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Abstract
Aims/hypothesis Previously, we proposed that data-driven
metabolic subtypes predict mortality in type 1 diabetes.
Here, we analysed new clinical endpoints and revisited the
subtypes after 7 years of additional follow-up.
Methods Finnish individuals with type 1 diabetes (2059 men
and 1924 women, insulin treatment before 35 years of age)
were recruited by the national multicentre FinnDiane Study
Group. The participants were assigned one of six metabolic
subtypes according to a previously published self-organising
map from 2008. Subtype-specific all-cause and cardiovascular
mortality rates in the FinnDiane cohort were compared with
registry data from the entire Finnish population. The rates of
incident diabetic kidney disease and cardiovascular endpoints
were estimated based on hospital records.
Results The advanced kidney disease subtype was associated
with the highest incidence of kidney disease progression
(67.5% per decade, p < 0.001), ischaemic heart disease

(26.4% per decade, p < 0.001) and all-cause mortality (41.5%
per decade, p < 0.001). Across all subtypes, mortality rates
were lower in women compared with men, but standardised
mortality ratios (SMRs) were higher in women. SMRs were
indistinguishable between the original study period (1994–
2007) and the new period (2008–2014). The metabolic syn-
drome subtype predicted cardiovascular deaths (SMR 11.0
for men, SMR 23.4 for women, p < 0.001), and women with
the high HDL-cholesterol subtype were also at high cardiovas-
cular risk (SMR 16.3, p < 0.001). Men with the low-cholesterol
or good glycaemic control subtype showed no excess mortality.
Conclusions/interpretation Data-driven multivariable meta-
bolic subtypes predicted the divergence of complication bur-
den across multiple clinical endpoints simultaneously. In par-
ticular, men with the metabolic syndrome and women with
high HDL-cholesterol should be recognised as important sub-
groups in interventional studies and public health guidelines
on type 1 diabetes.
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Introduction

The acute symptoms of type 1 diabetes can be managed by
insulin therapy, but a significant number of individuals
gradually develop chronic diabetic complications that reduce
the quality of life [1], cause most of the public health burden
[2] and shorten life expectancy [3]. Current prognostic tools
for diabetic complications and cardiovascular disease rely on
consensus guidelines that define broadly applicable univariate
thresholds, or simplified algebraic formulas to combine a
limited number of biomarkers [4, 5]. However, predicting
the future is difficult, and consensus risk estimates may be
too simplistic or too dependent on the type of cardiometabolic
risk profiles in a given time period to reach sufficient precision
[6]. To transcend the limitations of consensus guidelines, a
new data-driven paradigm is now emerging that aims to
collect massive repositories of clinical and molecular data
(e.g. the US Precision Medicine Initiative and the UK
Biobank), which are then integrated by advanced computa-
tional techniques to produce more precise and individualised
diagnoses and risk estimates.

We postulate that the metabolic subtype, as observed via
blood and urine biochemistry, carries important phenotypic
information from the unique personal combination of genetics
and environmental exposures that modulate long-term
complication risk [7]. We also propose that diabetic compli-
cations comprise a complex spectrum of altered biomarker
concentrations and comorbidities that may not be well
captured by traditional statistical methods [8]. Therefore, a
data-driven approach may provide important scientific insight
into the associations between established clinical endpoints
and prognostic markers. However, ‘big data’ in epidemiology
remains a nascent area [9, 10], and significant challenges
remain to ensure that the statistical models in data-driven
precision medicine are accurate, interpretations are robust
and unbiased, and that existing best practices are incorporated
into new data-analysis frameworks.

In 2008, we described the connections between metabolic
subtypes in type 1 diabetes and all-cause mortality [11]. From

a methodological point of view, the previous study provides
us with an opportunity to evaluate the concept of molecular
subtyping against new data that were not available at the time.
In this study, we analysed new data on all-cause mortality after
2008 to find out what has happened to the subtypes since the
original study, and if themortality gap between type 1 diabetes
and the general population has narrowed. The original study
did not investigate the causes for the observed mortality, nor
the incidence of micro- or macrovascular complications. Here,
we report new findings on cardiovascular mortality, ischaemic
heart disease and incident albuminuria that were not available
in the earlier publication, and specifically test for sex differ-
ences to provide a clearer picture on subtype-specific risk in
men and women.We are not aware of similar studies that have
re-used a multivariable model after several years; this report is
thus a novel example of how subtyping applications can be
validated with new data, and demonstrates the usefulness of
the self-organising map (SOM) approach for epidemiological
research of diabetic complications.

Methods

In the original report from 2008, a total of 4197 individuals
with type 1 diabetes were included from the nationwide
multicentre Finnish Diabetic Nephropathy Study (FinnDiane)
cohort [11]. In the current study, sufficient follow-up informa-
tion was available for 3983 (95%) individuals. The initial data
collection was cross-sectional between 1994 and 2007 (serum
and urine samples from a single baseline visit), and longitudinal
clinical records were obtained from hospitals and registries up
to the end of year 2014 (see electronic supplementary material
[ESM] Fig. 1). Type 1 diabetes was defined as age < 35 years at
the onset of diabetes and transition to insulin treatment within
1 year of onset. The study protocol was approved by the Ethical
Committee of Helsinki and Uusimaa Hospital District, and is in
accordance with the Declaration of Helsinki. Written informed
consent was received from each participant.

The FinnDiane individuals who participated in the first
study and who had follow-up data on renal status, cardiovas-
cular events and mortality were included. Diabetic kidney
disease was categorised according to urinary AER in at least
two out of three consecutive collections: normal AER
< 30 mg/24 h, microalbuminuria 30 < AER < 300 mg/24 h
and macroalbuminuria AER > 300 mg/24 h. Equivalent cut-
offs for overnight urine samples were <20 μg/min for normal
AER and >200 μg/min for macroalbuminuria. Patients on
dialysis and recipients of kidney transplants were classified as
having end-stage renal disease (ESRD). Retinopathy was
defined as a history of laser treatment.

Cardiovascular disease was defined as ischaemic heart dis-
ease (ICD-10 codes I20-I25 [www.who.int/classifications/icd/
en/]) or cerebrovascular disease (ICD-10 codes I60-I69). A
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cardiovascular death was recorded if the death certificate
listed any of the aforementioned codes as the underlying
cause (narrow definition), or if any of the codes was listed as
the underlying, immediate, intermediate or contributing cause
(wide definition). Hospital data were used as another source of
information: ischaemic heart disease was defined as a history
of myocardial infarction or a coronary artery procedure such
as bypass surgery or angioplasty, and stroke was defined as
cerebral infarction or cerebral haemorrhage. The metabolic
syndrome was defined according to a previously published
version of the National Cholesterol Education Program
Adult Treatment Panel (NCEPATP) III guidelines [12].

Vitality status (until 31 December 2014) and death certifi-
cates (until 31 December 2013) for the study participants were
obtained from the Finnish Causes of Death Register.
Age-specific mortality rates and causes in the general popula-
tion were provided by Statistics Finland from the national
registries. Hospital-based information on ischaemic heart
disease and stroke in the FinnDiane cohort (until 31
December 2013) was obtained from the national registry of
admissions and discharges at the National Institute for Health
and Welfare, and the latest available diabetic kidney disease
status was derived from the individuals’ healthcare records
and multiple national registries (until 31 December 2013).

The SOM from 2008 was used to define six subgroups of
individuals (ESMFig. 2). Briefly, the SOM is a two-dimensional
representation of multi-dimensional data where the distance on
the map between two individuals corresponds to their similarity
with respect to the biochemical profile from serum and urine.
Therefore, individuals who are placed in the same area of the
map share a similar metabolic subtype. By splitting the map into
subregions, we assigned individuals into the corresponding
subgroups, and then applied conventional statistics to evaluate
the associations with clinical endpoints. All biochemical
variables from the original SOM for the six metabolic subgroups
are defined and listed in ESM Table 1.

Statistical analyses All analyses were performed for both
sexes together and separately. Standardised mortality ratios
(SMRs) were estimated by dividing the frequency of deaths
in the FinnDiane cohort by the frequency of deaths in the
general population. SMRs were initially estimated for each
age group and observation year (an age–observation segment)
separately. These raw SMRs were then weighted according to
the follow-up duration and the number of FinnDiane partici-
pants in each segment. The weighted mean over all segments
was reported as the final SMR. For all-cause SMRs, segments
were defined by 1 year age intervals and annual observations.
For vascular SMRs in the general population, the provided
segments were defined according to 5 year age intervals and
annual observations, and interpolated to 1 year age intervals
before computing SMRs to ensure numerical stability for
younger age groups with low event frequencies. The p values

and 95% CIs were estimated by bootstrap sampling of the
FinnDiane participants.

The RR for clinical endpoints was estimated within the
FinnDiane cohort. To eliminate the confounding effect of ex-
posure time on complication burden, the individuals in a given
subgroup (n cases) were paired with individuals with matching
age and diabetes duration from the rest of the cohort (minimum
n controls). RRwas defined as the follow-up duration-weighted
incidence in cases divided by the corresponding incidence in
controls throughout all age–observation segments. Mortality
and risk analyses were performed with R project statistical soft-
ware, version R 3.0.2 [13] and Statistical Analysis System,
version 9.4 (SAS Institute, Cary, NC, USA).

The summary statistics of continuous variables for different
metabolic subtypes were expressed as medians and interquar-
tile ranges (IQRs), and binary variables as percentages of
prevalence. The statistical significance of the difference be-
tween two subtypes was estimated by the Kruskal–Wallis test
or Pearson’s χ2 test where appropriate.

Results

The clinical characteristics of the study participants at baseline
are listed in Table 1, with results for men and women listed
separately in ESM Table 2. Subtype A (good glycaemic con-
trol) was characterised by the lowest median HbA1c, 7.3%
(56 mmol/mol), with IQR 6.7–8.0% (50–64 mmol/mol).
Subtype B had the highest HDL-cholesterol (1.6 mmol/l, IQR
1.4–1.9 mmol/l). Subtype C (advanced kidney disease) showed
the highest prevalence of ESRD (24%). Subtype D was
characterised by the highest prevalence of the metabolic syn-
drome (82%). Subtype E was characterised by the lowest total
cholesterol concentration (4.2 mmol/l, IQR 3.8–4.5 mmol/l). In
addition, the region of the SOM that was not reported in the
original paper (subtype U, high blood glucose) showed a high
median HbA1c, of 9.1% (76 mmol/mol) with IQR 8.3–10.1%
(67–87 mmol/mol).

A total of 632 deaths occurred during a median of 14.0 (IQR
11.7–16.0) years of follow-up. To evaluate the accuracy of the
subtype modelling, we calculated all-cause SMRs for the pe-
riods before (1994–2007) and after (2008–2014) the original
analysis. Overall, the estimates were consistent between the
two periods (Table 2, ESM Table 3). In particular, subtypes A
and E, with favourable metabolic profiles, showed no excess
mortality (p > 0.05), whereas subtypes C and Dwere associated
with significantly increased mortality risk in both periods
(SMR between 4.6 and 6.8, p < 0.001). The all-cause SMRs
for all participants combined were 2.7 (95% CI 2.4, 3.0) for the
earlier period and 2.6 (95% CI 2.3, 2.9) for the later period. For
the entire follow-up (1994–2014), the highest all-cause mortal-
ity rate (41.5% per decade) and SMR (5.6) were observed for
subgroup C (ESM Table 5).
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Vascular diseases and mortality Cardiovascular causes were
identified for 37.2% of all deaths (222 out of 597) when using
the narrow definition and for 57.8% of deaths (345 out of 597)
when using the wide definition over a median of 13.1 (IQR
11.0–15.0) years of follow-up (Table 3). The proportion of car-
diovascular deaths varied modestly between 33.9% and 41.7%
across the subtypes when using the narrow definition. However,
higher proportions of cardiovascular deaths were observed for
subtypes C (61.6%) and D (62.5%) compared with subtypes A
(43.5%) and E (46.3%) when using the wide definition.

There were no marked differences in cardiovascular SMRs
between the first (1994–2007) and second (2008–2013) time
periods (ESM Table 4). The results for the full period
1994–2013 are listed in Table 3. Subtype A with good
glycaemic control and subtype E with low cholesterol showed

the lowest cardiovascular mortality rates (<2% per decade by
either definition). Dramatically higher rates were observed for
subtype C, with advanced kidney disease, (14.0% per decade,
SMR 11.1, p < 0.001) and subtype D, with the metabolic
syndrome, (7.6% per decade, SMR 8.8, p < 0.001) when the
narrow definition was used. Similar patterns were observed
with the wide definition of cardiovascular death. For the full
cohort, cardiovascular mortality was significantly higher than
in the general population according to the narrow (SMR 5.0,
p < 0.001) and wide definitions (SMR 7.8, p < 0.001).

The incidence of diabetic vascular complications was in-
vestigated within the FinnDiane cohort (Table 4). Similar to
the earlier results, the favourable metabolic subtypes did well:
no more than 6.3% of participants with subtypes A or E were
affected by any specific new complication per decade. On the

Table 1 Baseline characteristics of the study participants (n = 3983)

Characteristic Good glycaemic
control (A)

High
HDL-cholesterol (B)

Advanced kidney
disease (C)

Metabolic
syndrome (D)

Low
cholesterol (E)

High blood
glucose (U)

Men/women (n) 420/433 294/267 202/190 317/286 577/511 249/237

Age (years) 37.2 (28.8–45.9) 42.2 (33.2–50.4) 42.3 (35.0–49.9) 36.3 (28.7–44.4) 32.4 (24.3–41.5) 35.9 (27.0–46.7)

Diabetes duration (years) 19.6 (9.4–29.5) 26.2 (18.0–35.1) 29.6 (23.1–36.8) 23.6 (15.1–31.0) 16.3 (9.1–26.8) 20.0 (12.3–30.1)

Microalbuminuria (%) 6.7 21.9 12.5 15.6 10.7 14.4

Macroalbuminuria (%) 2.5 18.0 54.6 32.3 2.7 4.9

ESRD (%) 2.0 12.1 24.0 13.3 0.9 3.5

Retinopathy (%) 18.5 47.6 80.3 54.8 17.3 27.5

Macrovascular disease (%)a 4.2 10.0 26.5 15.3 3.1 7.0

Metabolic syndrome (%) 11.2 24.1 53.1 81.6 27.1 33.3

HbA1c (%) 7.3 (6.7–8.0) 8.4 (7.7–9.1) 8.9 (8.1–9.8) 9.2 (8.2–10.2) 8.2 (7.4–9.0) 9.1 (8.3–10.1)

HbA1c (mmol/mol) 56 (50–64) 68 (61–76) 74 (65–84) 77 (67–88) 66 (57–75) 76 (67–87)

Urinary AER (mg/24 h) 6.7 (4.2–12.2) 23.3 (9.4–124.5) 251.1 (75.5–845.1) 43.6 (10.7–296.3) 7.7 (4.5–14.5) 9.5 (5.1–25.7)

Total cholesterol (mmol/l) 4.7 (4.3–5.2) 5.6 (5.2–6.1) 4.9 (4.3–5.4) 5.8 (5.2–6.4) 4.2 (3.8–4.5) 5.1 (4.7–5.5)

HDL-cholesterol (mmol/l) 1.5 (1.3–1.8) 1.6 (1.4–1.9) 1.2 (1.0–1.4) 1.0 (0.8–1.2) 1.2 (1.0–1.4) 1.2 (1.1–1.4)

Waist circumference (cm) 81.0 (75.0–88.0) 85.0 (77.0–93.0) 86.0 (79.0–94.0) 91.7 (83.0–101.0) 83.0 (77.0–90.0) 86.0 (78.0–93.0)

Data are median (IQR) or %
a Prevalent macrovascular disease was defined as cardiovascular disease, amputation or peripheral artery bypass

Table 2 Comparison between all-cause mortality in individuals with type 1 diabetes and the general population during the two time periods

Subtype 1994–2007 2008–2014

Follow-up
(person-years)

Mortality
(% died/decade)

SMR (95% CI) Follow-up
(person-years)

Mortality
(% died/decade)

SMR (95% CI)

Good glycaemic control (A) 5989 3.2 0.92 (0.53, 1.37) 5723 5.8 1.18 (0.81, 1.58)

High HDL-cholesterol (B) 4113 16.3 3.25 (2.53, 4.13)*** 3212 20.2 2.80 (2.20, 3.44)***

Advanced kidney disease (C) 2769 39.0 6.78 (5.66, 8.02)*** 1715 45.5 6.52 (5.15, 8.02)***

Metabolic syndrome (D) 4569 19.9 4.89 (3.98, 5.93)*** 3345 19.7 4.58 (3.62, 5.58)***

Low cholesterol (E) 7422 1.9 0.78 (0.39, 1.17) 7417 4.0 1.17 (0.78, 1.60)

High blood glucose (U) 3403 7.3 1.91 (1.17, 2.89)* 3106 11.6 2.22 (1.58, 2.92)***

All individuals 28,266 11.5 2.72 (2.44, 3.03)*** 24,519 12.6 2.58 (2.31, 2.86)***

* p < 0.05, *** p < 0.001
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other hand, the majority of participants with the advanced
kidney disease subtype (C) progressed in the categorical albu-
minuria scale (67.5% per decade), andmany developed ESRD
(59.4% per decade). Accordingly, the incidence values for
ischaemic heart disease (26.4% per decade) and stroke
(17.5% per decade) were also higher. ESRD and ischaemic
heart disease had higher incidences in subtype C compared
with subtype D (59.4% vs 19.9% per decade [threefold differ-
ence] and 26.4% vs 18.1% per decade [1.5-fold difference],
respectively). When the gap in age and diabetes duration
between the two subtypes was taken into account, the risk of
ESRD was higher in the advanced kidney disease subtype
(RR 5.0 [subtype C] vs RR 2.5 [subtype D]), as expected,
but the RR for ischaemic heart disease was not (RR 1.7 for
subtype C vs RR 2.0 for subtype D).

Sex differences The differences in mortality between men and
women are summarised in Fig. 1, and the corresponding
numerical values are reported in ESM Tables 5 and 6. The
point estimate for 10 year all-cause mortality rate was lower
in women across all subtypes (Fig. 1a) and significantly lower,
comparing all women with all men. On a subgroup level, the
rate was significantly lower in women only for subgroup C.
However, all-cause SMR was higher in women compared
with men (Fig. 1b) for subtypes B (SMR 2.2 in men vs 3.8
in women), C (SMR 4.0 vs 8.9) and D (SMR 3.2 vs 5.3). Of
note, women with subtypes B, C or D were over 4 years older
than men with the same subtypes (p < 0.001), whereas women
with the low-cholesterol subtype had 3.8 years’ longer dura-
tion of diabetes than men (p < 0.001).

The pattern for cardiovascular mortality was similar to that
for all-cause mortality. Again, the overall 10 year cardiovas-
cular mortality rate was significantly lower in women, com-
paring all women with all men (5.5% in women vs 8.4% in
men) but the cardiovascular SMRs were substantially higher
in women compared with men (Fig. 1d) for the subtypes B

(SMR 16.3 vs 6.0), C (SMR 46.0 vs 11.5) and D (SMR 23.4
vs 11.0) when using the wide definition. Surprisingly, the
cardiovascular SMRs for subtypes C (SMR 11.5) and D
(SMR 11.0) were almost identical within men, whereas a two-
fold difference was observed within women.

The baseline metabolic subtype was predictive of diabetic
vascular complications in both sexes (Fig. 2, ESM Table 7).
The 10 year risk of kidney disease progression, incident
ESRD and stroke was higher in men, comparing all men with
all women. Men with subtype D and U had a significantly
higher 10 year risk of kidney disease progression compared
with women (D, 42.6% in men vs 24.2% in women; U, 21.0%
in men vs 4.7% in women), and similarly men with subtype C
had higher 10 year risk of incident ESRD (75.8% in men vs
46.5% in women) and stroke (25.2% in men vs 10.7% in
women) (Fig. 2b). However, there was no difference in the
10 year incidence of ischaemic heart disease between all men
and all women. On a subgroup level, the incidence was higher
in women for subgroup E. Notably, age bias did not explain
the equalisation of risk as women with subtype B (39.0 years)
or C (40.2 years) were younger than the men with the same
subtypes (B 43.8 years, p < 0.001; C 44.6 years, p < 0.003).

Discussion

We propose that the combination of non-optimal glycaemic
control, unhealthy lifestyle and genetic susceptibility to
diabetic end-organ damage manifests as systemic metabolic
subtypes in individuals with type 1 diabetes [7]. Data-driven
representative subtypes are an appealing approach to address
the inherent complexity of biomedical data on diabetic
complications, but rigorous testing is needed to establish the
usefulness of the subtypes. For this study, we had the unique
opportunity to revisit a subtype model from 2008 [11] and
investigate what had happened in the subsequent 7 years.

Table 3 Comparison between cardiovascular mortality in individuals with type 1 diabetes and the general population between 1994 and 2013 based on
the narrow and wide definitions of cardiovascular deaths

Subtype Follow-up
(person-
years)

Narrow definition Wide definition

Mortality
(% died/decade)

Proportion
of all deaths
(%)

SMR (95% CI) Mortality
(% died/decade)

Proportion
of all deaths
(%)

SMR (95% CI)

Good glycaemic
control (A)

10,911 1.6 37.0 1.98 (1.09, 3.17)* 1.8 43.5 2.25 (1.29, 3.53)**

High HDL-cholesterol (B) 6895 7.7 41.7 6.40 (4.54, 9.05)*** 10.9 59.1 8.79 (6.74, 11.95)***

Advanced kidney
disease (C)

4276 14.0 33.9 11.14 (7.90, 14.74)*** 25.5 61.6 19.65 (15.48, 26.27)***

Metabolic syndrome (D) 7468 7.6 37.5 8.83 (6.69, 13.08)*** 12.7 62.5 14.66 (11.80, 19.38)***

Low cholesterol (E) 13,797 1.1 36.6 2.35 (1.26, 3.54)* 1.4 46.3 3.68 (2.00, 5.40)***

High blood glucose (U) 6083 3.3 37.0 3.94 (2.29, 6.27)*** 4.4 50.0 5.30 (3.46, 7.89)***

All individuals 49,431 4.5 37.2 4.96 (4.33, 5.70)*** 7.0 57.8 7.76 (6.99, 8.74)***

* p < 0.05, ** p < 0.01, *** p < 0.001
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We combined the old models with new previously unseen
clinical data to extend the original findings in coverage and
over time. Importantly, we show compelling results on the
mortality gap between type 1 diabetes and the general popu-
lation, and describe the incidence of vascular diseases and sex
divergence within the FinnDiane cohort across six pre-defined
metabolic subtypes.

The relative gap in mortality between type 1 diabetes and
the general population has remained stable over the past two

decades (Table 2), and the results are highly consistent across
the subtypes. In general, consistent patterns of absolute mor-
tality and SMRs have been observed across several Nordic
studies that represent similar ethnic and socioeconomic cir-
cumstances [14–17]. In particular, the absolute mortality rate
in the FinnDiane cohort (12.0% per decade) was similar to
13.9% in a Danish cohort [14] and 10.4% in a Swedish regis-
try [15]. Previously published time trends in Finland showed a
declining SMR time trend in the early-onset subset, but an
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increasing SMR in the late-onset subset when stratified by the
calendar year of diabetes onset [16]. Overall, a meta-analysis
of type 1 diabetes mortality indicated that the relative mortal-
ity gap has stabilised since 1990 [18]. In absolute terms, life
expectancy has increased in people with type 1 diabetes [19],
but it seems that this has been largely offset by a concomitant
increase in longevity across the whole population in Finland.

In this study, the at-risk population comprisedmostly the same
individuals between the two time periods (fewer than 10% died
within the first period). As a consequence, the SMRs before and
after 2008 apply to different age segments of the Finnish popu-
lation, which may make them less accurate measures of age-
controlled time trends. The consistency across all subtypes is,
however, important: we postulate that the most effective way to
reduce the overall SMR is by reducing the prevalence of adverse
subtypes. For example, reducing the prevalence of the obesity-
associatedmetabolic syndrome subtype (D) inmenmay lead to a
relative increase in the prevalence of the nearby low-cholesterol
subtype (E), which will eventually translate into a narrower gap
in mortality with respect to non-diabetic peers.

Cardiovascular disease was the underlying cause in over
30% of deaths and a contributing cause in over 60% of deaths
for the adverse kidney disease subtype (C) and the metabolic
syndrome subtype (D). In an Australian study of 87,047 indi-
viduals followed for 15.2 years [20], approximately one-third
of deaths were attributed to cardiovascular causes, which fits
with the results from FinnDiane when using the narrow defi-
nition of cardiovascular disease. Chronic kidney disease on its
own increases cardiovascular risk substantially in all age
groups [21], and there is also a plausible link between the
metabolic syndrome or its components and cardiovascular
mortality in type 1 diabetes [22–24]. Against this backdrop,
the patterns of cardiovascular mortality observed here (i.e.
high-risk subtypes C and D) are in accordance with the liter-
ature. Importantly, the metabolically favourable subtype A
showed no excess mortality in men, showing that type 1
diabetes per se, if well controlled, does not substantially in-
crease cardiovascular risk even after 20 years of diabetes in
metabolically robust individuals. It is logical to assume that
individuals of subtype A have experienced 20 years of good
metabolic health since type 1 diabetes onset. This may explain
why subtype A is associated with a substantially better prog-
nosis than the cohort as a whole, whereas in trials such as the
DCCT/Epidemiology of Diabetes Interventions and
Complications (EDIC) a shorter 6.5 years of intensive glucose
control had a modest impact on all-cause mortality decades
later [25]. We propose subtype A as an ideal, but achievable,
treatment target for new multifactorial trials that combine tai-
lored lifestyle and molecular interventions beyond more con-
ventional approaches that target only one biomarker at a time.

There is a prevailing health gap between men and pre-
menopausal women in the general population [26], whereas
a narrower gap was observed in the FinnDiane cohort

(standardised risk estimates were higher in women despite
lower absolute mortality or morbidity rates). The vulnerability
of women to diabetic complications has been observed before
[27, 28], but this is the first study to dissect the phenomenon
into metabolic subtypes. In particular, a subset of women with
high HDL-cholesterol and type 1 diabetes (subtype B) were
not protected against ischaemic heart disease, and even lost
their advantage over men, which resulted in dramatically in-
creased standardised mortality and relative cardiovascular
risk. Although men with subtype Awere doing as well as their
non-diabetic peers, subtype A in women was associated with a
fourfold increased cardiovascular SMR. It is thus plausible
that type 1 diabetes itself may disrupt hormonal cycles and
metabolic homeostasis in women [29], beyond the corre-
sponding effects in men. From a practical point of view, met-
abolic interventions that are specifically targeted for diabetic
women at risk ofmicrovascular complications may represent a
cost-effective means to mitigate the adverse sequelae of type 1
diabetes.

From amechanistic perspective, it is plausible that the second-
ary effects of kidney disease cause the dramatic rise in vascular
mortality in individuals with subtype C. Insulin resistance [22],
lipoprotein trafficking abnormalities [30] and low-grade chronic
inflammation [31] are the likely explanations for the increased
risk in the metabolic syndrome subgroup who had equivalent or
even higher insulin doses, abdominal obesity, triacylglycerol–
cholesterol imbalance and elevated C-reactive protein compared
with the subtypes A and E. The lack of protection from high
HDL-cholesterol in women of subtype B is supported by
Mendelian randomisation studies that have failed to show causal-
ity for HDL-cholesterol despite an inverse correlation with car-
diovascular disease [32, 33]. The underlying metabolic subtype
may be a crucial contextual confounder: the isolated high
HDL-cholesterol in subtypeBmay indicate dysfunction,whereas
the high HDL-cholesterol in subtype A fits with the overall
favourable metabolic profile. Indeed, high HDL-cholesterol in
women with type 1 diabetes has previously been linked to car-
diovascular risk [34].

The use of pre-defined data-driven baseline subtypes with
new prospective data is the unique strength of this study. In a
traditional epidemiological study, emergent subgroups
beyond established clinical criteria are rarely addressed,
whereas purely data-driven studies such as this one have the
potential to reveal unmet needs such as cardiovascular medi-
cation in women with high HDL-cholesterol. Furthermore,
this is the first study of type 1 diabetes, to our knowledge, that
has successfully replicated an epidemiological multivariable
model across two time periods. On the other hand, the lack of
replication in an independent cohort is a limitation, and cau-
tion is warranted when generalising the results from the
FinnDiane cohort to other ethnic groups or socioeconomic
settings. Another limitation is the study design (a single bio-
chemical sample at baseline and long baseline period) that
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does not directly address the time-dependent trajectories of
individuals or disease incidence. Despite the limitations, we
maintain that our statistical subtyping framework is a feasible
and robust discovery tool for precision medicine initiatives
that aim to integrate diverse clinical and epidemiological
datasets. In particular, the original unsupervised SOM model
was constructed without using any of the follow-up data (thus
preventing over-fitting), and we believe this is why the SMRs
replicated so accurately across the two time periods.

Big data in medicine remains an emerging area [9, 10], with
significant technical and political challenges to tackle before
new paradigms such as precision medicine can be successfully
applied in the clinics. This study focuses on the epidemiologi-
cal aspect of data-driven subtyping, but caution is warranted
before these approaches can be translated into clinical practice.
The prediction of vascular endpoints at an individual level from
a single blood sample is difficult to achieve, regardless of sta-
tistical methods, because of standardisation issues between
study centres and countries, stochasticity of physiological
events, genetic heterogeneity and the diversity of personal cir-
cumstances within human populations. That said, there is great
value in applying the SOM in large population cohorts to reveal
subgroups that may not be covered by traditional approaches or
accurately addressed by current treatment guidelines.

Baseline metabolic subtypes, derived from an array of
quantitative biomarkers, contain a wealth of diagnostic and
prognostic information on type 1 diabetes. Here, we have
demonstrated how this information can be used to identify
specific subgroups towards new designs of more effective
public health interventions. For instance, we found that men
with type 1 diabetes and the metabolic syndrome, and a subset
of women with high HDL-cholesterol, may represent justifi-
able and cost-effective points of intervention to reduce the
burden of late vascular complications. We also defined the
ideal sex-specific metabolic profile in type 1 diabetes that
can be adapted into a multivariable treatment target for preci-
sion medicine. Finally, the updated statistics from this study
highlight the persisting health gap between those with type 1
diabetes and the Finnish background population, and the ur-
gent need to develop effective targeted treatments to prevent
the progression of diabetic kidney disease.
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