactions, it by no means ren-
ders a complete overview of all relevant literature. For exam-
ple, only 60% of the index articles were accessible as full text,
and conversion of the native PDF file into text format might
have caused relevant data to be lost, as some articles used
formats that are incompatible with the file templates used in
our pipeline. Furthermore, data contained in tables and figures
in the index papers were extracted in a semi-structured format,
making data retrieved from tables and figures challenging to
analyse and interpret. Thus, for papers in which important
results were included in tables and figures, but not articulated
in the title, abstract or main text of the article, evidence of
interactions may have been overlooked.

Some genes are reported in papers in a non-standard form
that may not be captured by the dictionary-based named entity
recognition used in this study, and in some articles, non-
standard abbreviations for metformin, instead of its original
generic or brand name (e.g. the term ‘MET’), are occasionally
used. Such abbreviations are not found in any standard drug
abbreviation protocol. Sentences with such abbreviations are
likely to be incompletely characterised using the text retrieval
strategy adopted here. Other barriers to data assimilation in-
clude the extent to which anaphora (‘use of grammatical sub-
stitute [as pronoun or a pro-verb] to refer to the denotation of a
preceding word or group of words’ [46]) and epiphora (‘the
repetition of a word or words at the end of two or more suc-
cessive verses, clauses, or sentences’ [46]) were resolved,
which may also have resulted in loss of information; this
might have occurred, for example, when a gene and a drug

Table 3 Gene-set enrichment analysis of glycaemic response associations in literature-identified gene sets

Gene set Nominal
MAGENTA
enrichment
p value (75%)

Number of OBS
genes/loci above
enrichment cut-off

Number of EXP
genes/loci above
enrichment cut-off

Excess number of
genes/loci above
enrichment cut-off
(OBS – EXP)

Enrichment
fold (OBS/EXP)

Total
number
of genes

Clinically relevant genes 0.561 2 2 0 1 7

PK_PD genes 0.975 1 3 13

Gene expression 0.03 17 11 6 1.55 43

Clinically relevant + PK _PD genes 0.925 3 5 20

Clinically relevant + PK_PD + Gene
expression

0.133 20 16 4 1.25 63

EXP, expected; OBS, observed
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were found in separate sentences (i.e. not described in the
same sentence).

Larger studies with regular iterations that use extensive
literature coverage, SNP-level annotation and more intensive-
ly automatedmachine learning approaches are likely to extend
the observations reported here. GSEA using a larger GWAS
dataset for metformin response is likely to increase the power
and produce convincing results. Replication using other
GWAS datasets including SNP–SNP interaction analyses is
also likely to extend the number of validated interactions, as
some of those prioritised using our algorithm may have eth-
nically specific effects that are undetectable in the ethnically
homogeneous GoDARTS cohort.

Conclusions

We have developed a semi-automated text-mining and
evidence-scoring algorithm that could help to organise and ex-
tract useful information from the literature on gene–drug and
gene–environment interactions. According to our analysis,
genes that encode transporter proteins such as OCTs and
MATEs yield the strongest evidence of modifying the thera-
peutic outcomes of metformin. In addition, genes in the LKB1–
AMPK pathway are also found to be related to the therapeutic
outcomes of the glucose-lowering drug. However, we did not
detect enrichment for the highly prioritised gene sets using
GWAS data from the GoDARTS cohort; instead it was the gene
set that were ranked with lower evidence scores that showed
statistically significant enrichment in the GoDARTS.

Given that the genomic architecture of drug response is
complex and the mechanism of metformin action is still not
clearly known, candidate gene studies investigating drug re-
sponse to metformin have had limited success. In an alterna-
tive approach, here we have identified novel genes potentially
associated with metformin action. Using a text-mining ap-
proach of the published literature, we have identified a gene
set derived from cellular and functional studies associated
with metformin response. The association of genetic variation
in these genes, including SLC2A4 and G6PC, needs further
replication and follow-up.
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