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Abstract The physiologically predominant signal for pancre-
atic beta cells to secrete insulin is glucose. While circulating
glucose levels and beta cell glucose metabolism regulate the
amount of released insulin, additional signals emanating from
other tissues and from neighbouring islet endocrine cells mod-
ulate beta cell function. To this end, each individual beta cell
can be viewed as a sensor of a multitude of stimuli that are
integrated to determine the extent of glucose-dependent insu-
lin release. This review discusses recent advances in our un-
derstanding of inter-organ communications that regulate beta
cell insulin release in response to elevated glucose levels.
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Abbreviations
CAMP Cyclic AMP
DLK-1 Delta-like 1
DPP-IV Dipeptidyl peptidase IV
ERK Extracellular signal-regulated kinase

GIP Glucose-dependent
insulinotropic polypeptide

GIPR Glucose-dependent insulinotropic
polypeptide receptor

GLP-1 Glucagon-like peptide 1
GLP-1R Glucagon-like peptide 1 receptor
Glu-OCN Undercarboxylated osteocalcin
GOAT Ghrelin O-acyltransferase
GSIS Glucose-stimulated insulin secretion
M3R M3 acetylcholine receptor
NMU Neuromedin U
NMUR Neuromedin U receptor
TCF1 T cell-specific transcription factor-1
PKA Protein kinase A
PYY Peptide YY

Intestine to beta cell communication

Incretin hormones

The incretin hormones glucagon-like peptide 1 (GLP-1) [1–4]
and glucose-dependent insulinotropic polypeptide (GIP, also
known as gastric inhibitory polypeptide) are among the most
widely studied modulators of beta cell function [5–8].

GLP-1 GLP-1, a proteolytic product of pre-proglucagon,
which is synthesised and secreted from intestinal L cells upon
stimulation by intestinal nutrients, is released into the circula-
tion shortly after meal intake, increasing circulating GLP-1
levels. At the endocrine pancreas, through binding to its cog-
nate stimulatory G protein (Gαs)-coupled receptor (GLP-1R),
it suppresses alpha cell glucagon secretion and potentiates
insulin secretion from beta cells in a glucose-dependent man-
ner. It is important to note that GLP-1 action on beta cells only
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occurs when the circulating glucose level is above a certain
threshold, which in humans lies in the low normoglycaemic
range. In the presence of elevated glucose levels, beta cell
GLP-1R stimulation results in a more pronounced rise in in-
tracellular calcium, and the frequency and number of insulin
vesicles exocytosed (i.e. insulin secretion) is increased. GLP-1
is rapidly degraded enzymatically by dipeptidyl peptidase IV
(DPP-IV) located in the endothelium, rendering the biological
half-life of GLP-1 shorter than 5 min [9]

The above-described concept of GLP-1–GLP-1R action is
successfully exploited by diabetes pharmacotherapy, with
GLP-1R agonists or DPP-IV inhibitors that both augment
GLP-1 action in beta cells and increase insulin secretion in
patients with type 2 diabetes mellitus. In general, in type 2
diabetic patients, the meal-induced increase in circulating
GLP-1 levels is similar to that observed in non-diabetic indi-
viduals; however, it is not as effective in potentiating insulin
secretion. The underlying reasons for this remain incomplete-
ly understood [9]. Experimental findings suggest that signals
external to beta cells inhibit the beta cell response to incretin
action (see below) and that, at least in humans with a
prolonged history of type 2 diabetes, a beta cell autonomous
defective response to GLP-1 is demonstrable during experi-
mental studies on isolated islets, attributable to the loss of key
beta cell-defining transcription factors [10].

Recent studies using sophisticated genetic mouse models
have provided new insights into the physiological and phar-
macological mechanisms of GLP-1 action. Mouse models of
conditional, tissue-specific GLP-1R ablation [11] indicate that
the presence of GLP-1R on beta cells is not necessary for
physiological (not during diabetes and insulin resistance)
GLP-1 action in modulating beta cell function, and suggest
the possibility that GLP-1R activation in afferent neurons lo-
cated in the intestine or portal venous vasculature may relay
GLP-1 action indirectly via neuronal mechanisms to beta cells
[11]. Selective beta cell ablation of GLP-1R in mice did not
alter insulin secretion or glucose tolerance during oral or in-
traperitoneal glucose tolerance tests, while systemic treatment
of these mice with a pharmacological GLP-1R agonist did
result in the absence of insulin secretion potentiation. The
investigators of these studies concluded that, under physiolog-
ical conditions, incretin action through GLP-1R is indepen-
dent of the presence of GLP-1R on beta cells, and that the
effects of GLP-1 may be mediated via non-endocrine mecha-
nisms. These findings raise the possibility that in type 2 dia-
betes the absence of incretin action may not be solely due to
the diminished response of beta cells to GLP-1, but, rather,
may be due to disruptions in neuronal relay mechanisms be-
tween the intestine and the endocrine pancreas [11].

In addition to GLP-1, L cells synthesise and secrete other
endocrine hormones that may influence beta cell function. In
the rat, the epithelium of the proximal portion of the intestine
contains L cells that produce cholecystokinin (CCK) and

neurotensin, while distally localised L cells express peptide
YY (PYY) [12].

GIP and xenin-25 In contrast to GLP-1 agonist treatment,
pharmacological administration of GIP fails to augment
glucose-stimulated insulin secretion (GSIS) in humans with
type 2 diabetes. The mechanisms of action of GIP, which is
secreted from intestinal epithelial K cells, as an incretin hor-
mone appear to be more complex than those of GLP-1.
Importantly, a second protein, called xenin-25, is co-
synthesised and secreted from K cells [13]. Mice selectively
lacking K cells exhibit a blunted response to exogenous GIP
replacement, and in vivo co-administration of xenin-25 re-
stores GIP incretin action [13]. In vitro studies on xenin-25
and GIP treatment of mouse islets indicate that xenin-25 does
not act directly on beta cells. Rather, xenin-25 acts by stimu-
lating cholinergic signalling to beta cells via non-ganglionic
circuitry that, to date, remains to be characterised [14].

Co-administration of xenin-25 with GIP potentiates GSIS
in non-diabetic people but not in individuals with established
type 2 diabetes. However, co-treatment with recombinant
xenin-25 and GIP reduces postprandial glycaemia by delaying
gastric emptying in humans with or without type 2 diabetes
[15]. Thus, while GIP is considered an incretin hormone, its
mechanisms of action and its significance in glucoregulation
remain to be fully understood. Importantly, establishing why
combined recombinant xenin-25/GIP treatment is ineffective
in type 2 diabetic patients may further our understanding of
beta cell failure in type 2 diabetes.

Furthermore, studies in mice lacking GIP (as opposed to
lacking K cells, described above) suggest a wider role for GIP
in metabolic control. Absence of GIP production in mice,
slightly impairs GSIS and glucose tolerance. However, when
placed on a high-fat content diet, the absence of GIP protects
against obesity and insulin resistance and maintains increased
fatty acid oxidation [16].

More recently, studies of GIP receptor (GIPR) ablation
specifically in mouse beta cells [17] revealed at least two
signalling pathways that are engaged by GIPR activation in
beta cells. The first is the well-known activation of cyclic
AMP (cAMP) production, the second is the extracellular
signal-regulated kinase (ERK)-dependent pathway. GIPR–
ERK but not cAMP-dependent signalling in beta cells stimu-
lates the expression of T cell-specific transcription factor-1
(TCF1), which is encoded by Tcf7 [17]. Mice lacking GIPR
specifically in beta cells exhibit normal glucose tolerance,
while glucose-stimulated insulin secretion is slightly damp-
ened. Interestingly, the response to GLP-1R activation in
GIPR-ablated islets is augmented, suggesting potential com-
pensatory mechanisms that maintain insulin secretion in the
absence of GIPR signalling.

Importantly, Tcf7 levels are lower in islets of diabetic mice
and in humans with type 2 diabetes, and Tcf7–/– mice exhibit
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increased susceptibility to apoptotic injury and glucose intole-
rance with aging or during increased metabolic demand in the
face of high-fat-content diet feeding [17]. The antiapoptotic
actions in beta cells of TCF1 are likely to be mediated by the
TCF7 target pituitary tumour-transforming gene 1 (Pttg1),
which encodes securin, a protein involved in DNA repair and
chromosome stabilising mechanisms. Thus, a GLP-1R-inde-
pendent, GIPR–ERK–TCF1–PTTG1 axis is proposed to exert
protective and antiapoptotic effects on beta cells [17].

Decretin hormones

Neuromedin U While the incretin hormones stimulate in-
creased insulin release from beta cells in the feeding state,
prolonged nutrient deprivation and fasting are accompanied
by reduced insulin secretion (i.e. ‘fasting diabetes’) [18]. This
dampened insulin secretion is not readily reversed by i.v. glu-
cose supply, arguing against a simple absence of nutrients (i.e.
glucose) and for an active suppression of beta cell insulin secre-
tion as a regulatory mechanism of beta cell function during
periods of nutrient deprivation [18]. Such observations have
propagated the concept of decretin hormones that act during
fasting to regulate in a manner inverse to that of incretins.

Indeed, using a nutrition-deprivedDrosophila melanogaster
model, limostatin was found to be upregulated in gut-
associated endocrine cells and to suppress secretion from
Drosophila insulin-like peptide-producing cells by interacting
with theDrosophila orthologue of the inhibitory neuromedin U
receptor (NMUR) [19]. NMUR1 is a G protein-coupled recep-
tor that, in mammals, mediates the peripheral actions of NMU.
It can be localised to human beta cells, and in perifusion assays
of human islets NMU suppresses GSIS. Furthermore, in
humans, NMU expression is detectable in foregut-derived
stomach and duodenum, and its immunoreactivity is localised
to chromogranin B-positive enteroendocrine cells in the duo-
denal epithelium [19]. Circulating NMU concentrations during
fasting and feeding have not been reported to date. Although it
is unclear whether NMU fulfils this classical criterion of a bona
fide hormone, NMU appears to possess all the other properties
expected of a decretin [19].

Remarkably, an NMU variant, NMU R165W, which in
humans confers autosomal-dominant early-onset obesity, fails
to suppress GSIS in perifusion studies, suggesting a sequential
pathogenic link between increased insulin secretion followed
by increased risk of obesity in humans [19].

Ghrelin and galanin Ghrelin and galanin are two more hor-
mones that are synthesised and secreted from the gastrointes-
tinal tract and suppress beta cell glucose responsiveness.
Ghrelin is produced in foregut-derived stomach epithelium
and also in endocrine cells located in the pancreatic islet (ep-
silon cells) [20–22]. Specific post-translational acylation by
ghrelin O-acyltransferase (GOAT) is required for ghrelin to

bind to and activate its receptor [23]. Fasting induces ghrelin
expression in both stomach epithelium and the central nervous
system. Circulating acyl-ghrelin levels increase during nutrition-
al deprivation. Furthermore, acyl-ghrelin potently inhibits GSIS
in vivo in mice and in cultured islets in vitro via interaction with
the ghrelin receptor. Ghrelin-deficient mice are less protected
from fasting-induced hypoglycaemia [24, 25]. Collectively,
these findings indicate that ghrelin may function as a fasting-
induced hormone, exerting, among other effects, homeostatic
effects that serve to suppress insulin secretion and protect against
hypoglycaemia. Furthermore, specific pharmacological inhibi-
tion of GOAT, an enzyme with the exclusive function of acti-
vating ghrelin function, results in increased in vivo insulin
secretion and improved glucose homeostasis in animal models
of diet-induced obesity and glucose intolerance [26].

Galanin is expressed in neuronal and intestinal tissue and,
in vitro, suppresses GSIS from isolated rodent islets. The reg-
ulation of galanin secretion and the mechanisms by which it
regulates insulin secretion in humans remain unknown. In
experimental systems, it is likely that galanin inhibits insulin
secretion via interaction with a G protein-coupled receptor that
signals through Gα(o2) [27, 28].

Liver to beta cell communication

Hyperglucagonaemia has long been recognised as a hallmark
of type 2 diabetes. Furthermore, subsets of individuals who
are at risk for developing type 2 diabetes (i.e. first-degree
relatives of patients with type 2 diabetes) also exhibit relative
hyperglucagonemia. The mechanistic link between
hyperglucagonemia and defective insulin secretion in type 2
diabetes has recently been elucidated using genetic mouse
models [29]. Glucagon acts on a relatively small number of
target cells and orchestrates processes that protect against or
aid recovery from hypoglycaemia. In the liver, glucagon binds
to its Gαs-coupled receptor to stimulate cyclic AMP (cAMP)
synthesis, which in turn binds to the regulatory subunit of
protein kinase A (PKA) holoenzyme, thereby releasing and
activating the catalytic subunit of PKA. Subsequent down-
stream signalling results in glucose mobilisation from glyco-
gen stores and transcriptional upregulation and activation of
the gluconeogenesis program [29].

As expected, transgenic hepatocyte-specific overexpression
of the catalytic subunit of PKA in mice results in the upregula-
tion of the transcriptional gluconeogenesis program and in
hyperglycaemia [29]. However, insulin secretion remains
insufficient to adequately control glycaemia. Similarly, selec-
tive ablation of the gene encoding PKA regulatory subunit 1a
(Prkar1a) in hepatocytes also results in increased hepatic glu-
cose production and insulin secretion insufficient to control
blood glucose levels [30]. Mice from the latter study harboured
a factor in their circulation that inhibited insulin secretion from
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mouse islets cultured in vitro. Gene expression analysis of
livers from mice with ablated Prkar1a surprisingly revealed
the peptide hormone kisspeptin 1 to be upregulated, which in
turn resulted in elevated circulating kisspeptin 1 levels [30].

The kisspeptin 1 receptor (Kiss1R) is present in abundance
on pancreatic beta cells, and acute kisspeptin 1 treatment of
mice causes impaired glucose tolerance owing to dampened
GSIS. Kiss1R is related to the galanin and ghrelin receptors,
and similar to galanin and ghrelin, kisspeptin 1 binds to its
cognate receptor and inhibits cAMP production in beta cells,
thereby dampening GSIS [30]. Moreover, mouse models of
diabetes mellitus, such as the high-fat content diet-fed mouse
or the db/db mouse, exhibit elevated liver kisspeptin 1 pro-
duction and impaired glucose tolerance. Kisspeptin 1 knock-
down in the liver of these animal models ameliorates glucose
tolerance and increases GSIS. Importantly, humans with dia-
betes also exhibit increased liver kisspeptin 1 production and
circulating kisspeptin 1 levels. Human islets express Kiss1R,
and it is likely that, as in the mouse model, kisspeptin 1 would
impair GSIS from human islets [30].

In summary, a tri-hormonal glucoregulatory endocrine cir-
cuit exists between the pancreatic islet and the hepatocyte.
Glucagon stimulates gluconeogenesis in the liver, which
raises glucose levels and stimulates kisspeptin 1 production,
which in turn suppresses insulin secretion.

Adipocyte to beta cell communication

Leptin, a hormone produced by adipocytes, suppresses insulin
secretion. Pancreatic beta cells express the functional long
form of the leptin receptor (ObRb), and isolated islets incubat-
ed in vitro with leptin exhibit reduced GSIS [31–36].
Furthermore, in mice, conditional genetic ablation (using the
Cre–LoxP system) of ObRb specifically in pancreatic beta
cells is accompanied by augmented GSIS in vivo. These stud-
ies suggest that leptin acts directly on pancreatic beta cells to
impair insulin secretion. The findings have recently been
reexamined in light of observations that the transgene carrying
Cre recombinase under the control of the rat insulin promoter
is likewise expressed ectopically in areas of the brain where
the leptin receptor is also expressed. More recent studies using
a different mouse model of beta cell-specific Cre expression
while avoiding neuronal Cre expression, suggest that the
in vivo effects of leptin may not be mediated via its receptor
on beta cells [37]. Nevertheless, as outlined in the section
below on the skeletal system, leptin may regulate beta cell
function indirectly—at least in the mouse—by controlling
bone mass and osteocalcin production.

Adiponectin is another major adipose tissue-derived hor-
mone. In addition to facilitating beta cell proliferation and
regeneration in mice after in vivo experimental ablation, it
has recently been shown to modulate beta cell lipid

metabolism, thereby protecting beta cells from lipotoxicity
and preserving beta cell function [38, 39]. Further studies
related to adiponectin receptors are anticipated to elucidate
how adiponectin exerts these effects on beta cells.

Other products secreted by adipocytes, such as resistin and
fibroblast growth factor 21 (FGF21), have been proposed to
regulate beta cell function (reviewed in [40]). However, there
are currently insufficient data on these adipocyte-derived
products to allow for any clear conclusions as to whether these
effects occur via direct action on beta cells or indirectly via
changes in other metabolically relevant tissues [40]

Skeletal system to beta cell communication

Bone

Bone is increasingly being recognised as an endocrine tissue
that participates in regulating whole body fuel metabolism and
glucoregulation. Teleologically, the role of the skeleton as a
prerequisite for transitioning from marine to terrestrial exis-
tence and locomotion would posit adaptive processes for met-
abolic homeostasis [41].

Osteocalcin Of the skeletal compartment, osteocalcin has in
recent years emerged as an important regulator of beta cell
functional mass, insulin sensitivity and peripheral tissue fuel
combustion, as well as male fertility [42, 43]. Osteocalcin,
one of the most abundant components of bone extracellular
matrix is synthesised and secreted by osteoblasts. Osteocalcin
undergoes post-translational carboxylation on glutamic resi-
dues. Formation of undercarboxylated osteocalcin (Glu-OCN)
or resorption of bone through osteoclasts, yielding Glu-OCN,
releases Glu-OCN into the circulation, allowing it to reach tar-
get tissues and act through the osteocalcin receptor [44].
Observations from osteocalcin knockout mice indicate that
osteocalcin plays a role in regulating beta cell mass and func-
tion [45, 46]. Osteocalcin knockout mice exhibit low beta cell
mass and impaired glucose tolerance owing in part to impaired
GSIS and to insulin resistance in peripheral tissue. Moreover,
osteocalcin treatment in mice increases beta cell mass and in-
sulin secretion, improves glucose homoeostasis and prevents
the development of type 2 diabetes [45]. Furthermore, mice
lacking the presumptive osteocalcin receptor GPRC6A (a Gαs

protein-coupled receptor) specifically on beta cells exhibit im-
paired beta cell proliferation, insulin synthesis and GSIS [47].

Remarkably, osteoblasts, which synthesise osteocalcin,
express insulin receptors, and insulin stimulates osteocalcin
production. Mice with an osteoblast-specific lack of insulin
receptors show reduced bone density, reduced circulating
osteocalcin levels and reduced beta cell mass, impaired GSIS
and glucose tolerance. Conversely, overexpression of insulin
receptors in osteoblasts improves glucose tolerance in mice on
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a diabetogenic high-fat diet (HFD). These findings suggest a
feed-forward interplay between insulin-producing beta cells
and osteoblasts, osteoclasts and bone turnover [48, 49].

More recently, delta-like 1 (DLK-1) has been proposed to
counteract the effects of insulin on osteoblasts, providing a
counter-regulatory mechanism to the feed-forward loop be-
tween osteocalcin and insulin. Osteocalcin stimulates DLK-1
production in beta cells, from where DLK-1 is co-secreted
with insulin. In turn, DLK-1 inhibits insulin receptor signal-
ling in osteoblasts [50].

Leptin and adiponectin Leptin, originating from adipocytes,
which are an osteocalcin target, acts via the hypothalamus and the
sympathetic nervous system to inhibit bone formation [51, 52].
This, in turn, results in reduced circulating (undercarboxylated)
osteocalcin, followed by reduced insulin secretion (as outlined
above). While these early results on the regulation of bone
mass by leptin are very convincing, recent studies suggest that
leptin action in the brain may increase rather than decrease
bone mass [53]. Adiponectin, another adipose tissue product,
also participates in the regulation of bone mass and osteocalcin
production. Adiponectin has opposing effects on bone mass. It
directly causes osteoblast apoptosis, but via hypothalamic ac-
tion reduces sympathetic tone and counteracts the effects of
leptin on bone mass [54].

While these observations on the complex relationship be-
tween bone and fuel homeostasis were based on mouse model
studies, much work remains to be done to evaluate the broader
significance of these findings in humans in this exciting field.
Osteoprotegerin (OPGN), recently shown to regulate beta cell
proliferation, will be discussed further below [55].

Skeletal muscle

A signalling pathway from the skeletal muscle to the pancre-
atic islet has been described in rodent models. In mice sub-
jected to exercise in spinning wheels, skeletal muscle pro-
duces IL-6, which reaches pancreatic alpha cells via the circu-
lation and, via its cognate receptor, modulates post-
translational processing of pro-glucagon to favour the produc-
tion of GLP-1 rather than glucagon. In turn, GLP-1 release
from alpha cells potentiates GSIS in neighbouring beta cells
[56]. Thus, muscle exercise is reported to modulate beta cell
function indirectly via IL-6 originating from skeletal muscle,
altering pro-glucagon processing in alpha cells, and exposing
beta cells to higher GLP-1 concentrations [56].

Based on these observations, it is conceivable that exercise
not only alters insulin sensitivity but also influences beta cell
function and insulin secretion. Whether these mechanisms
described in rodents also apply to humans is at present unclear,
but is important to establish as this may further our under-
standing of the pathogenesis of metabolic disease associated
with infrequent exercise and have implications for its

treatment. Furthermore, recent in vitro studies suggest a role
for additional myotube-derived factors (‘myokines’) that in-
fluence beta cell function. These myokines are differentially
expressed in normal vs insulin-resistant myotubes and appear
to act through mitogen-activated protein 4 kinase 4 signalling
[57].

Gonads to beta cell communication

The main gonadal sex steroids testosterone [58, 59] and
oestrogen [60] have been reported to protect pancreatic beta
cells from damaging insults such as glucotoxicity or
streptozotocin-induced oxidative stress. In humans, oestrogen
replacement in menopausal women reduces the incidence of
diabetes mellitus. At the molecular level, oestrogen is shown
to directly act on beta cells to exert prosurvival effects and
increase insulin synthesis via oestrogen response element
(ERE)-independent extranuclear oestrogen receptors ERα,
ERβ and through the G protein-coupled oestrogen receptor
[60–66].

In male mice with selective ablation of the androgen recep-
tor in beta cells GSIS is impaired, leading to reduced glucose
tolerance [67]. These mice are also less capable of compen-
sating for diet-induced insulin resistance compared with con-
trols, and islets isolated from these mice exhibit reduced GSIS
in vitro, similar to androgen receptor antagonist (flutamide)-
treated human islets [67]. Collectively, these observations sug-
gest that the androgen receptor physiologically regulates beta
cell function in male mice. More detailed work using genetic
mouse models will be required to elucidate at a molecular
level the role for the androgen receptor and male sex steroids
on beta cell function and survival.

Placenta to beta cell communication

Metabolism changes during pregnancy to meet the maternal
and fetal energy requirements. Circulating levels of both pro-
lactin and human placental lactogen are elevated to counteract
pregnancy-related insulin resistance and to regulate functional
beta cell mass.

In mice, the tyrosine hydroxylase genes Tph1 and Tph2,
encoding isoforms of the rate-limiting enzyme for serotonin
(5-hydroxytryptamine, 5-HT), are upregulated in beta cells
during pregnancy. Serotonin synthesis is upregulated in the
beta cells of pregnant mice and, in an autocrine/paracrine
fashion, serotonin binds to cognate Gq/11-coupled 5-HT2B re-
ceptors to stimulate beta cell proliferation [68]. Through bind-
ing to the 5-HT3 receptor, serotonin also reduces the resting
membrane potential of beta cells and the threshold for GSIS
[55, 69]. Both prolactin and placental lactogen, acting through
the prolactin receptor, stimulate tyrosine hydroxylase,
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establishing this endocrine regulatory communication between
the placenta and the beta cell. Activated prolactin receptor sig-
nalling in beta cells also stimulates the production and release
of OPGN, a protein that binds to and inhibits the receptor
activator of NF-κB (RANK) ligand (RANKL). RANKL in-
hibits beta cell proliferation, and its sequestration by OPGN
thus releases the brake on beta cell proliferation. This mecha-
nism has been confirmed both in mouse and human islets.
Thus, this secondmechanism engaged by the prolactin receptor
during pregnancy serves to regulate functional beta cell mass
[55]. It is important to note that the placenta produces large
amounts of kisspeptin 1 [70], which would be expected to
impair beta cell function and insulin secretion. The interplay
between kisspeptin 1 and prolactin signalling on beta cells has
not been experimentally examined.

In summary, beta cells can be viewed as sensors that con-
stantly receive signals from a variety of peripheral tissues.
These signals, which could have opposing effects, fluctuate
according to the metabolic state of the source tissues. Upon
reaching beta cells, they are integrated and modulate insulin
secretion in response to the predominant physiological stimu-
lus, namely, glucose. How nutrients and metabolites, such as

fatty acids and their metabolic derivatives, amino acids and
metabolic products originating from other tissues and from
microbiota, interplay with and participate in inter-organ sig-
nalling and in regulating beta cell function is beyond the scope
of this review and deserves a separate dedicated review.

Central nervous system regulation of beta cell
function

Pancreatic beta cells are innervated by the autonomic nervous
system. Studies in humans and in rodents following vagotomy
have reported reduced GSIS, suggesting that parasympathetic
innervation supports beta cell function ([71] and references
therein). Other studies suggest that vagal innervation may also
control beta cell proliferation and mass; and the ventromedial
hypothalamus may negatively regulate vagus-relayed signal-
ling in beta cell proliferation [72–75]. Recent reports indicate
that, in contrast to rodent islets, human islets are innervated
primarily by cholinergic neurons, suggesting that sympathetic
islet innervation may be relevant in rodents but not humans
[76]. Furthermore, in humans, alpha cells may also be an

β

α

BrainAdipose tissue

Gut Liver

Bone

Skeletal
muscle

IL-6

GLP-1GLP-1
GIP

NMU

Kiss1

Glucose

Glucagon

Sympathetic
innervation

Glu-OCN

Insulin
DLK-1

Testosterone Oestrogen

GonadsPlacenta

Placental lactogen 5-HT

Leptin

OPGN
Kiss1

Adiponectin

?

Fig. 1 Inter-organ
communication pathways
influencing beta cell function.
The figure depicts the current
understanding of principal inter-
tissue signalling pathways that
modulate GSIS from pancreatic
beta cells. Signals modulate beta
cell function in both positive
(arrows) and negative (double
bars) directions. The individual
pathways are described in the
main text. α, alpha cell; β, beta
cell; Kiss1, kisspeptin 1

664 Diabetologia (2016) 59:659–667



additional source of acetylcholine, which acts on beta cells in
a paracrine fashion [77].

Several neurotransmitters released from peripheral auto-
nomic nerves have been proposed to modulate GSIS, includ-
ing the principal parasympathetic neurotransmitter acetylcho-
line [71, 78, 79]. The Gq protein-coupled muscarinic M3 ace-
tylcholine receptor (M3R; but not M1R or M2R) subtype is
expressed at high density on mouse pancreatic beta cells [80],
and beta cell-specific M3R knockout results in impaired GSIS
in mice [81]. Furthermore, beta cell-specific pharmacological
activation of this receptor via a M3R–Gq-signalling-coupled
designer receptor exclusively activated by designer drug
(DREADD) potentiates GSIS, and after chronic stimulation
also stimulates beta cell proliferation [82]. Despite these ob-
servations and the identification of brain nuclei that regulate
metabolic controls, such as insulin sensitivity and hepatic glu-
cose production [83] and hunger, satiety and food-intake [84],
distinct brain regions/nuclei, which regulate beta cell function
through vagal innervation and, potentially, via targeting M3R
signalling on beta cells have thus far not been described.
Furthermore, in addition to acetylcholine, parasympathetic
neuronal endings in the pancreas release a multitude of other
neurotransmitters [71]. It remains unclear whether hypotha-
lamic signals relayed by the vagus that modulate beta cell
function act directly via beta cell muscarinic receptors or in-
directly via cholinergic stimulation of an intermediary gangli-
on, from where secondary efferent neurotransmission is re-
layed to the beta cell (Fig. 1).

The sympathoadrenal and adrenergic innervation of islets
modulates insulin secretion in rodents, while its role in
humans remains unclear. Chemical sympathectomy results
in decreased basal and glucose-stimulated insulin levels in
mice but not in rats [85]. Adrenalectomy also results in re-
duced basal insulin levels in mice, suggesting that not only
sympathetic innervation but also circulating adrenal hormones
modulate beta cell function [85]. More recently, genetic
mouse models with defined ablation of adrenergic signalling
in islets was reported to result in disturbed islet architecture
and functional maturation of beta cells [86].

Furthermore, galanin, which is abundantly expressed in
neuroendocrine in the intestinal tract and also in neuronal
endings surrounding the islets of Langerhans, suppresses
glucose-stimulated insulin [27, 87] (see above).

Central unresolved questions

From this overview it is clear that many important aspects of
how beta cell function is regulated remain unanswered. There
are likely to be additional signals involved in regulating beta
cell function that will be revealed. With these anticipated ad-
vances the following central and enduring questions will need
to be revisited as this research field moves forward:

1. How translatable are observations on inter-organ regula-
tion of beta cell function made in experimental mouse
models to the situation in human (patho-)physiology?

2. What is the hierarchy among the different stimuli that
modulate beta cell insulin secretion?

3. Can impaired beta cell function in type 2 diabetes mellitus
be sub-classified into groups of beta cell autonomous and
non-beta cell autonomous downregulation of glucose-
dependent insulin release?
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