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Abstract
Aims/hypothesis Maternal obesity negatively affects fetal
development. Abnormalities in brain glucose metabolism
are predictive of metabolic–cognitive disorders.
Methods We studied the offspring (aged 0, 1, 6, 12months) of
minipigs fed a normal vs high-fat diet (HFD), by positron
emission tomography (PET) to measure brain glucose metab-
olism, and ex vivo assessments of brain insulin receptors
(IRβ) and GLUT4.
Results At birth, brain glucose metabolism and IRβ were
twice as high in the offspring of HFD-fed than control
mothers. During infancy and youth, brain glucose uptake,
GLUT4 and IRβ increased in the offspring of control mothers
and decreased in those of HFD-fed mothers, leading to a
40–85% difference (p<0.05), and severe glycogen depletion,
lasting until adulthood.
Conclusions/interpretation Maternal high-fat feeding leads to
brain glucose overexposure during fetal development, follow-
ed by long-lasting depression in brain glucose metabolism in

minipigs. These features may predispose the offspring to de-
velop metabolic–neurodegenerative diseases.
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Abbreviations
[18F]FDG 2-[18F]fluoro-2-deoxyglucose
AU Arbitrary units
FUR Fractional [18F]FDG uptake rate
GU Glucose uptake
HFD High-fat diet
i.m. Intramuscular
IRβ Insulin receptors
ND Normal diet
PAS Periodic acid–Schiff
PET Positron emission tomography
ROI Relative optical density
RT Room temperature

Introduction

Obesity represents one of the greatest current and future public
health and societal challenges worldwide, leading to metabol-
ic, cardiovascular and neurodegenerative complications [1–3].
Brain insulin resistance and cerebral glucose dysmetabolism
are receiving great attention as common factors in the patho-
genesis of obesity and cognitive impairment [4, 5]. Insulin
crosses the blood–brain barrier, and interacts with receptors
localised in brain regions involved in the regulation of energy
balance and glucose metabolism, but also in the modulation of
learning and memory [6, 7]. Furthermore, insulin-sensitive
glucose transporters like GLUT4, and partially insulin-
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sensitive GLUT1, are expressed in different brain regions
[7–9].

The epidemic of obesity involves an elevated and ever-
growing number of pregnant women [10]. According to the
fetal programming hypothesis, adaptations occurring in the
developing offspring in response to the intra-uterine environ-
ment carry potentially permanent health consequences [11].
Indeed, maternal obesity is associated with increased fat mass
at birth and altered fetal growth [12–14], and babies born to
obese mothers are at an increased risk of being insulin resis-
tant [15]. Animal and human studies have shown thatmaternal
obesity during pregnancy predisposes the offspring to develop
metabolic disorders [16–18] and increases the risk of cogni-
tive decline later in life [19], associated with alterations in
brain development, hypothalamic organisation and metabo-
lism in the adult offspring [20, 21]. A reduction in cognitive
development and performance was recently reported at early
life stages or in pre-school/school children born to obese
mothers [22, 23]. Nevertheless, in vivo brain glucose metab-
olism, in the context of fetal programming and maternal obe-
sity, has not been specifically investigated.

The aim of this study was to establish whether maternal
high-fat feeding, started before gestation and continuing
through lactation, affects the development and maturation of
brain glucose metabolism in the offspring, from birth until
adulthood. The study was carried out in minipigs, which are
considered an affine model of human obesity and metabolism
[24, 25]. In vivo positron emission tomography (PET) with
2-[18F]fluoro-2-deoxyglucose ([18F]FDG) during
hyperinsulinaemic–isoglycaemia and ex vivo measurements
of brain-specific insulin receptors (IRβ), insulin-dependent
GLUT4 and glycogen content were used.

Methods

Animal model Adult female primiparous minipigs and their
offspring (San Piero a Grado Farmhouse, Pisa, Italy), n=10
and n=55, respectively, were employed as described in Fig. 1.
They were randomly assigned to 3 months of respective diets
before conception. High-fat diet (HFD)-fed sows (n=5) re-
ceived a high-fat, high-energy diet (+3,105 kJ from fat for
10 weeks, +1,556 kJ from fat thereafter). A normal diet
(ND) was supplied to lean animals (n=5). Fresh water was
provided ad libitum. Following the 3 month diet exposure,
females were mated with the same male minipig and allowed
to deliver spontaneously. They were maintained on respective
diets throughout gestation and lactation. After weaning, off-
spring were fed with the standard diet.

[18F]FDG-PET was employed to measure brain glucose
metabolism in piglets aged 0, 1, 6 and 12 months, correspond-
ing to birth, early infancy, youth and adulthood, respectively.
Piglets born to one HFD and two ND mothers were studied at

birth (n=18) and then euthanised. Piglets born to the other
four HFD and three ND mothers were studied at 1 (n=37), 6
(n=24) and 12 months (n=8).

Study session Anaesthesia was induced with tiletamine-
zolazepam (10 mg/kg intramuscular [i.m.] Zoletil; Virbac
Laboratories, Carros, France) and chlorpromazine (1 mg/kg,
i.m. Largactil; Sanofi Aventis, Gentilly-Cedex, France), and
maintained by an infusion of zolazepam (2 mg kg−1 h−1 i.m.
Zoletil) in overnight-fasted animals. After body weight and
basal glycaemia determination, catheters were placed into
one ear vein for glucose, insulin and tracer administration,
and into the contralateral ear vein for anaesthesia. At 6 and
12 months of age, blood samples were collected to measure
fasting insulinaemia. Animals were positioned in the gantry of
an ECAT HR+ tomograph (Siemens CTI, Knoxville, TN,
USA), with a transaxial resolution of 5–8 mm full-width at
half-maximum. A continuous infusion of insul in
(1 mU min−1 kg−1) was started (t=0 min). Isoglycaemia was
maintained by a variable 20% glucose infusion (wt/vol.), ad-
justed according to glycaemia, as measured every 10 min by a
glucometer. A transmission scan was first employed to correct
subsequent emission data for photon attenuation. At
~t=45 min, [18F]FDG was injected and a 30 min dynamic
acquisition was performed to assess time-activity levels in
blood images of the aortic arch. Then, at ~t=75 min, a static
whole-body scan was performed to measure cerebral insulin-
mediated glucose disposal. After in vivo procedures, a subset
of animals for each time point and group was euthanised for
brain sample harvesting. The other subset was returned to the
animal facility, monitored until complete recovery and re-
studied at the following time point. All the animals were gen-
erated and the experimental protocol was conducted in accor-
dance with the D.L.116/92 implementation of European
Economic Community directive 609/86 regarding the protec-
tion of animals used for experimental and other scientific
purposes.

Image processing All sinograms were corrected for dead
time, decay and photon attenuation and then reconstructed
by standard algorithms in a 128×128×63 matrix, with pixel
size of 2.6×2.6×2.4 and slice thickness of 2.4 mm. Regions
of interest were drawn on dynamic images corresponding to
the aortic arch to extract the arterial tracer concentration over
time (input function). The curve was integrated from 0 to the
end of the scan to measure the AUC. Parametric images,
representing the fractional uptake rate constant of [18F]FDG
(FUR) in the brain [26, 27] were generated. FUR represents
the inward [18F]FDG clearance (ml min−1 ml−1) from blood to
brain tissue, resulting from FDG transport and phosphoryla-
tion. It is computed as a ratio between the activity in brain
tissue (kBq/ml of brain), and the integral of the input function
([kBq × min]/ml).
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Regions of interest were manually drawn in the frontal,
parietal, occipital, temporal cortices, cerebellum, brainstem
and whole brain. Respective regional glucose uptake (GU)
rates, expressed in μmol/min per 100 ml of brain tissue, were
computed as a product of FUR and average glycaemia
(μmol/ml) during brain imaging, since brain GU is dependent
on both cerebral extraction and glucose mass action [26, 27].

Western blot The expression of IRβ and GLUT4 in the frontal
cortex and hypothalamus was investigated on −80°C frozen
biopsies collected upon euthanising. Proteins were extracted
from homogenised samples with lysis buffer (1% Triton
X-100 [wt/vol.], 10% glycerol [vol./vol.], 20 mmol/l TrisHCl,
pH 7.5, 150 mmol/l NaCl, 10 mmol/l EDTA, 0.1 mmol/l
Na3VO4, 10 μg/ml leupeptin, 10 μg/ml aprotinin and
1 mmol/l PMSF), and the total protein concentration in each
sample was assessed with a Bradford assay kit (Bio-Rad,
Hercules, CA, USA), using a BSA-based standard curve.
Non-boiled protein extracts (25 μg) were loaded on Tris-HCl
4–12% precast gels (Bio-Rad) and separated using SDS-PAGE
(1 h, 200 V), then blotted on nitrocellulose membrane (Bio-
Rad) using a TurboBlot methanol-free system (Bio-Rad). Blots
were blocked using the dedicated solution for the Odyssey
imaging system (Li-Cor, Lincoln, NE, USA, 90 min, room
temperature [RT]). The primary antibody solutionwas prepared
in the same blocking solution diluted 1:1 in PBS-Tween 0.2%
(wt/vol.) and contained either 1:1,000 anti-IRβ mouse mono-
clonal antibody (Millipore, Millerica, MA, USA) or anti-

GLUT4 rabbit polyclonal antibody (AbCam, Cambridge,
UK). Incubation lasted overnight at 4°C. Blots were then incu-
bated with 1:20,000 secondary antibody conjugated to IR-Dye
fluorophores (anti-rabbit IR-Dye-800 nm and anti-mouse IR-
Dye-680 nm, Li-Cor, 1 h, RT) for visualisation on the Odyssey
imaging platform. As an internal quantification standard, blots
were probed with 1:20,000 anti-α-tubulin mouse monoclonal
antibody (Sigma-Aldrich, St Louis, MO, USA), and visualised
with 1:20,000 anti-mouse IR-Dye-800 nm. The anti-α-tubulin
antibody was raised in mouse against sea urchin α-tubulin. It
recognises a C-terminal epitope [28], which is highly con-
served in sea urchin, mouse and minipig (see electronic supple-
mentary material [ESM]Methods for further information). The
intensity of protein bands was quantified using the
ImageStudio software (Li-Cor). The relative optical intensity
(ROI) in each sample was computed, by dividing the IRβ or
GLUT4 value by the corresponding α-tubulin value.

Histological analysisBrain glycogen depositionwas assessed
by Periodic acid–Schiff (PAS) staining on −80°C frozen biop-
sies collected upon euthanising. Cryosections (8 μm thick),
thawed for 30 min at RT, were fixed in 10% cold neutral
buffered formalin (vol./vol.) (Bio-Optica, Milan, Italy) for
10 min and stained with PAS reaction (Bio-Optica) according
to the manufacturer’s protocol. Each section was documented
at ×100 and ×400 magnification using a Axioskop optical
microscope connected with an AxioCam MRc5 colour-
camera and AxioVision analysis software (Carl Zeiss,
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Fig. 1 Offspring born to one
HFD- and two ND-fed sows were
studied at birth. Offspring born to
remaining mothers were studied
longitudinally. [18F]FDG-PET
was used to assess cerebral
metabolic rates under
hyperinsulinaemic–isoglycaemia.
Subsets of offspring were
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Oberkochen, Germany). For each sample, three sections were
randomly selected and interpreted using a semi-quantitative
grading scale—established by an experimenter blinded to
the conditions—according to the staining intensity (cortex,
low = 1 to high = 6 arbitrary units [AU]; hypothalamus,
low=1 to high=4 AU).

Statistical analysis All data are presented as means ± SEM.
Statistical analyses were performed using the IBM SPSS
Statistics 21.0 software package (SPSS, Chicago, IL, USA).
Group comparisons were performed by t test for paired or
independent samples as appropriate, and bivariate correlation
was employed to evaluate the degree of association between
variables of interest. Differences between groups were
regarded as statistically significant when p<0.05.

Results

As expected, mothers exposed to HFD showed a ~30% heavier
bodyweight comparedwith NDmothers, both in pregravid and
pregnant conditions (p<0.05), despite no significant differ-
ences in glycaemia being detected (Fig. 2a, b). Instead, body
weight was similar in the two groups of offspring at all time
points (Fig. 2c), but glycaemia was significantly higher at birth
in the offspring of HFD vs ND mothers. It declined during
postnatal life in both groups, but the change was more pro-
nounced in the offspring of HFD mothers, reaching lower
glycaemic values during adulthood (p=0.01 vs control off-
spring, Fig. 2d). A trend towards hyperinsulinaemia at 6
(61.1 ± 29.2 pmol/l vs 30.6 ± 9.6 pmol/l, p =NS) but no

differences at 12 (21.5 ± 13.9 pmol/l vs 19.1 ± 6.3 pmol/l,
p=NS) months of age emerged in offspring of HFD mothers
compared with controls.

In vivo PET study

[18F]FDG-PET was employed to measure brain GU in the
offspring at birth (n = 18), 1 (infancy, n = 37), 6 (youth,
n = 24) and 12 (adulthood, n = 8) months of age, during
hyperinsulinaemic–isoglycaemic stimulation. Images relative
to one of the animals studied at birth were not available for the
analysis (radiotracer injection out of the vein). Representative
brain metabolic images are shown in Fig. 3a, b, and brain GU
is given in Table 1 and Figs. 4a, 5a. In the offspring born to
NDmothers, GUwas lower at birth, increasing during the first
month and plateauing thereafter. Conversely, the offspring of
HFD mothers revealed a significantly higher GU at birth in
most brain regions (p<0.03), followed by a pronounced re-
duction at 1 (p<0.002) and 6 (p<0.05) months of age com-
pared with the offspring of ND mothers, falling short of sig-
nificance at 12 months of age.

IRβ and GLUT4

The expression of IRβ and GLUT4 in the frontal cortex and in
the hypothalamus was measured in a subset of offspring at
birth, 6 and 12 months of age, in biopsies collected upon
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euthanising, and expressed as ROI vs corresponding α-
tubulin values. IRβ and GLUT4 values were consistent with
insulin-mediated brain GU data. In the offspring of control
mothers, their levels in the frontal cortex were low in new-
borns and higher in 6-month-old animals. Conversely, off-
spring of HFD mothers showed a fourfold higher IRβ expres-
sion in the frontal cortex at birth, and a significantly impaired
expression of both IRβ and GLUT4 at 6 months (p<0.02 vs
control offspring). No significant difference between the two
groups was detected at 12 months of age (Fig. 4b, c). The
hypothalamic region showed similar trends, though group dif-
ferences did not achieve full significance (p = 0.14 and
p=0.09, respectively) (Fig. 5b, c). IRβ and GLUT4 were
reciprocally correlated within each region, and between neo-
cortical and hypothalamic regions (Fig. 6a–d).

Brain glycogen

Brain glycogen content was assessed by PAS staining in
frontal cortex and hypothalamic biopsies. Slides were
interpreted using a semi-quantitative grading scale accord-
ing to staining intensity (cortex, low=1 to high=6 AU;
hypothalamus, low = 1 to high = 4 AU). A significant
decrease in brain glycogen content in the frontal cortex
was observed in 6-month-old offspring of HFD vs ND
mothers (p < 0.01), persisting until 12 months of age
(p<0.05) (Fig. 4d, e). This pattern was not detected in
the hypothalamus (data not shown).

Discussion

The high prevalence of obesity in young women of childbear-
ing age may jeopardise the health of a growing number of
affectedmothers and their offspring. Its effect on developmen-
tal programming of adulthood diseases is a matter of intense
investigation, since it provides opportunities for early preven-
tion. Here, we focused on alterations of brain glucose metab-
olism, as recognised factors in the pathogenesis of obesity and
cognitive decline.

The study was conducted in minipigs to combine longitu-
dinal PET imaging and tissue sampling. PET is a well-
recognised method to quantify regional cerebral metabolism
[29]. FDG is actively transported into brain cells and phos-
phorylated. FDG accumulation is assumed to be intracellular,
since interstitial-to-cell transport is rapid, and FDG-6-
phosphate cannot enter glycolysis due to the lack of the 2′-
hydroxyl group. The bulk of brain GU is insulin independent,
with a still debated insulin-induced effect [7]. Thoughwe used
the hyperinsulinaemic clamp to maximise the latter, our PET
data cannot distinctively dissect these two components.

Several novel findings emerge from the present study. First,
our study design offered the opportunity to delineate the phys-
iological trajectory of brain glucose metabolism along the life
course of the minipig offspring, showing that GU undergoes a
very rapid rise, by doubling during the initial postnatal period,
and stabilising thereafter. Old cross-sectional observations
(1987) in neurologically diseased children ranging from5 days
to 15 years of age, undergoing [18F]FDG-PET for diagnostic
purposes, revealed a similar trend in the human brain, in

Table 1 Brain GU rates in the offspring, from birth to adulthood

Groups Whole brain Parietal cortex Occipital cortex Temporal cortex left Temporal cortex right Cerebellum

Offspring at birth

HFD mothers (n= 7) 17.8 ± 3.8 17.2 ± 3.7 16.2 ± 3.8 16.2 ± 3.7 16.4 ± 3.6 17.9 ± 3.9

ND mothers (n= 11) 9.1 ± 1.3 9.2 ± 1.4 8.7 ± 1.3 8.7 ± 1.2 8.6 ± 1.1 9.8 ± 1.4

p 0.021 0.032 0.031 0.033 0.024 0.034

Offspring at 1 month

HFD mothers (n= 20) 12.7 ± 1.0 13.1 ± 1.0 13.0 ± 1.0 12.8 ± 1.0 12.1 ± 1.1 13.5 ± 1.1

ND mothers (n= 17) 19.5 ± 1.5 20.1 ± 1.6 19.7 ± 1.5 18.6 ± 1.4 18.3 ± 1.4 20.4 ± 1.4

p 0.001 0.001 0.001 0.002 0.001 0.001

Offspring at 6 months

HFD mothers (n= 12) 11.7 ± 1.1 12.0 ± 1.2 12.0 ± 1.1 11.1 ± 1.0 11.1 ± 1.0 12.5 ± 1.1

ND mothers (n= 12) 17.3 ± 1.3 17.8 ± 1.5 17.3 ± 1.5 15.5 ± 1.5 15.5 ± 1.5 17.8 ± 1.3

p 0.004 0.005 0.011 0.025 0.028 0.005

Offspring at 12 months

HFD mothers (n= 4) 14.6 ± 1.9 14.9 ± 1.9 14.6 ± 2.0 14.0 ± 1.8 14.4 ± 2.0 15.8 ± 2.0

ND mothers (n= 4) 17.0 ± 2.9 21.0 ± 3.7 20.6 ± 3.2 19.2 ± 3.2 19.1 ± 3.4 18.6 ± 2.7

p NS NS NS NS NS NS

Data are means ± SEM

Brain GU rates are given in μmol min−1 [100 ml]−1 of brain
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which glucose metabolism was low at birth, doubling during
infancy and progressively declining after the ninth year of age
[30]. Confounders in the above human study included neuro-
logical disorders, cross-sectional comparisons and a limited
life-period coverage. Our data were mostly longitudinal and
referred to the entirely normal brain and to a more extended
lifetime, from birth to adulthood.

The second and main finding of this study relates with the
abnormalities in brain metabolism observed in the offspring
undergoing maternal high-fat feeding during pregnancy and
lactation. Our design was purposely meant to address long-
term consequences of HFD in utero and during early brain
development, and therefore the offspring were fed an ND dur-
ing their life course. Our results revealed a remarkable increase
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in brain glucose exposure in the offspring of HFD mothers at
birth, involving homeostatic and cognitive-related regions.
High levels of circulating glucose might explain this finding,
since brain GU is the product of circulating glucose and brain
glucose fractional extraction [31], and the latter was not altered
in our study. Confirming previous data in rodents and humans,
maternal HFD resulted in birth hyperglycaemia in the off-
spring, despite normal birthweight [32–35]. According to our
data, the developing brain of minipigs responds to maternal
HFD affecting the intra-uterine environment by the upregula-
tion of IRβ, glucose exposure and uptake. Third, our life course
data addressed the interaction of high-energy exposure during
prenatal development and normal lifestyle after birth. In these
minipig offspring, a severe condition of brain glucose
dysmetabolism ensued during lactation to last until adulthood.
It was characterised by a 40–85% reduction in brain GU, IRβ
and GLUT4 density, accompanied by a marked deficiency in
glycogen deposition. At these time points, no significant differ-
ence in fasting glycaemia was noted, though a trend towards
compensatory hyperinsulinaemia appeared in young adult off-
spring of HFD mothers. Therefore, different from birth, we
hypothesise that changes in brain GU in these life phases might
be attributed to alterations in the intrinsic brain fractional ex-
traction capacity, and not to the effect of glycaemia, in accor-
dance with GLUT4 results. Our observation agrees with recent
results in 9-week-old rodents born to HFD dams, in which an
acute stimulus failed to upregulate hypothalamic GU and
neuropeptide-Y (NPY)/pro-opiomelanocortin (POMC)
in vitro [36]. The downregulation of GU, IRβ and glycogen
storage in our study may be interpreted either as a response to
glucose toxicity, or as a maladaptive response to the high- to
normal-energy diet switch. The former case is supported by the
broad recognition that a protracted in vivo or in vitro exposure
to hyperglycaemia negatively affects the glucose transport sys-
tem and glycogen synthesis [37, 38]. The role of glucotoxicity
in the brain [31, 39, 40] and in early brain programming is less
characterised, but might represent a plausible explanation to the
development of cerebral hypometabolism as observed at 1 and
6 months. In fact, the protracted normalisation of glycaemia
during growth seemed to alleviate its rate of progression, as
brain metabolism and IRβ plateaued in adult offspring of
HFD mothers. However, brain glycogen deposition was still
markedly lower in adult animals born to HFD mothers.

Glucose is the unavoidable energy source of the brain.
[18F]FDG-PET studies have shown that its consumption
grows rapidly in early life during brain maturation [30], and
that brain glucose hypometabolism can anticipate, by many
years, and predict the development of cognitive diseases
[41–43]. Our study documents, in minipigs, that maternal
HFD has a profound impact during the most sensitive period
of brain development, leading to an early decrease as opposed
to the physiological increase in glucose metabolism.
Consequently, the slight deflection in GU, and the decline in

IRβ and GLUT4 observed during late adulthood in the control
group due to physiological ageing, were detected (with equal
or more severe magnitude) from very early life stages, and
throughout life in the offspring of HFDmothers, accompanied
by persistent and severe depletion of glycogen. Though astro-
cyte glycogen stores are small, they are important to sustain
neuronal function, with key roles in memory formation and
consolidation [44, 45]. Altogether, we speculate that the above
findings might indicate that the brain is metabolically aged
and vulnerable towards neurodegeneration from infancy on-
wards in the offspring of HFD mothers. The density of IRβ
and GLUT4 followed in vivo GU data and our age-related
changes in GLUT4 are consistent with the available evidence
in rodents [46, 47].

GU was similar in all brain areas in this study. Though
regional differences in activation levels in response to insulin
were detected by functional magnetic resonance imaging,
reflecting blood oxygenation, a regional effect on GU is not
clear. Our data in adult humans showed no significant regional
differences in brain GU during a hyperinsulinaemic clamp
[48]. We are not aware of studies on regional brain GU during
early development in response to peripheral insulin
stimulation.

Our study had some limitations. It was conducted in an
animal model, and therefore its translational significance re-
mains to be examined in humans. Anaesthesia during FDG-
PET may have led to a systematic underestimation of brain
GU. However, it cannot be avoided during dynamic imaging,
and the same protocol was always used, thereby minimising
its influence on group comparisons. Our observation period
spanned from birth to adulthood, but not elderly age. Animals
studied at birth were born to dedicated sows, whereas the ones
studied at 1, 6 and 12 months were evaluated longitudinally,
with a subset undergoing euthanasia at each time point, and a
subset continuing to the following time point. However, we
have no reasons to expect a different evolution for animals
studied at birth. Due to the demanding nature of the protocol,
sample sizes were not numerous, though comparable with
many published PET studies in animals and humans. The
complementary use of ex vivo measurements of IRβ,
GLUT4 and glycogen reinforced the in vivo results.
However, it is likely that the small sample sizes were respon-
sible for the lack of significance in brain GU in later adult-
hood, and hypothalamic IRβ and GLUT4 levels at 6 months,
which were affected by large variability. Although glycogen
may undergo some degradation due to the time lag for tissue
collection, the very small variability in results supports the
reproducibility of procedures and errors. Maternal HFD was
started before and continued through gestation and lactation.
This design does not allow one to distinguish whether
maternal obesity or the continuation of HFD during pregnancy
elicited the observed abnormalities. However, it was chosen
because fetal programming has been reported in conjunction
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with pre-gestational followed by gestational obesity in
humans. Our primary purpose was to isolate early program-
ming of the long-term health of the offspring, and therefore the
offspring were raised on ND after lactation, and we did not
address the interaction between early high-fat exposure and
overfeeding during the life course.

In conclusion, cerebral glucose metabolism increases in the
early postnatal period to plateau thereafter in the minipig off-
spring of lean mothers. The exposure to maternal HFD in the
pre- and perinatal period results in brain glucose overexposure
of homeostatic and cognitive regions at birth and brain glu-
cose hypometabolism thereafter, associated with a reduced
density of insulin receptors and insulin-dependent glucose
transporters. Brain glycogen depletion is a long-lasting trait
in adult minipig offspring born to HFD mothers. The study
was conducted in animals and results may not be directly
extrapolated to humans. It would be important to understand
if preconception maternal weight loss and normalisation of
dietary energy supply may safeguard the health of the
offspring.
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