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Abstract
Aims/hypothesis Animal models of diabetic nephropathy
show increased levels of glomerular vascular endothelial
growth factor (VEGF)-A, and several studies have shown that
inhibiting VEGF-A in animal models of diabetes can prevent
albuminuria and glomerular hypertrophy. However, in those
studies, treatment was initiated before the onset of kidney
damage. Therefore, the aim of this study was to investigate
whether transfecting mice with the VEGF-A inhibitor sFlt-1
(encoding soluble fms-related tyrosine kinase 1) can reverse
pre-existing kidney damage in a mouse model of type 1 dia-
betes. In addition, we investigated whether transfection with
sFlt-1 can reduce endothelial activation and inflammation in
these mice.
Methods Subgroups of untreated 8-week-old female C57BL/
6J control (n = 5) and diabetic mice (n = 7) were euthanised
5 weeks after the start of the experiment in order to determine
the degree of kidney damage prior to treatment with sFLT-1.
Diabetes was induced with three i.p. injections of
streptozotocin (75 mg/kg) administered at 2 day intervals.
Diabetic nephropathy was then investigated in diabetic mice
transfected with sFlt-1 (n = 6); non-diabetic, non-transfected

control mice (n = 5); non-diabetic control mice transfected
with sFlt-1(n = 10); and non-transfected diabetic mice
(n = 6). These mice were euthanised at the end of week 15.
Transfection with sFlt-1 was performed in week 6.
Results We found that transfection with sFlt-1 significantly
reduced kidney damage by normalising albuminuria, glomer-
ular hypertrophy and mesangial matrix content (i.e. glomeru-
lar collagen type IV protein levels) (p < 0.001). We also found
that transfection with sFlt-1 reduced endothelial activation
(p < 0.001), glomerular macrophage infiltration (p < 0.001)
and glomerular TNF-α protein levels (p < 0.001). Finally,
sFLT-1 decreased VEGF-A-induced endothelial activation
in vitro (p < 0.001).
Conclusions/interpretation These results suggest that sFLT-1
might be beneficial in treating diabetic nephropathy by
inhibiting VEGF-A, thereby reducing endothelial activation
and glomerular inflammation, and ultimately reversing kidney
damage.
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VSV Vesicular stomatitis virus
WT Wilms tumour

Introduction

Diabetic nephropathy is characterised by damage and dys-
function of the microvasculature [1]. A critical factor in main-
taining the microvasculature is vascular endothelial growth
factor (VEGF)-A, which regulates many aspects of vascular
physiology, including vascular permeability and the migra-
tion, proliferation and survival of endothelial cells (for review,
see Bartlett et al [2]). Several studies in both human and ani-
mal models have indicated that proper glomerular function
requires tight regulation of VEGF-A levels, as both upregula-
tion and downregulation of VEGF-A can lead to kidney dis-
ease [3].

Animal models of diabetic nephropathy develop increased
levels of glomerular VEGF-A [4, 5], possibly due to the effect
of high glucose on VEGF-A production in podocytes [6].
Therefore, inhibiting VEGF-A may be beneficial in treating
renal complications. Consistent with this notion, antibodies
directed against VEGF-A have been shown to prevent albu-
minuria [7, 8] and glomerular hypertrophy [9] in animal
models of diabetes. However, in these studies, the inhibition
of VEGF-Awas initiated prior to the onset of diabetic kidney
disease (i.e. prior to the development of albuminuria, glomer-
ular hypertrophy and mesangial expansion/matrix produc-
tion); thus, whether this strategy is feasible for treating diabet-
ic people with existing kidney damage is currently unknown.

In addition to its role in maintaining vascular homeostasis,
VEGF-A also facilitates the migration of monocytes and mac-
rophages. Several studies have found that macrophages play a
role in diabetic nephropathy [10–12]. VEGF-A-induced mi-
gration of monocytes and macrophages is mediated by the
binding of VEGF-A to VEGF receptor (VEGFR)-1 (also
known as fms-related tyrosine kinase (FLT)-1) expressed on
these cells [13–15]. In addition, both VEGF-A [16] and high
glucose levels [17] can activate endothelial cells, leading to
increased levels of vascular cell adhesion molecule (VCAM)-
1 and intercellular adhesion molecule (ICAM)-1, thereby pro-
moting monocyte infiltration.

Here, we investigated whether the VEGF-A inhibitor solu-
ble FLT-1 (sFLT-1; also known as soluble VEGFR-1) can
reduce renal complications, including albuminuria and
mesangial matrix expansion, in a mouse model of type 1 dia-
betes and pre-existing kidney damage. In addition, because
diabetic nephropathy is accompanied by endothelial activa-
tion [1] and macrophage infiltration [11, 12, 18], both of
which are mediated by VEGF-A, we also investigated the
effect of inhibiting VEGF-A on these variables. Last, we in-
vestigated whether transfection with sFlt-1 reduces

glomerular TNF-α protein levels (a measure of inflammation)
in diabetic mice.

Methods

sFlt-1 transfection pcDNA3.1 vectors (Invitrogen, Breda, the
Netherlands) containing either mouse sFlt-1-VSVor the lucif-
erase gene, both of which are driven by the cytomegalovirus
promoter, were constructed as described previously [19].
The plasmids were amplified in Escherichia coli DH5α
(Invitrogen), purified using the QIAfilter Plasmid Maxi-prep
kit (Qiagen, Venlo, the Netherlands) and dissolved in
EndoFree Tris–EDTA buffer (Qiagen). The mice were co-
transfected with the sFlt-1-VSV and luciferase constructs in
both calf muscles (20 μg each) using electroporation, as de-
scribed previously [19]. To monitor transfection efficiency,
the mice were injected with i.p. luciferin at 2-week intervals.
Five minutes after the luciferin injection, luciferase activity
was visualised using a NightOWL bioluminescence camera
(Xenogen Ivis Spectrum, Alameda, CA, USA), as described
previously [19].

Tube formation assay To confirm functional expression of
the sFlt-1 construct, we performed a tube formation assay as
described previously [20]. In brief, human umbilical vein en-
dothelial cells (HUVECs) (1.5 × 103 cells per well; Promocell,
Heidelberg, Germany) were plated on Matrigel-coated 96-
well plates (Corning, Amsterdam, the Netherlands). The
HUVECs were incubated for 6 h with culture medium obtain-
ed from human embryonic kidney 293 (HEK293) cells
(ATCC, Manassas, VA, USA) transfected with an sFlt-1 con-
struct (2 μg) or a luciferase construct (2 μg). The HEK293
cells were transfected using 6 μl X-tremeGENE (Roche,
Basel, Switzerland); 2 days after transfection, the culture me-
dium was collected and applied to the HUVECs in the pres-
ence or absence of VEGF-A (10 ng/ml; R&D Systems,
Minneapolis, MN, USA). The number of tube branch points
was counted in five ×400 fields. Images were taken using a
Moticam camera (Motic, Xiamen, China). This experiment
was performed three times.

Animals This study used 8-week-old female C57BL/6J mice
(specific pathogen free; Harlan Laboratories, Indianapolis, IN,
USA), weighing 17.8 ± 1.1 g (mean ± SD). All experiments
were conducted in accordance with national guidelines for the
care and use of experimental animals (DEC license 13163).
Mice were housed in individually ventilated cages in groups
of five mice, with food and water ad libitum. C57BL/6J mice
were chosen because this study was a follow-up of a previous
study that investigated podocyte-specific VEGF-A knock-
down on a C57BL/6 background [21]. Moreover, C57BL/6J
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mice respond well to the streptozotocin (STZ) regimen in
terms of blood glucose levels [22].

Diabetes was induced with three i.p. injections of STZ
(75 mg/kg body weight; Sigma-Aldrich, St Louis, MO,
USA) administered at 2 day intervals. Blood glucose levels
were measured (Accu-Chek; Roche) at the end of weeks 1, 5
and 15 after diabetes induction. Mice with a blood glucose
level of 15 mmol/l or higher were considered diabetic. Mice
were randomly divided into groups. Subgroups of untreated
control mice (n = 5) and diabetic mice (n = 10) were killed
5 weeks after the start of the experiment in order to determine
the degree of kidney damage prior to treatment with sFLT-1.
In week 6, the mice were transfected with a plasmid contain-
ing sFlt-1. Diabetic nephropathy was then investigated in di-
abetic mice transfected with sFlt-1 (n = 10), non-diabetic,
non-transfected control mice (n = 5), non-diabetic control
mice transfected with sFlt-1 (n = 10) and non-transfected di-
abetic mice (n = 10). These mice were killed at the end of
week 15. Three diabetic mice 5 weeks after the induction of
diabetes, four diabetic mice transfected with sFlt-1 and four
diabetic mice 15 weeks after the induction of diabetes were
excluded from the study as they did not meet the inclusion
criteria of a blood glucose level of 15 mmol/l or higher.

Measurement of the urine albumin excretion ratio To mea-
sure the urine albumin excretion ratio, spot urine was collected
in weeks 5 and 15. Urine albumin levels were measured using
rocket immunoelectrophoresis with rabbit anti-mouse albu-
min; purified mouse serum albumin (Sigma-Aldrich) was
used as a standard. Urine creatinine was measured using a
creatinine assay, with picric acid, sodium hydroxide and cre-
atinine standards (Sigma-Aldrich); the albumin:creatinine ra-
tio was then calculated.

Immunohistochemistry Paraffin-embedded kidney tissues
(4 μm thickness) were cut using a Leica microtome
(Wetzlar, Germany) and stained with periodic acid–Schiff’s
reagent using a standard protocol. Rabbit anti-mouse
platelet/endothelial cell adhesion molecule 1 (PECAM-1;
1:400; Santa Cruz Biotechnology, Dallas, TX, USA), rabbit
anti-human Wilms tumour (WT)1 (1:500; Santa Cruz
Biotechnology) and rabbit anti-mouse collagen type IV
(1:200; Abcam, Cambridge, UK) primary antibodies were
used for immunostaining, followed by the anti-rabbit-
Envision HRP-conjugated secondary antibody (undiluted;
Dako, Glostrup, Denmark), with diaminobenzidine (DAB+;
Dako) as the chromogen. The rabbit anti-human WT1 anti-
body cross-reacts with mouse WT1 (data not shown). As a
negative control, non-specific isotype matched antibodies
were used.

Frozen kidney tissues (4 μm thickness) were cut using a
Leica cryostat. Rabbit anti-mouse fibronectin (1:2400; Sigma-
Aldrich), rat anti-mouse CD68 (1:15; Abcam), rat anti-mouse

VCAM-1 (1:1400; BD Pharmingen, San Diego, CA, USA),
rat anti-mouse ICAM-1 (1:200; ATCC), rabbit anti-mouse
TNF-α (1:100; Abcam) and rabbit anti-vesicular stomatitis
virus (VSV; 1:2500; Sigma-Aldrich) primary antibodies were
used for immunostaining, followed by the appropriate
Envision (undiluted; Dako) or Impress (undiluted; Vector
Laboratories, Burlingame, CA) HRP-conjugated secondary
antibody, with DAB+ as the chromogen. As a negative con-
trol, non-specific isotype matched antibodies were used.
Antibodies were tested for specificity with western blot analy-
sis (PECAM-1, WT1, fibronectin, CD68, ICAM-1, TNF-α,
VSV), immunoprecipitation (VCAM-1) or immunogen affin-
ity purified (collagen type IV).

Digital image analysis Sections were digitised using the
Philips Ultra-Fast Scanner 1.6 RA (Amsterdam, the
Netherlands). The surface area of the glomerular tuft (in
μm2) was measured in periodic acid–Schiff’s reagent-stained
slides with 25 glomeruli per section using Philips Ultra-Fast
Scanner 1.6 RA software (Philips). ImageJ software (https://
imagej.nih.gov/ij/) was used to measure the levels of
fibronectin, collagen type IV, PECAM-1, VCAM-1, ICAM-
1 and TNF-α. The positive area per glomerulus was deter-
mined by measuring the respective positively stained area,
corrected for the total area of the glomerulus (ten and 25 glo-
meruli per frozen and paraffin-embedded section, respective-
ly) at ×400 magnification. The number of podocytes in each
sample was determined by counting the number of WT1-
positive nuclei per glomerulus in 25 glomeruli. The number
of macrophages was determined by counting the number of
CD68-positive cells in ten glomeruli. The glomeruli used for
these measurements were selected at random. Experimenters
were blind to group assignment and outcome assessment.

Endothelial activation assay HUVECs that were confluent
for 2 days were incubated with VEGF-A (20 ng/ml; R&D
Systems) for 2, 4, 6 and 8 h. To determine the effect of
sFLT-1 on VEGF-A-induced endothelial activation,
HUVECs were incubated for 4 h with sFLT-1 (0, 10, 100 or
1000 ng/ml; R&D Systems) in the presence of 20 ng/ml
VEGF-A. These experiments were performed three times.
Cell lines were negative for mycoplasma contamination.

To quantify changes in gene expression, total RNA was
extracted from HUVECs using TRIzol extraction buffer
(ThermoFisher Scientific, Waltman, MA, USA) and convert-
ed to cDNA with AMV reverse transcriptase (Roche) using
random hexamer primers. Quantitative real-time PCR was
performed using IQ SYBR Green Supermix (Bio-Rad,
Hercules, CA, USA) on a Bio-Rad CFX real-time system.
Cycle threshold values were normalised to the housekeeping
gene Hprt1. The following primers were used in this study:
HPRT1: 5′-AGATGGTCAAGGTCGCAAGC-3′ and 5′-
TCAAGGGCATATCCTACAACAAAC-3′; ICAM-1: 5′-
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CAGAGGTTGAACCCCACAGT-3 ′ and 5 ′-CCTC
TGGCTTCGTCAGAATC-3 ′ ; SELE : 5 ′ -AGCC
CAGAGCCTTCAGTGTA-3′ and 5′-AACTGGGATTTGCT
GTGTCC-3′. Primers for amplifying VCAM-1 were obtained
from Sino Biological (North Wales, PA, USA).

Statistical analyses Data are expressed as means ± SD. Data
were analysed using the two-tailed Student’s t test or one-way
ANOVA. We also used a one-way ANOVA to analyse the
effect of sFLT-1 treatment in diabetic mice (week 15),
corrected for the effect of time. Differences were considered
significant at p < 0.05.

Results

Transfection with sFlt-1 reduced endothelial tube forma-
tion in vitro To confirm functional expression of the sFlt-1
construct, we performed a tube formation assay. First,
HUVECs were cultured in medium obtained from
luciferase-transfected HEK293 cells. The addition of VEGF-
A (10 ng/ml) to the culture medium led to increased tube
formation (Fig. 1a, b), reflected by an increased number of
branch points (Fig. 1e). VEGF-A-induced tube formation
was significantly inhibited by medium obtained from sFlt-1-
transfected HEK293 cells (Fig. 1d), confirming that expres-
sion of the sFlt-1 construct inhibits VEGF-A-induced tube
formation. As a control, culturing HUVECs with medium
obtained from sFlt-1-transfected HEK293 cells had no effect
on tube formation in the absence of VEGF-A (Fig. 1c).

Expression of sFLT-1 in mice by co-transfection with the
sFlt-1-VSV and luciferase constructs Diabetes was induced
in mice by i.p. injections of STZ (see Methods). In week 6,
mice were transfected with the sFlt-1-VSVand luciferase con-
structs by bilateral injection in the calf muscle. Transfection
was confirmed by injecting the mice with luciferin (see elec-
tronic supplementary material [ESM] Fig. 1). Staining for
VSV was used to confirm the presence of exogenous sFLT-1
in the renal vasculature (data not shown).

Transfection with sFlt-1 reduced kidney damage in diabet-
ic mice We first determined the development of kidney dam-
age in diabetic mice 5 weeks after diabetes was induced.
Inducing diabetes led to albuminuria, reflected by an
albumin:creatinine ratio of 8.53 ± 2.59 mg/mmol, which was
significantly higher than in control mice (3.06 ± 0.98 μg/mg;
p < 0.001) (Fig. 2a). In addition, compared with control mice,
diabetic mice developed glomerular hypertrophy (p < 0.001)
(Fig. 2b). Podocyte numbers did not differ between diabetic
and control mice (Fig. 2c). The protein levels of both collagen
type IV and fibronectin—two markers of mesangial matrix
expansion—were higher in the diabetic mice compared with
control mice (p < 0.001) (Fig. 2d, e, f and Fig. 2g, h, i,
respectively).

Having confirmed that kidney damage develops in these
mice within 5 weeks, we next examined the effect of sFlt-1
transfection; transfection with sFlt-1was performed in week 6
and the mice were analysed 9 weeks after transfection (i.e.
15 weeks after diabetes was induced). Our analysis revealed
that sFLT-1 significantly reduced all markers of kidney dam-
age in the diabetic mice, including albuminuria, glomerular
hypertrophy and mesangial matrix expansion (p < 0.001)

Fig. 1 sFLT-1 inhibited VEGF-induced tube formation in vitro. (a–d)
HUVECswere cultured in the presence or absence ofVEGF-A (10 ng/ml)
and/or sFLT-1, and the number of branch points was measured. (e)
Summary of the total number of branch points measured in five fields

under each condition. Boxes represent 1st and 3rd quartiles; whiskers
represent minimum and maximum number of branch points; horizontal
line represents median number of branch points. ***p < 0.001, one-way
ANOVA. Scale bars, 100 μm
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(Fig. 2a, b, d, g). Compared with control-transfected diabetic
mice, sFlt-1-transfected diabetic mice had significantly fewer
podocytes (p < 0.01) (Fig. 2c). Transfecting control (i.e. non-
diabetic) mice with sFlt-1 had no effect on any of the markers
investigated (Fig. 2). Finally, compared with diabetic mice at
week 5, sFlt-1-transfected diabetic mice at week 15 had sig-
nificantly lower levels of albuminuria and collagen type IV
(p < 0.05 and p < 0.001, respectively), indicating that trans-
fection with sFlt-1 can reverse pre-existing kidney damage
(Fig. 2a, d).

Transfection with sFlt-1 reduced endothelial activation
and inflammation in diabetic mice Next, we measured en-
dothelial activation in diabetic and control mice at the 5-week
time point. Compared with control mice, diabetic mice had
increased glomerular endothelial activation, reflected by in-
creased levels of VCAM-1, ICAM-1 and PECAM-1
(p < 0.001) (Fig. 3a–c). The diabetic mice also had increased
levels of glomerular TNF-α (p < 0.001) (Fig. 3d) and in-
creased numbers of glomerular macrophages (p < 0.001)
(Fig. 3e, f) compared with control mice. At week 15, all three

markers of glomerular endothelial cell activation remained
increased in the diabetic mice compared with control (non-
diabetic) mice (p < 0.001) (Fig. 3a–c). At week 15, the dia-
betic mice also had more infiltration of glomerular macro-
phages and increased levels of glomerular TNF-α compared
with control mice (p < 0.001). Strikingly, transfection with
sFlt-1 significantly reduced all of these markers of glomerular
endothelial activation and inflammation in the diabetic mice
(p < 0.01); in most cases, the marker was reduced to control
levels (Fig. 3a–e). Transfecting control (non-diabetic) mice
with sFlt-1 had no effect on any of the markers investigated
(Fig. 3a–e). Compared with diabetic mice at week 5, sFlt-1-
transfected diabetic mice at week 15 had significantly lower
levels of ICAM-1 and PECAM-1 (p < 0.01) (Fig. 3b, c).

sFLT-1 reduced VEGF-A-induced endothelial activation
in a dose-dependent manner Our data suggest that sFlt-1
transfection in diabetic mice reduces kidney damage by reduc-
ing the glomerular infiltration of macrophages and by lower-
ing the production of pro-inflammatory molecules such as
TNF-α. Activation of endothelial cells is a key factor in this

Fig. 2 sFLT-1 reversed kidney damage in diabetic mice. Mice were
injected with STZ to induce diabetes. In week 6, diabetic (D) and control
(C) mice were transfected with a construct expressing sFlt-1 (S). At 5 and
15 weeks, albuminuria (a; albumin:creatinine ratio [ACR]), glomerular
hypertrophy (b), glomerular podocytes (c), collagen type IV positivity (d)
and fibronectin positivity (g) were measured. (e, f) Representative images
of collagen type IV immunostaining in an untreated diabetic mouse at
week 15 (e) and a diabetic mouse transfected with sFlt-1 (f). (h, i)
Representative images of fibronectin immunostaining in an untreated
diabetic mouse at week 15 (h) and a diabetic mouse transfected with

sFlt-1 (i). ***p < 0.001, Student’s t test between groups at week 5.
*p < 0.05, **p < 0.01 and ***p < 0.001, one-way ANOVA between
groups at week 15. †p < 0.05 and †††p < 0.001 vs the corresponding
diabetic mice at 5 weeks, one-way ANOVA after correcting for the time
effect. Bars representmeans ± SD. Number of animals: non-diabetic, non-
transfected control mice at 5 and 15 weeks (n = 5 mice each); non-
transfected diabetic mice at 5 and 15 weeks (n = 7 and n = 6, respective-
ly); non-diabetic control mice transfected with sFlt-1 (n = 10); and dia-
betic mice transfected with sFlt-1 (n = 6). Scale bars, 50 μm
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process, as it mediates the vascular adhesion of monocytes
and their migration from the bloodstream into the tissue.
Therefore, we investigated the in vitro effect of sFLT-1 on
VEGF-A-induced endothelial activation. First, we measured
the time course of VEGF-A-induced endothelial activation.
Incubating HUVECs with 20 ng/ml VEGF-A-induced endo-
thelial activation, reflected by significant increases in expres-
sion of the genes encoding E-selectin (SELE) and VCAM-1
(VCAM-1) compared with unstimulated HUVECs; the mRNA
levels of SELE and VCAM-1 peaked 6 and 4 h, respectively,
after stimulation (Fig. 4a, b). In contrast, the expression of
ICAM-1 was not significantly affected by VEGF-A stimula-
tion (data not shown).

Next, we investigated the effect of applying various con-
centrations of sFLT-1 on endothelial activation in HUVECs
4 h after stimulation with VEGF-A (Fig. 4c, d). We found that
sFLT-1 significantly decreased the VEGF-A-induced upregu-
lation of VCAM-1 (p < 0.001) in a dose-dependent manner.
sFLT-1 did not significantly affect the VEGF-induced upreg-
ulation of SELE. sFLT-1 had no effect on the mRNA levels of
SELE or VCAM-1 in unstimulated cells.

Discussion

Here, we show that transfection with the VEGF-A inhibitor
gene sFlt-1 in mice with diabetic nephropathy reverses pre-
existing kidney damage by normalising albumin:creatinine
levels and mesangial matrix content. Furthermore, transfec-
tion with sFlt-1 in diabetic mice also reduced endothelial

activation (measured as VCAM-1, ICAM-1 and PECAM-1
protein levels), glomerular infiltration of macrophages and

Fig. 3 sFLT-1 reduced glomerular endothelial activation, the number of
glomerular macrophages and glomerular inflammation in diabetic mice.
Mice were injected with STZ to induce diabetes. In week 6, diabetic (D)
and control (C) mice were transfected with a construct expressing sFlt-1
(S). At 5 and 15 weeks, VCAM-1 (a), ICAM-1 (b), PECAM-1 (c), TNF-
α (d) and the number of glomerular macrophages (e) were measured.
***p < 0.001, Student’s t test between groups at week 5. **p < 0.01
and ***p < 0.001, one-way ANOVA between groups at week 15.

††p < 0.01 vs the corresponding diabetic mice at 5 weeks, one-way
ANOVA after correcting for the time effect. Bars represent
means ± SD. Number of animals: non-diabetic, non-transfected control
mice at 5 and 15weeks (n = 5mice each); non-transfected diabetic mice at
5 and 15 weeks (n = 7 and n = 6, respectively); non-diabetic control mice
transfected with sFlt-1 (n = 10); and diabetic mice transfected with sFlt-1
(n = 6). (f) Representative image of macrophages present in a glomerulus
of a diabetic mouse at week 15 after staining for CD68. Scale bar, 50 μm

Fig. 4 In vitro treatment with sFLT-1 reduced VEGF-A-induced endo-
thelial activation in a dose-dependent manner. (a) SELE and (b) VCAM-1
mRNA levels were measured in HUVECs incubated with 20 ng/ml
VEGF-A for 2, 4, 6 or 8 h; each mRNA level is plotted relative to the
respective level in untreated HUVECs. (c) SELE and (d) VCAM-1mRNA
levels were measured in HUVECs incubated with 20 ng/ml VEGF-A for
4 h in the presence of 10, 100 or 1000 ng/ml sFLT-1 (S10, S100 and
S1000, respectively). C, cells that were not treated with either VEGF-A or
sFLT-1; V, cells stimulated with VEGF-A but not treated with sFLT-1.
Each mRNA level is plotted relative to the respective level in untreated
cells. Bars represent means ± SD. *p < 0.05 and ***p < 0.001 vs the
respective untreated control group, one-way ANOVA. †††p < 0.001 vs the
respective VEGF-A–stimulated group
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glomerular TNF-α protein levels. Finally, treating HUVECs
with sFLT-1 decreased VEGF-A-induced endothelial activa-
tion in a dose-dependent manner. Taken together, these data
suggest that treatment with sFLT-1 may be beneficial in indi-
viduals with diabetic nephropathy.

Animal models of diabetic nephropathy develop increased
levels of glomerular VEGF-A [4, 5], and inhibiting VEGF-A
in diabetic animal models can prevent the development of
albuminuria, glomerular hypertrophy and podocyte loss
[7–9, 23]. Consistent with these findings, podocyte-specific
overexpression of sFlt-1 has been reported to reduce
mesangial expansion and glomerular basement membrane
thickening in diabetic mice [24]. However, that study did not
investigate the effect of systemic sFLT-1 treatment, which will
likely be required to treat individuals with diabetes. In con-
trast, other studies have found that anti-VEGF-A treatment
has no effect on early renal pathology [25], and that
podocyte-specific deletion of Vegfa in diabetic mice causes
increased proteinuria and kidney damage [21]. Moreover, al-
though another study reported that treating diabetic mice with
sFLT-1 decreased albuminuria, it did not reduce glomerular
matrix deposition and led to an increase in tubular damage
[26]. These conflicting results could be due to a variety of
factors, including the time at which treatment is initiated,
and the dose and/or type of anti-VEGF-A treatment used
(e.g. an anti-VEGF-A antibody, a VEGFR2 inhibitor or
sFLT-1). For example, using a construct in which domain 2
of FLT-1 is linked to human IgG1Fc may lead to increased
inflammation due to binding to Fc receptors on macrophages
(for review, see Guilliams et al [27]), increasing tubular dam-
age [26] independent of sFLT-1. In contrast, we used a full-
length sFLT-1 construct without an Fc tag. In addition, VEGF-
A inhibitors such as native sFLT-1 may have beneficial func-
tions in addition to binding VEGF-A. For example, sFLT-1
has been reported to bind to lipid microdomains in podocytes,
thereby affecting the actin cytoskeleton and the function of the
glomerular barrier [28]. Podocyte-specific deletion of Flt-1
expression causes reorganisation of the cytoskeleton, leading
to proteinuria and kidney damage; these effects are rescued by
expressing a kinase-deficient mutant of Flt-1, suggesting that
physiological levels of sFLT-1 are necessary for the proper
structure and function of podocytes [28]. Therefore, with re-
spect to kidney damage, treating individuals with sFLT-1 may
provide improved outcomes compared with anti-VEGF-A an-
tibodies and VEGFR2 inhibitors.

Importantly, the studies discussed above investigated the
prevention—rather than the treatment—of diabetes-induced
kidney damage, as therapy was initiated before the onset of
kidney damage. Therefore, it is difficult to estimate the effects
of such treatments in diabetic individuals who have already
developed kidney damage. Fioretto et al reported that kidney
lesions in diabetic individuals were reversed by normalising
glycaemia levels as a result of pancreatic transplantation [29].

Therefore, we tested the effect of treating diabetic mice with
the VEGF-A inhibitor sFLT-1 after the onset of kidney dam-
age, including albuminuria and mesangial matrix accumula-
tion. We found that even though transfection with sFlt-1 did
not normalise blood glucose levels in diabetic mice (ESM
Fig. 2), kidney damage was reversed, as both albuminuria
and mesangial matrix accumulation were reduced.

Several studies have reported that macrophages play a role
in the development of diabetic nephropathy [10–12].
Moreover, VEGF-A plays a role in the migration of mono-
cytes and macrophages [13] by binding the FLT-1 receptor on
these cells [14, 30]. In addition, incubating endothelial cells
with either glucose [17] or VEGF-A [16] results in endothelial
activation, a key event in the adhesion and migration of mono-
cytes from the circulation into the tissue. Consistent with this
finding, both animals and people with diabetes have increased
levels of endothelial activation [31–33]. Furthermore, we found
that incubating HUVECs with VEGF-A increased endothelial
activation, and that this effect was reversed by treating the
cells with sFLT-1. We also found that transfection with sFlt-
1 normalised both the number of glomerular macrophages and
the level of TNF-α in diabetic mice. Taken together, these
findings suggest that the VEGF-A inhibitor sFLT-1 reduces
endothelial activation and subsequent macrophage infiltration.
Treatment with sFLT-1 has reported benefits in treating other
diseases, including arthritis [34, 35], vascular disease [36, 37],
sepsis [38] and psoriasis [39]; these clinical benefits are attrib-
uted primarily to reduced numbers of infiltrating macrophages
and reduced inflammation. The current results indicate that
sFLT-1 may be a valuable treatment for diabetic nephropathy,
as well as other diseases in which inflammation plays an im-
portant role. Macrophages produce cytokines such as TNF-α
and TGF-β, which increase the production of matrix proteins
by mesangial cells [40]. Thus, reducing the number of glo-
merular macrophages using sFLT-1 might also reduce
mesangial matrix expansion in diabetic nephropathy.

As reviewed by Deeds et al [41], techniques using STZ
(such as dosage and administration) and consistency with re-
spect to the resulting diabetes mellitus in small animal models
have not been standardised. In our study, we used a moderate
dosing regimen of three doses of 75 mg/kg STZ, for two
reasons: (1) this regimen is less nephrotoxic than a single high
dose; and (2) this regimen induces more diabetes-related his-
tological damage compared with several low doses, which
result in a relatively mild phenotype. In rodents, STZ can
cause nephrotoxicity; however, Kraynak et al have reported
that STZ-induced cellular and molecular damage resolves
within 3 weeks [42]. This suggests that the albuminuria seen
in our diabetic mice at 5 weeks was probably related to dia-
betes rather than to STZ. This is supported by the histological
characteristics typical of diabetic nephropathy seen in these
diabetic mice (i.e. mesangial matrix expansion and glomerular
hypertrophy). Although some groups have reported
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albuminuria and histological lesions at this time point
[43–45], other groups did not find albuminuria at this time
point [31, 46]; this discrepancy may be due to differences in
the dose and/or route of administration of STZ. It is important
to note that although present, the albuminuria in our STZ-
injected diabetic mice was not exceedingly high, and we sug-
gest that the importance of albuminuria in C57BL/6 mice
must be considered in combination with the presence (or ab-
sence) of histological findings.

Importantly, we found a small, but significant, decrease in
podocyte numbers in sFlt-1-transfected diabetic mice; de-
creased numbers of podocytes have also been reported in
pre-eclampsia, which is characterised by high circulating
levels of sFLT-1 [47]. Despite this decrease in podocyte num-
bers, albuminuria was significantly reduced in sFlt-1-
transfected diabetic mice. It is possible that the decrease in
podocyte numbers in these sFlt-1-transfected mice was too
small to functionally affect the filtration barrier. This notion
is supported by previous reports that a substantial decrease in
podocyte numbers is required for increased albuminuria [48,
49]. Nevertheless, we cannot exclude the possibility that lon-
ger treatment and/or higher levels of sFLT-1 expression could
affect the glomerular filtration barrier. Thus, we hypothesise
that sFLT-1 will likely have a beneficial effect in people with
diabetes until the production of VEGF-A by podocytes drops
below a certain threshold, given that decreased VEGF-A
levels also result in kidney damage [21]. In this respect, it is
important to note that both VEGF-A and sFLT-1 levels should
be adjusted with care, as both increased and decreased levels
of VEGF-A can lead to renal pathology [3, 50].

In conclusion, we report that normalising VEGF-A levels
with sFLT-1 might be a viable approach for treating individ-
uals with existing diabetic nephropathy by reducing endothe-
lial activation, glomerular macrophage infiltration and glo-
merular inflammation, thereby reversing kidney damage.
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