
ARTICLE

Transcription factor Ets-1 links glucotoxicity to pancreatic beta
cell dysfunction through inhibiting PDX-1 expression
in rodent models

Fang Chen1
& Min Sha1 & Yanyang Wang1 & Tijun Wu1

& Wei Shan1
& Jia Liu1

&

Wenbo Zhou1
& Yunxia Zhu1

& Yujie Sun1
& Yuguang Shi2 & David Bleich3

& Xiao Han1

Received: 20 June 2015 /Accepted: 14 October 2015 /Published online: 12 November 2015
# Springer-Verlag Berlin Heidelberg 2015

Abstract
Aims/hypothesis ‘Glucotoxicity’ is a term used to convey the
negative effect of hyperglycaemia on beta cell function; how-
ever, the underlyingmolecular mechanisms that impair insulin
secretion and gene expression are poorly defined. Our objec-
tive was to define the role of transcription factor v-ets avian
erythroblastosis virus E26 oncogene homologue 1 (Ets-1) in
beta cell glucotoxicity.
Methods Primary islets and Min6 cells were exposed to high
glucose and Ets-1 expression was measured. Recombinant ad-
enovirus and transgenic mice were used to upregulate Ets-1
expression in beta cells in vitro and in vivo, and insulin secre-
tion was assessed. The binding activity of H3/H4 histone on the
Ets-1 promoter, and that of forkhead box (FOX)A2, FOXO1
and Ets-1 on the Pdx-1 promoter was measured by chromatin
immunoprecipitation and quantitative real-time PCR assay.
Results High glucose induced upregulation of Ets-1 expression
and hyperacetylation of histone H3 and H4 at the Ets-1 gene
promoter in beta cells. Ets-1 overexpression dramatically sup-
pressed insulin secretion and biosynthesis both in vivo and
in vitro. Besides, Ets-1 overexpression increased the activity of

FOXO1 but decreased that of FOXA2 binding to the pancreatic
and duodenal homeobox 1 (PDX-1) homology region 2 (PH2),
resulting in inhibition of Pdx-1 promoter activity and downreg-
ulation of PDX-1 expression and activity. In addition, high glu-
cose promoted the interaction of Ets-1 and FOXO1, and the
activity of Ets-1 binding to the Pdx-1 promoter. Importantly,
PDX-1 overexpression reversed the defect in pancreatic beta cells
induced by Ets-1 excess, while knockdown of Ets-1 prevented
hyperglycaemia-induced dysfunction of pancreatic beta cells.
Conclusions/interpretation Our observations suggest that
Ets-1 links glucotoxicity to pancreatic beta cell dysfunction
through inhibiting PDX-1 expression in type 2 diabetes.
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Introduction

Under physiological conditions, pancreatic beta cells modu-
late insulin secretion to maintain blood glucose in the normal
range [1]. Diabetes mellitus occurs when beta cells fail to
maintain adequate insulin production to prevent
hyperglycaemia. Currently, intrinsic beta cell dysfunction
and decreased functional beta cell mass are thought to be
two important components of diabetic beta cell failure [2].
Results from studies in db/dbmice, the partial pancreatectomy
rats and ZDF rats revealed that chronic hyperglycaemia, com-
monly called ‘glucotoxicity’, is a major determinant of caus-
ing beta cell failure [3–5]. Several complex mechanisms are
involved in beta cell glucotoxicity, including beta cell over-
stimulation, oxidative stress, endoplasmic reticulum stress,
hypoxic stress and protein glycation [6]. Among these,
O-GlcNAc modification of transcription factors such as pan-
creatic and duodenal homeobox 1 (PDX-1), neurogenic dif-
ferentiation 1 (NeuroD1), SP1 and p53 might play a key role
in glucotoxicity [7].

PDX-1, which is expressed in beta cells and few delta cells
of the adult islet of Langerhans, is a master regulator of beta
cell growth and function [8]. PDX-1 regulates the expression
of islet-specific genes through its interaction with their pro-
moter regions, which include insulin, GLUT2, glucokinase
(GCK), islet amyloid polypeptide (IAPP), somatostatin and
PDX-1 itself [9–14]. Clinically, mutations in PDX-1 cause
MODY4 and later-onset type 2 diabetes mellitus [15, 16]. In
mice, selective inactivation of PDX-1 in beta cells leads to the
development of diabetes with increasing age [3]. In addition,
chronic hyperglycaemia causes loss of beta cell function by
reducing PDX-1 expression and DNA binding activities [17].

Forkhead box (FOX)O1 is a transcription factor that nega-
tively regulates PDX-1 expression and has also been implicat-
ed in beta cell glucotoxicity [18, 19]. FOXO1 inhibits PDX-1
expression by binding to the PDX-1 homology region 2 (PH2)
of the PDX-1 promoter, which contains a FOXA2 binding site
[18, 20]. As a multifunctional protein, FOXO1 regulates beta
cell function, proliferation, differentiation and apoptosis [21].
Asada et al demonstrated that FOXO1 could interact with
transcription factor v-ets avian erythroblastosis virus E26 on-
cogene homologue 1 (Ets-1) in bovine carotid artery endothe-
lial cells, which we have also demonstrated in pancreatic beta
cells [22]. As a result, Ets-1 might be involved in regulation of
beta cell failure in diabetes mellitus.

In recent years, evidence has confirmed that the acetylation
status of histones has been shown to be important in pancre-
atic beta cell function [23]. Histone acetylation promotes gene
expression by increasing the approachability of promoters to
the transcription machinery [24]. We found that transcription
factor Ets-1 was significantly upregulated in high glucose-
treated primary islets and Min6 cells as well as isolated islets
from db/db mice. We also found the histone deacetylase

inhibitor could upregulate Ets-1 expression in pancreatic beta
cells. We hypothesised that epigenetic modification might be
involved in regulation of Ets-1 expression in high glucose-
treated beta cells. Our research group tested this hypothesis
using the pancreatic beta cell line Min6, primary islets and
transgenic mice that overexpress Ets-1.

Methods

Reagents See Electronic Supplementary Material (ESM)
Methods.

Cell culture Mouse Min6 and rat RINm5F cell lines were
established as described previously [25, 26]. See ESM
Methods.

Islet isolation and cultureMale wild-type C57BL/BKSmice
and mice functionally deficient for the long-form leptin recep-
tor (db/dbmice) were obtained from Nanjing University, Chi-
na. Male 8-week-old Sprague-Dawley rats were purchased
from Nanjing Medical University Laboratory Animal Centre,
Nanjing, China. Islet isolation and culturing techniques were
described previously [27]. See ESM Methods.

RNA interference, plasmid and recombinant adenoviruses
construction The Ets-1 expression plasmid used was as pre-
viously described [26]. Ets-1 overexpression adenovirus (Ad-
Ets-1), PDX-1 overexpression adenovirus (Ad-Pdx-1) and
small interfering (RNA)-Ets-1 adenovirus (si-Ets-1) were con-
structed and purified as previously described [28]. See ESM
Methods.

Glucose-stimulated insulin secretion assay and insulin
content extraction Glucose-stimulated insulin secretion as-
says and insulin content extraction in Min6 cells and isolated
islets were performed as previously reported [27]. See ESM
Methods.

Real-time PCR Total RNA was extracted from Min6 cells,
RINm5F cells and isolated islets. Real-time PCR was used to
determine the relative expression levels of mRNAs. See ESM
Methods.

Western blot analysis Total protein was isolated from Min6
cells, RINm5F cells and isolated islets. Western blotting was
performed as described [29]. See ESM Methods.

Transient transfection and luciferase reporter assay The
plasmids were transfected into RINm5F cells. Transient trans-
fections and luciferase reporter assays were performed as de-
scribed [30]. See ESM Methods.
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Electronmicroscopy analysis Islets were fixed in 2.5% (vol./
vol.) glutaraldehyde and embedded in Lowicryl K4M resin.
See ESM Methods.

Chromatin immunoprecipitation and chromatin
immunoprecipitation-quantitative PCR assay Chromatin
immunoprecipitation (ChIP) and ChIP-quantitative-PCR
(ChIP-qPCR) assays were performed using lysates of Min6
and RINm5F cells as described previously [31]. See ESM
Methods.

Immunoprecipitation assay Immunoprecipitation (IP) as-
says were performed using extracts of RINm5F cells as de-
scribed previously [32]. See ESM Methods.

Generation ofEts-1 transgenicmice Ets-1 overexpression in
beta cells of transgenic mice (C57BL/6J strain) was construct-
ed (Model Animal Research Centre, Nanjing University, Nan-
jing, China) as described previously [33, 34]. Founder mice
were identified by PCR of tail biopsies using two pairs of
primers (ESM Table 1). Heterozygous transgenic mice were
used throughout the present studies and non-transgenic litter-
mates were used as controls. We studied 3- to 12-week-old
male mice. All animals had free access to standard mouse
chow and water, and were housed in a temperature-
controlled facility with a 12 h light/dark cycle. All animal
studies were performed according to guidelines established
by the Research Animal Care Committee of Nanjing Medical
University, China (Permit Number: IACUC-NJMU
1404075). The experimenters were not blind to group assign-
ment and outcome assessment.

i.p. glucose tolerance test and insulin tolerance test in mice
At 8 weeks of age, control mice and transgenic mice were
randomised to perform i.p. glucose tolerance tests and insulin
tolerance tests [35]. See ESM Methods.

Statistical analysis Comparisons were performed using Stu-
dent’s t test between two groups or ANOVA in multiple
groups. Results are presented as means±SD. A p value of
<0.05 was considered to be statistically significant. Results
are representative of three individual experiments. No data,
samples or animals were excluded or omitted from reporting.

Results

Ets-1 expression is elevated in db/db mice islets and in
pancreatic beta cells exposed to hyperglycaemia Although
Ets-1 was reported to be related to pancreatic development
[36], few studies have investigated its expression in pancreatic
islets. We compared Ets-1 gene expression in pancreatic islets
from 8-week-old db/db and control C57BL/BKS mice. Our

results showed that Ets-1 mRNA and protein level was signif-
icantly increased in islets from db/db mice compared with
control C57BL/BKSmice (Fig. 1a,b). Moreover, high glucose
increased Ets-1 expression and Ets-1 protein level in Min6
cells, and isolated mouse and rat islets (Fig. 1c–f).

High glucose mediates hyperacetylation of histone H3 and
H4 at the Ets-1 gene promoter To explore whether high
glucose induced upregulation of Ets-1 expression by causing
hyperacetylation of histone, we treated Min6 cells with differ-
ent concentrations of the histone deacetylase inhibitor
trichostatin A (TSA). We observed that TSA significantly up-
regulated Ets-1 expression both in mRNA and protein levels
(Fig. 2a,b). Then, we performed a ChIP-qPCR assay to mea-
sure whether high glucose mediated hyperacetylation of his-
tone at the Ets-1 gene promoter. Exposure of Min6 cells to
high concentrations of glucose for 48 h led to ∼12.5-fold in-
crease in histone H4 acetylation and a sixfold increase in his-
tone H3 acetylation (Fig. 2c,d).

Overexpression of Ets-1 impairs insulin secretion and syn-
thesis in vitro and in vivo The finding that Ets-1 expression
was significantly increased by high glucose prompted us to
investigate the effect of Ets-1 on insulin secretion in Min6
cells and isolated primary mouse islets. Overexpression of
Ets-1 in Min6 cells and islets significantly inhibited the
glucose-stimulated index (GSI), which reflects the insulin se-
cretion ratio of pancreatic beta cells stimulated by high and
low glucose (Fig. 3a,b and ESM Fig. 1). Similar results for
insulin content were obtained (Fig. 3c,d). Moreover, insulin
secretion under high glucose, normalised to insulin content,
was also repressed after overexpressing Ets-1 (Fig. 3e,f).

To investigate whether Ets-1 overexpression could impair
insulin secretion in vivo, we next measured the effect of Ets-1
on pancreatic beta cell function using a transgenic mice (line
107) expressing the Ets-1 gene directed by an insulin promoter
[37]. Immunofluorescent staining of islets revealed Ets-1 was
specifically overexpressed in pancreatic beta cells and there
was a distinct inverse relationship between Ets-1 and insulin
protein levels (ESM Fig. 2a). Islet electron microscopy
showed a decrease in the number of insulin secretory granules
in transgenic mice compared with control mice (Fig. 3g). In
addition, Ets-1 expression was unaffected in nonpancreatic
tissues, including spleen and liver (ESM Fig. 2b).

The transgenic mice were born at the expected Mendelian
ratio and maintained normal weight through our 12-week ob-
servational period (ESM Fig. 2c); however, they displayed
fasting hyperglycaemia starting at 7 weeks of age (Fig. 3h).
Besides, blood glucose levels of transgenic mice were higher
at every time point after intravenous glucose loading (1.5 g/kg
body weight [BW]) compared with wild-type controls
(Fig. 3i). In addition, plasma insulin levels of transgenic mice
were lower at every time point after intravenous glucose
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loading (3 g/kg BW) compared with littermate controls
(Fig. 3j). However, peripheral glucose uptake was not signif-
icantly different between transgenic mice and control mice
(Fig. 3k). This result indicated that the glucose intolerance
of Ets-1 transgenic mice was due to defective insulin secretion
but not insulin resistance. It is important to note that we also
obtained three transgenic lines exhibiting high (line 107), me-
dium (line 123) and low (line 79) levels of Ets-1 expression in
islets. Both line 123 and line 79 displayed defective insulin
secretion (ESM Fig. 2d–g).

Ets-1 overexpression exerts a suppressive effect on PDX-1
expression by inhibiting PDX-1 promoter activity To eval-
uate the possible implications of Ets-1 overexpression for beta
cell dysfunction, we examined the effects of Ets-1 on beta cell-
associated gene expression. As shown in Fig. 4a,b, the amount
of Pdx-1 mRNA was remarkably decreased in the Ets-1-

overexpressing Min6 and RINm5F cells, whereas the expres-
sion levels of Neurod1, Mafa and Foxa2 were unchanged.
Furthermore, Ets-1 overexpression led to similar reduction
of PDX-1 protein in Min6 and RINm5F cells. The expression
of PDX-1 in islets of transgenic mice was also significantly
decreased compared with littermate control islets (Fig. 4c).
Therefore, the expression of PDX-1 in vivo and in vitro was
inhibited by Ets-1 overexpression. Next, we determined the
mRNA levels of insulin and Gck, which are both directly
regulated by PDX-1, to explore whether Ets-1 had an effect
on PDX-1 transcriptional activity. ChIP-qPCR assay con-
firmed that DNA fragments pulled down by an anti-PDX an-
tibody in the Ets-1 overexpressing cells were reduced to ap-
proximately 0.6-fold for the insulin promoter site and 0.55-
fold for the Gck promoter site (Fig. 4d).

Further study showed that Ets-1 could bind to the PH2
region of the Pdx-1 promoter, which was the common DNA
binding site of FOXO1 and FOXA2 (Fig. 4e). To investigate
whether Ets-1 overexpression could affect the activity of
FOXA2 and FOXO1 on the Pdx-1 promoters, a ChIP-qPCR
assay was performed. As shown in Fig. 4f, DNA fragments
pulled down by the anti-FOXA2 antibody in the Ets-1 over-
expression group were reduced to approximately 0.46-fold for
the PH2 region of the Pdx-1 promoter. However, the effect of
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Fig. 1 Ets-1 expression is elevated in db/db mouse islets and in pancre-
atic beta cells exposed to hyperglycaemia. The mRNA (a) and protein
level (b) of Ets-1 was significantly elevated in islets isolated from 8-
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individual experiments. *p<0.05, **p<0.01 vs control
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Ets-1 overexpression on activity of FOXO1 binding to the
PH2 region was elevated up to 2.05-fold (Fig. 4g). Addition-
ally, in Ets-1 overexpression groups, DNA fragments pulled
down by the anti-Ets-1 antibody were increased to twofold
(Fig. 4h). More importantly, Ets-1 overexpression significant-
ly decreased Pdx-1 promoter activity (Fig. 4i).

Overexpression of PDX-1 restored beta cell function
impaired by Ets-1 To determine the role of PDX-1 in Ets-1-
induced impairment of beta cell function, Min6 cells were
infected with PDX-1 recombinant adenoviral vectors for
12 h, and then infected with Ets-1 recombinant adenoviral
vectors for another 48 h. Western blot demonstrated that
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PDX-1 and Ets-1 were both overexpressed (Fig. 5a). Insulin
secretion was reduced to 60% in Min6 cells treated with Ets-1
overexpression alone, while restored to 85% by co-
overexpression of Ets-1 and PDX-1 (Fig. 5b). Besides,
PDX-1 overexpression reversed the decrease of insulin con-
tent, and insulin secretion, under high glucose that was nor-
malised to insulin content in Min6 cells overexpressing Ets-1
(Fig. 5c,d).

Hyperglycaemia promotes the interaction of Ets-1 and
FOXO1, and the activity of Ets-1 binding to the Pdx-1
promoter To explore whether high glucose promotes the in-
teraction of Ets-1 and FOXO1, we performed an IP assay. As
shown in Fig. 6a, endogenous interaction of Ets-1 and
FOXO1 was significantly increased in RINm5F cells treated
with high glucose for 48 h. Next, we performed a ChIP-qPCR
assay to measure the activity of Ets-1 binding to the Pdx-1
promoter in high glucose-treated RINm5F cells. DNA frag-
ments pulled down by the anti-Ets-1 antibody in the high
glucose-treated group were increased to approximately 2.1-
fold for the Pdx-1 promoter (Fig. 6b).

Inhibition of Ets-1 reverses hyperglycaemia-induced beta
cell failure Using the recombinant adenoviruses for knock-
down of Ets-1 expression (si-Ets-1), we next analysed the
effect of Ets-1 downregulation on glucose-stimulated insulin
secretion (GSIS) and insulin content in isolated islets, and
Min6 cells treated with high glucose for 72 h. As demonstrat-
ed, si-Ets-1 effectively silenced Ets-1 gene expression and co-
ordinately increased PDX-1 protein level in high glucose
(Fig. 7a). Knockdown of Ets-1 effectively restored GSI in
islets and Min6 cells previously exposed to high glucose over
a 72 h period (Fig. 7c,d), and increased insulin content
(Fig. 7e,f) and insulin secretion under high glucose that was
normalised to insulin content (Fig. 7g,h).

Together, these results identified Ets-1 as a mediator of
glucotoxicity, as depicted in Fig. 7b. Chronic high glucose
treatment stimulated Ets-1 expression, which directly down-
regulated PDX-1 expression and activity. Following the inhi-
bition of PDX-1 expression and activity, insulin expression
was downregulated, which resulted in pancreatic beta cell
dysfunction.

Discussion

Glucotoxicity is a major determinant of causing beta cell fail-
ure in type 2 diabetes. The current studies demonstrate that
Ets-1 mediates pancreatic beta cell dysfunction, linking
glucotoxicity to type 2 diabetes. In db/db mice islets as well
as in high glucose-treated Min6 cells and primary islets, Ets-1
expression was significantly increased. Using newly generat-
ed transgenic mice with overexpression of Ets-1 in pancreatic
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beta cells, we demonstrate that Ets-1 excess induces glucose
intolerance with defective insulin secretion. It is important to
note that we obtained three transgenic lines exhibiting high
(line 107), medium (line 123) and low (line 79) levels of Ets-1
expression in islets, which all displayed defective insulin se-
cretion and PDX-1 expression (ESM Fig. 1d–h). Thus, the
observed effect in transgenic mice was due to expression
levels of Ets-1 and was not explained by insertional mutagen-
esis, i.e. random incorporation of the transgene leading to
inactivation of another gene.

Histone modification has been shown to be important in
pancreatic beta cell function [23]. Histone H4 acetylation is

critical for activation of insulin gene expression [38]. Howev-
er, it is unclear whether epigenetic modification is involved in
manipulating Ets-1 expression in pancreatic beta cells treated
with high glucose. We first analysed the promoter region of
Ets-1, and found there were many CpG islands. However,
5-Aza-CdR, a specific inhibitor of DNA methylation, had no
effect on Ets-1 expression (data not shown). Interestingly, the
histone deacetylase inhibitor could upregulate Ets-1 expres-
sion in pancreatic beta cells. Meanwhile, high glucose in-
creased histone H4 and H3 acetylation at the −1250 to
−1054 regions of the Ets-1 promoter. These results clearly
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demonstrate the role of epigenetics in regulating Ets-1 tran-
scription induced by high glucose.

It is important to recognise that Ets-1 overexpression
caused a reduction in insulin content in pancreatic beta cells
both in vivo and in cell-based models. It is therefore possible
that decreased GSIS induced by Ets-1 was due to reduced
insulin granule formation. Another possibility is that Ets-1
might impair insulin secretion from pancreatic beta cells. We
found that overexpression of Ets-1 still decreased insulin se-
cretion when normalised to insulin content.We also found that
that overexpression of Ets-1 reduced ATP content under high
glucose conditions (ESM Fig. 3a) and GCK expression (ESM
Fig. 3b,c). Given ATP and GCK are major contributing factors
involved in GSIS [39, 40], reduction of ATP content and GCK
expression could participate in Ets-1 impairing insulin
secretion.

We identified, for the first time, PDX-1 as the downstream
target of Ets-1 in mediating its regulatory effects on pancreatic
beta cell function. We demonstrated that Ets-1 could bind to
the promoter of Pdx-1 (the PH2 region) shared with FOXO1
and FOXA2 [18]. When Ets-1 was overexpressed in beta
cells, the activity of FOXO1 binding to the PDX-1 promoter
increased, but that of FOXA2 binding to the same site de-
creased, which was accompanied by the reduction of activity
of the Pdx-1 promoter. Previous studies demonstrated that
FOXO1 negatively regulated PDX-1 expression through de-
creasing Pdx-1 promoter activity while FOXA2 positively
regulated PDX-1 expression through increasing Pdx-1 pro-
moter activity [20, 41]. We also found that FOXO1 could
interact with Ets-1 in pancreatic beta cells (Fig. 6a). As shown
here and previously, we propose that overexpression of Ets-1
enhanced FOXO1 occupying the area left vacant by FOXA2
on the Pdx-1 promoter, which resulted in inhibiting Pdx-1
promoter activity.

It should be noticed that Ets-1 did not bind to the Pdx-1
promoter in the control group, and interference of basal Ets-1
gene transcription did not affect PDX-1 expression (Fig. 5a,b),
which indicated that Ets-1 only inhibits PDX-1 expression
under certain pathological situations such as hyperglycaemia.
Similarly, the FOXO1 transcription factor demonstrated
almost no binding to the Pdx-1 gene promoter, which was
consistent with our previous results [41]. Thus, neither Ets-1
nor FOXO1 regulated PDX-1 expression by binding to the
Pdx-1 promoter under basal situation.

The decrease of PDX-1 expression and DNA binding ac-
tivities was implicated previously in chronic hyperglycaemia-
induced beta cell dysfunction [17]. However, the potential
mechanisms were unclear. Here, we established a connection
between high glucose, Ets-1 elevation and reduction of PDX-
1 expression. We described in detail the cause-and-effect re-
lationship between the increased level of Ets-1 and decreased
levels of PDX-1 in vivo and in vitro. High glucose increased
the activity of Ets-1 binding to the Pdx-1 promoter (Fig. 6b).

On the basis of the existing investigations, we speculated that
Ets-1 was responsible for the reduction in PDX-1 expression
under the hyperglycaemia condition.

In conclusion, our study demonstrates that chronic
hyperglycaemia contributes to upregulation of Ets-1 expres-
sion by mediating hyperacetylation of histone H3 and H4 at
the Ets-1 gene promoter, leading to reduction of PDX-1 ex-
pression, and finally to beta cell dysfunction. This process
may be one of the molecular mechanisms responsible for
glucotoxicity in beta cells.
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