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Abstract
Aims/hypothesis Sirtuin 6 (SIRT6) has been implicated in
ageing, DNA repair and metabolism; however, its function
in pancreatic beta cells is unclear. The aim of this study is to
elucidate the role of SIRT6 in pancreatic beta cells.
Methods To investigate the function of SIRT6 in pancreatic
beta cells, we performed Sirt6 gene knockdown inMIN6 cells
and generated pancreatic- and beta cell-specific Sirt6 knock-
out mice. Islet morphology and glucose-stimulated insulin
secretion (GSIS) were analysed. Glycolysis and oxygen con-
sumption rates in SIRT6-deficient beta cells were measured.
Cytosolic calcium was monitored using the Fura-2-AM fluo-
rescent probe (Invitrogen, Grand Island, NY, USA).
Mitochondria were analysed by immunoblots and electron
microscopy.
Results Sirt6 knockdown in MIN6 beta cells led to a signifi-
cant decrease in GSIS. Pancreatic beta cell Sirt6 knockout

mice showed a ~50% decrease in GSIS. The knockout mouse
islets had lower ATP levels compared with the wild-type con-
trols. Mitochondrial oxygen consumption rates were signifi-
cantly decreased in the SIRT6-deficient beta cells. Cytosolic
calcium dynamics in response to glucose or potassium chlo-
ride were attenuated in the Sirt6 knockout islets. Numbers of
damaged mitochondria were increased and mitochondrial
complex levels were decreased in the SIRT6-deficient islets.
Conclusions/interpretation These data suggest that SIRT6 is
important for GSIS from pancreatic beta cells and activation
of SIRT6 may be useful to improve insulin secretion in
diabetes.
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Introduction

The pathogenesis of type 2 diabetes is multifactorial, but im-
paired insulin secretion from pancreatic beta cells is one of the
critical factors [1]. Glucose-stimulated insulin secretion
(GSIS) is a complex process that involves glucose sensing,
transport and metabolism (glycolysis and mitochondrial oxi-
dation), plasma membrane depolarisation, and calcium signal-
ling and exocytosis, among other things [2].

Sirtuins belong to a conserved family of proteins, and
mammals have seven members (SIRT1–7) [3]. SIRT6 is a
chromatin-associated enzyme that deacetylates histone H3 at
lysine 9 (H3K9) and lysine 56 residues [4–6]. Some non-
histone substrates, such as forkhead box O1 (FoxO1), general
control of amino acid synthesis protein 5 (GCN5), and CTBP-
interacting protein (CtIP), have also been reported [7–9].
SIRT6 can also remove long-chain fatty acyl groups from
lysine residues of its substrates such as TNF-α [10, 11].
SIRT6-deficient mice exhibit accelerated ageing and die of
hypoglycaemia by 4 weeks of age [12, 13]. SIRT6 has been
implicated in a variety of metabolic processes, including gly-
colysis, gluconeogenesis, hepatic lipid and cholesterol metab-
olism, neuroendocrine regulation and circadian regulation of
metabolism [7, 14–21]. Interestingly, high-fat diet (HFD)-
treated Sirt6 transgenic mice secrete more insulin in response
to a bolus of glucose than their wild-type (WT) counterparts
[22]. These data suggest that SIRT6 is probably required for
insulin secretion and beta cell function. In this work, we gen-
erated both pancreas- and beta cell-specific Sirt6 knockout
mice to illustrate the role of SIRT6 in the pancreatic beta cells.

Methods

Animals Pancreas-specific deletion of Sirt6 was generated by
crossing Sirt6 floxed mice (Sirt6Tm1.1Cxd, provided by C.
Deng, Mammalian Genetics Section, National Institute of
Diabetes and Digestive and Kidney Disease [NIDDK],
Bethesda, MD, USA) with Tg(Pdx1-Cre)6Tuv mice from
the Jackson Laboratory (Bar Harbor, ME, USA) [16, 23].
Beta cell-specific Sirt6 deletion was generated by crossing
Sirt6 floxed mice with MIP-Cre/ERT mice (Tg(Ins1-Cre/
ERT)1Lphi, provided by L. Philipson, Department of
Medicine, University of Chicago, Chicago, IL, USA) and ta-
moxifen administration (oral gavage at a dose of 4 mg/mouse

in corn oil for four consecutive days) [24]. These mice were
on the mixed background (FVB/NJ:129S6/Sv:C57BL/6J).
Mice were fed either regular chow (18% energy from fat) or
a HFD (42% energy from fat, Harlan Teklad, Indianapolis, IN,
USA). Blood glucose levels were measured under ad libitum
or overnight 16 h fasting conditions. GTT and insulin toler-
ance test (ITT) were performed in mice fasted for 6 or 4 h
before injection of glucose (2 g/kg, i.p. or oral gavage) or
insulin (0.5 U/kg for chow-fed mice and 0.75 U/kg for
HFD-fed mice, i.p.), respectively. GSIS and L-arginine-stimu-
lated insulin secretion were performed in mice fasted for 16 h
before injection of glucose (2 g/kg, i.p.) or L-arginine (1 g/kg,
i.p.), respectively. Tail-vein blood samples were collected for
insulin measurements using an ELISA kit (ALPCO, Salem,
NH, USA). All animal procedures were performed in accor-
dance with the National Institutes of Health (NIH) Guide for
the Care and Use of Laboratory Animals and were approved
by the Indiana University School of Medicine Institutional
Animal Care and Use Committee. Samples were not
randomised and the experimenters were not blind to group
assignment and outcome assessment. No data were excluded
for the report.

Cell culture MIN6 cells (provided by D. Thurmond,
Department of Pediatrics, Indiana University, Indianapolis,
IN, USA) were cultured and transduced with adenoviruses
as previously described [25, 26]. The cell line was verified
in our laboratory and it did not have mycoplasma
contamination.

Pancreatic islets Islets were isolated from mouse pancreases
at the Islet Core of the Indiana Diabetes Research Center as
previously described [27].

Insulin secretion analysis Insulin secretion analysis in MIN6
cells or mouse islets was performed as previously described
[28]. Glucose, potassium chloride (KCl), α-ketoisocaproate
(KIC, Sigma-Aldrich, St Louis, MO, USA) and ionomycin
(IM, Cayman, Ann Arbor, MI, USA) were used for the exper-
iments. Insulin was analysed using an ELISA kit (ALPCO).

RNA analysis Total RNA samples were prepared and
analysed as previously described [25].

Protein analysis Protein extracts from mouse islets and other
tissues or MIN6 cells were prepared and analysed as previ-
ously described [25]. The following antibodies were used:
SIRT6 (Abcam, Cambridge, MA, USA, and Sigma-Aldrich,
1:1,000 dilution), actinin (Santa Cruz Biotechnology, Dallas,
TX, USA, 1:1,000 dilution), Ac-H3K9 and cleaved caspase 3
(Cell Signaling Technology, Beverly, MA, USA, 1:1,000 di-
lution) and total OXPHOS antibody cocktail (Abcam, 1:250
dilution). Antibodies were validated through confirmation of
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protein molecular weight and their known characteristics ac-
cording to existing knowledge.

Histological analysis Pancreases were fixed and processed as
previously described [29]. The following antibodies were
used for immunostaining: glucagon (Sigma-Aldrich, 1:5,000
dilution), insulin and Ki67 (Cell Signaling Technology, 1:500
dilution). Beta cell areas were determined by analysing 10–15
pancreatic sections stained for insulin per genotype using NIH
ImageJ software (http://rsb.info.nih.gov/ij/download.html).
To examine proliferating beta cells, 15–20 islets were
analysed for each genotype. The number of Ki67-positive beta
cells per islet was normalised to the total beta cell number in
each islet.

Pancreatic insulin content analysis To measure total pancre-
atic insulin content, whole pancreas was dissected and proc-
essed as previously described [30]. Insulin was measured
using an ELISA kit (ALPCO).

ATP analysis ATP was extracted from mouse islets using
2.5% trichloroacetic acid (wt/vol.) and measured using a bio-
luminescent assay kit (Sigma-Aldrich).

Cellular bioenergetics analysis The extracellular acidifica-
tion rate (ECAR) and oxygen consumption rate (OCR) were
measured in MIN6 cells using an XF24 Analyzer (Seahorse
Bioscience, North Billerica, MA, USA).

Cytoplasmic Ca2+ analysis Cytosolic Ca2+ dynamics in
mouse islets was measured using the Fura-2-AM
(Invitrogen) calcium probe as previously described [31].

Electron microscopy Isolated mouse islets were fixed with
2% glutaraldehyde (wt/vol.) and processed as previously de-
scribed [32]. Numbers of total mitochondria and damaged
mitochondria from each cell were counted from a randomly
selected group of 30 cells. The cytosolic area of each cell was
determined using SPOT software (Sterling Heights, MI,
USA), which was used to normalise the numbers of total
and damaged mitochondria.

Statistical analysis All data are presented as means±SEM.
Two-group comparisons were performed using two-tailed un-
paired Student’s t test, and multiple-group comparisons were
performed using ANOVA and Turkey’s post hoc test. A
p value of <0.05 was considered as significant.

Results

SIRT6 regulates insulin secretion from pancreatic beta
cells To examine Sirt6 gene expression in pancreatic islets,

we performed real-time PCR and western blot analysis. The
mRNA levels of Sirt6 in mouse islets were higher than that in
brain, white adipose tissue, heart and liver (Fig. 1a). The west-
ern blot data also confirmed that SIRT6 protein was more
readily detectable in mouse islets than in white adipose tissue,
heart and liver (Fig. 1b). It is worth noting that the SIRT6
antibodies used also detected several other bands on the blot
although their identities are unknown at this time. To assess
the function of SIRT6 in pancreatic beta cells, we performed
knockdown of the Sirt6 gene in a mouse insulinoma cell line,
MIN6. Sirt6 knockdown was confirmed by western blot
(Fig. 1c). As expected, acetylation of the H3K9 residue, a
known deacetylation substrate of SIRT6, was elevated
(Fig. 1c). SIRT6-deficient MIN6 cells secreted ~30% less in-
sulin compared with WT control cells treated with short hair-
pin (sh)RNAs against the green fluorescent protein gene
(shGfp) when they were stimulated with 16.7 mmol/l glucose
(Fig. 1d). These data suggest that SIRT6 regulates GSIS.

Pancreatic SIRT6 deficiency leads to insulin secretory im-
pairment and glucose intolerance To further investigate the
physiological role of SIRT6 in pancreatic beta cell develop-
ment and function, we generated Sirt6 pancreas-specific
knockout mice (bPko) by crossing mice bearing floxed Sirt6
alleles with Pdx1-Cre mice. The gene knockout was very ef-
ficient as indicated by western blot and quantitative PCR
analysis (Fig. 2a, b). To assess whether glucose homeostasis
was perturbed in the bPko mice, we first measured blood
glucose in fasting and ad libitum-fed mice. No significant
difference in blood glucose levels was noticed between the
control and knockout mice (Fig. 2c). However, when the
bPko mice were challenged with an i.p. or oral glucose load,
they showed remarkable glucose intolerance (Fig. 2d, e). The
impairment in glucose tolerance can be caused by a number of
factors, including insulin resistance and insulin secretory de-
fects. ITTs did not reveal any difference between the control
and bPko mice (Fig. 2f). However, plasma insulin levels
(balance of secretion and clearance) were reduced under basal
and glucose-stimulated states in the bPko mice (Fig. 2g). The
reduction of insulin secretion can be caused by a decrease in
beta cell mass, insulin content or insulin secretion.
Histological analysis by haematoxylin–eosin staining and im-
munostaining with antibodies against insulin and glucagon
did not reveal any significant difference in islet shape or size,
or distribution of alpha and beta cells between the bPko
and control mice (Fig. 2h, i). In addition, beta cell area
and pancreatic insulin content were not significantly different
(Fig. 2j, k). These data suggest that insulin secretion defects
might underlie the glucose intolerance in the bPko mice.

Deletion of Sirt6 in pancreatic beta cells causes insulin
secretory defects Although Pdx1-Cre has been widely used
to generate pancreas-specific knockout mice, the Cre
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transgene also causes recombination in hypothalamus [24]. To
investigate the role of SIRT6 in adult beta cells, we took ad-
vantage of a tamoxifen-inducibleMIP-Cre/ERT mouse strain.
The MIP-Cre/ERT mouse exhibits no leakage of Cre expres-
sion in the brain and is considered to be pancreatic beta cell-
specific [24]. We first tested the knockout efficiency in the
islets from Sirt6lox/lox:MIP-Cre/ERT knockout (bMko) mice.
Sirt6 was efficiently deleted 2 weeks after tamoxifen admin-
istration as shown by western blot analysis and quantitative
PCR of mouse islets (Fig. 3a, b). Fasting and ad libitum-fed
blood glucose levels were similar in bMko, floxed (loxp) and
Cre mice (Fig. 3c). However, the bMko mice showed signif-
icant glucose intolerance compared with control mice
(Fig. 3d). Like the bPko mice, the bMko mice also did not
exhibit any alteration in insulin tolerance (Fig. 3e).
Remarkably, the bMko mice displayed significantly lower
plasma insulin levels than the control mice after a glucose load
(Fig. 3f).

SIRT6 deficiency impairs mitochondrial glucose oxidation
To examine whether or not the decrease in GSIS in SIRT6-

deficient islets is intrinsic to pancreatic beta cells, we per-
formed ex vivo GSIS analysis using isolated mouse islets.
Although there was no difference in insulin secretion at a
low concentration of glucose (2.5 mmol/l) between bMko
and control islets (Fig. 4a), the amount of insulin secreted in
response to a high concentration of glucose (16.7 mmol/l) was
reduced by 46% in the bMko islets compared with controls
(Fig. 4a).
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To identify the potential causes for the GSIS defects in
SIRT6-deficient beta cells, we first examined glucose metab-
olism in MIN6 cells using an extracellular flux analyser
(Seahorse; mouse islets could not be examined because of
technical issues). Glycolysis and mitochondrial respiration
can be monitored by measuring ECAR and OCR, respective-
ly. Under high glucose conditions, Sirt6 knockout significant-
ly reduced the levels of ECAR and OCR in MIN6 cells, indi-
cating a decrease of glucose metabolism (Fig. 4b, c). Next, we
measured ATP production, which is the final product of mito-
chondrial glucose metabolism and controls insulin secretion
via closure of KATP channels. At low glucose levels
(2.5 mmol/l), bMko and control islets had comparable levels
of ATP; however, the ATP production in response to
16.7 mmol/l glucose was decreased by ~20% in the bMko
islets relative to controls (Fig. 4d). To further confirm the
defect in mitochondrial energy metabolism, we used KIC, a
mitochondrial substrate that can be directlymetabolised by the
tricarboxylic acid cycle and bypass glycolysis to perform in-
sulin secretion assays in isolated bMko and control islets. As
predicted, bMko islets secreted 58% less insulin after

incubation with 12.5 mmol/l KIC compared with controls
(Fig. 4e), suggesting a defect in mitochondrial oxidation.

Ablation of SIRT6 in pancreatic beta cells leads to
mitochondrial defects To examine what caused the impair-
ment of glucose oxidation in mitochondria, we surveyed five
mitochondrial complexes that are involved in the electron
transport chain using a cocktail of antibodies against represen-
tative proteins from Complexes I to V. Western blots and den-
sitometry analysis revealed that levels of Complexes III and
IV were significantly decreased in the bMko mouse islets
compared with controls (Fig. 5a, b). This suggests that Sirt6
gene deletion causes mitochondrial deficiency. In order to
visualise mitochondria in structural detail, we also preformed
transmission electron microscopy (TEM). By reviewing the
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TEM images, we observed noticeable mitochondrial damage
in Sirt6-knockout beta cells (Fig. 6a–c). While total numbers
of mitochondria were not different between control and
SIRT6-deficient beta cells (Fig. 6d), numbers of damaged mi-
tochondria increased in the Sirt6-knockout beta cells com-
pared with the control counterparts (Fig. 6e).

SIRT6 deficiency causes aberrant calcium flux in beta cells
To further examinewhether or not SIRT6 deficiencymight alter
membrane depolarisation and calcium flux in pancreatic beta
cells, we performed insulin release analysis after L-arginine
injections in mice. L-Arginine is known to depolarise the plas-
ma membrane by its cationic charges. Plasma insulin levels
were ~50% lower in the bMko mice compared with the control
group 2 min after L-arginine injections (Fig. 7a). Moreover, we
performed ex vivo KCl-stimulated insulin secretion in isolated
mouse islets, as KCl also has a strong membrane depolarisation
effect. Insulin secretion in response to 30 mmol/l KCl was
decreased 50% in the bMko islets compared with the WT con-
trols (Fig. 7b). These data suggest that the defective insulin
secretion might also result from defects in either plasma mem-
brane depolarisation and/or post-depolarisation.

In pancreatic beta cells, an increase in intracellular calcium
([Ca2+]i) is critical for secretagogue-induced insulin release
[33, 34]. To examine whether the reduction in the insulin
secretory response to glucose or KCl may be associated with
reduced calcium influx, we measured [Ca2+]i (indicated by the
fluorescence ratio of 340 nm/380 nm) of isolated islets loaded
with Fura-2-AM fluorescent probes. Consistent with the ob-
servation that bMko mice had normal basal insulin secretion,
the islets from bMko and control mice showed similar resting
[Ca2+]i levels (Fig. 7c, d). However, in response to 16.7mmol/
l glucose or 30 mmol/l KCl, [Ca2+]i was significantly lower in
the bMko islets compared with the control group (Fig. 7c, d),
suggesting the presence of a defect in calcium flux regulation.
To further verify that the reduction of [Ca2+]i is critical for the
impaired insulin secretion in SIRT6-deficient beta cells, we
performed insulin secretion assays in bMko and control islets
in the presence of a Ca2+ ionophore, ionomycin. Remarkably,
30 μmol/l ionomycin rescued the insulin secretion deficiency
in the bMko islets when stimulated with 16.7 mmol/l glucose
(Fig. 7e). These data suggest that SIRT6 regulates calcium
flux in the pancreatic beta cells.
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Pancreatic beta cell SIRT6 is required to protect mice
against obesity-induced glucose intolerance To examine
the role of SIRT6 in pancreatic beta cells under obese condi-
tions, we treated bMko and control mice with a 42% HFD for
4 months. After HFD feeding, fasting blood glucose levels
were comparable between the bMko and control mice
(Fig. 8a), whereas fed blood glucose levels were increased in
the bMko mice although they did not reach statistical signifi-
cance (Fig. 8a). Glucose intolerance was worse in the bMko
mice than that in the control group (Fig. 8b). Insulin tolerance
was not significantly different between the bMko and control
mice (Fig. 8c). Furthermore, bMko mice exhibited greater
impairment in glucose-stimulated insulin release than control
mice (Fig. 8d). To investigate whether or not SIRT6 plays a
role in compensatory hyperplasia of beta cells induced by the
HFD feeding, beta cell area and pancreatic insulin content
were analysed. There were no significant differences in the

beta cell area and pancreatic insulin content between the
bMko and control mice (Fig. 8e, f). Moreover, beta cell pro-
liferation, as measured by Ki67 staining of pancreatic sec-
tions, was comparable between the bMko and control mice
(Fig. 8g). In addition, analysis of cleaved caspase 3 (a marker
of apoptosis) in isolated islets showed that Sirt6 deletion did
not increase caspase 3 activation even after HFD treatment
(Fig. 8h).

Discussion

Impairment of GSIS is one of the early clinical manifestations
in the development of type 2 diabetes [35]; however, the un-
derlying mechanisms are not well understood. In this work,
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we have shown that SIRT6 is required for proper insulin se-
cretion in response to glucose stimulation. Our data suggest
that SIRT6 regulates GSIS through mitochondrial glucose ox-
idation, plasmamembrane depolarisation and calcium dynam-
ics (and possibly other mechanisms).

SIRT6 is expressed in multiple tissues, albeit at different
levels with high expression in the skeletal muscle, thymus and
brain in mice [12]. Our data show here that SIRT6 is readily
detectable in mouse islets. Data from a previous
transcriptomic analysis of purified mouse pancreatic alpha
and beta cells also reveal that Sirt6 gene expression ranks in
approximately the 75th and 80th percentiles among 23,406
genes in alpha and beta cells, respectively [36]. By contrast,
another SIRT family member, SIRT1, which has been impli-
cated in the regulation of insulin secretion from pancreatic
beta cells [37–40], only ranks in the 68th and 64th percentiles
in alpha and beta cells, respectively [36]. These data suggest
that SIRT6 is likely to play a role in beta cell function.

SIRT6 has been shown to suppress glycolysis in mouse
embryonic stem (ES) cells, fibroblasts and hepatocytes [16,
21]. However, this does not seem to be the case in pancreatic
beta cells because glycolysis was decreased in SIRT6-deficient
MIN6 cells in response to high glucose. Interestingly, the
ECAR was decreased in both WT and SIRT6-deficient MIN6
cells in the presence of oligomycin, which usually inhibits
mitochondrial OCR and promotes ECAR. This finding sug-
gests that those beta cells might have low capacity to convert
pyruvate to lactate compared with other cell types. Our data are
consistent with a recent report in mouse primary islets [41]. It is
well known that an increase in ATP levels or the ATP/ADP
ratio from glucose metabolism is a critical trigger in GSIS [2].
Significantly, in our study, ATP production in the bMko islets
upon glucose stimulation was lower than that in the WT islets.
This result can be attributed to the compromisedmitochondrial
oxidation as indicated by reduced OCR in the SIRT6-deficient
beta cells. Interestingly, levels of mitochondrial Complexes III
and IV were decreased in the Sirt6 knockout beta cells. The
electron microscopy analysis also reveals an increase in mito-
chondrial damage in the SIRT6-deficient beta cells. However,
the cause of the mitochondrial defects is unclear. Consistent
with these findings, mitochondrial defects have been also ob-
served in Sirt6-knockout mouse ES cells and Sirt6-knockout
breast cancer cells [21, 42]. In SIRT6-deficient mouse ES cells,
mitochondrial respiration and a number of intermediate metab-
olites in the tricarboxylic acid cycle, including citrate,
isocitrate, succinate, fumarate and malate, are decreased [21].
In Hs578t breast cancer cells, overexpression of SIRT6 in-
creases OCR and knockdown of SIRT6 decreases it [42].
Together, these data suggest that SIRT6 promotes mitochon-
drial respiration. However, further study is required to eluci-
date how SIRT6 regulates mitochondrial function.

A high concentration of KCl can cause depolarisation of the
beta cell plasma membrane, which subsequently triggers Ca2+

influx and insulin granule exocytosis [33]. The reduction in
Ca2+ influx and insulin secretion from the bMko mouse islets
in response to 30mmol/l KCl seen in the current study suggests
that SIRT6 may regulate insulin secretion at membrane
depolarisation and/or downstream of the depolarisation event.
According to our data, aberrant Ca2+ flux is one of the potential
downstream defects in SIRT6-deficient beta cells. The first ev-
idence is that cytosolic [Ca2+] was lower in bMko islets in
response to high glucose or KCl compared with the WT islets.
Second, the increase of cytosolic [Ca2+] caused by the Ca2+

ionophore ionomycin normalised GSIS in the bMko islets.
Since ionomycin has multiple actions that increase cytosolic
[Ca2+], including store-operated Ca2+ entry and calcium-
induced Ca2+ release [43], the precise mechanism of the regu-
lation by SIRT6 is not clear yet. In addition, transient receptor
potential cation channel, subfamilyM,member 2 (TRPM2) has
been suggested to play a role in insulin secretion [44, 45], and
SIRT6 can modulate TRPM2 activity through its byproductO-
acetyl-ADP ribose (OAADPR) and its derivative ADP ribose
(ADPR) [46], which can activate TRPM2 [44]. It would be
interesting to see that to what extent the OAADPR/ADPR–
TRPM2 pathway contributes to the SIRT6 effect on GSIS.

In summary, this work characterises the role of SIRT6 in
pancreatic beta cells and reveals its importance in insulin se-
cretion and glucose homeostasis. Specifically, our data dem-
onstrate that SIRT6 activity is necessary to regulate insulin
secretion by maintaining mitochondrial function and modulat-
ing Ca2+ dynamics. Therefore, it is important to further inves-
tigate the mechanisms by which SIRT6 regulates beta cell
function. Pharmacological activation of SIRT6 may be useful
to enhance insulin secretion and it has potential for the devel-
opment of effective drugs to treat type 2 diabetes.
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