
ARTICLE

Overexpression of heterogeneous nuclear
ribonucleoprotein F stimulates renal Ace-2 gene
expression and prevents TGF-β1-induced kidney injury
in a mouse model of diabetes

Chao-Sheng Lo1 & Yixuan Shi1 & Shiao-Ying Chang1 & Shaaban Abdo1 &

Isabelle Chenier1 & Janos G. Filep2
& Julie R. Ingelfinger3 & Shao-Ling Zhang1 &

John S. D. Chan1

Received: 5 May 2015 /Accepted: 26 June 2015 /Published online: 1 August 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract
Aims/hypothesis We investigated whether heterogeneous nu-
clear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2
expression and prevents TGF-β1 signalling, TGF-β1 inhibi-
tion of Ace-2 gene expression and induction of tubulo-fibrosis
in an Akita mouse model of type 1 diabetes.
Methods Adult male Akita transgenic (Tg) mice overexpress-
ing specifically hnRNP F in their renal proximal tubular cells
(RPTCs) were studied. Non-Akita littermates and Akita mice
served as controls. Immortalised rat RPTCs stably transfected
with plasmid containing either rat Hnrnpf cDNA or rat Ace-2
gene promoter were also studied.
Results Overexpression of hnRNP F attenuated systemic hy-
pertension, glomerular filtration rate, albumin/creatinine ratio,
urinary angiotensinogen (AGT) and angiotensin (Ang) II

levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1,
TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-
profibrotic gene (Ace-2 and Ang 1–7 receptor [MasR]) expres-
sion, and normalised urinary Ang 1–7 level in Akita Hnrnpf-
Tg mice as compared with Akita mice. In vitro, hnRNP F
overexpression stimulated Ace-2 gene promoter activity,
mRNA and protein expression, and attenuated Agt, Tgf-β1
and Tgf-βrII gene expression. Furthermore, hnRNP F overex-
pression prevented TGF-β1 signalling and TGF-β1 inhibition
of Ace-2 gene expression.
Conclusions/interpretation These data demonstrate that
hnRNP F stimulates Ace-2 gene transcription, prevents
TGF-β1 inhibition of Ace-2 gene transcription and induction
of kidney injury in diabetes. HnRNP F may be a potential
target for treating hypertension and renal fibrosis in diabetes.
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Abbreviations
ACR Albumin/creatinine ratio
AGT Angiotensinogen
Ang Angiotensin
BW Body weight
DN Diabetic nephropathy
EMSA Electrophoretic mobility shift assay
ESRD End-stage renal disease
hnRNP F Heterogeneous nuclear ribonucleoprotein F
KAP Kidney-specific androgen-regulated protein
KW Kidney weight
MasR Angiotensin 1–7 receptor
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RAS Renin–angiotensin system
RE Response element
ROS Reactive oxygen species
RPTs Renal proximal tubules
RPTCs Renal proximal tubular cells
RT-qPCR Real-time-quantitative PCR
SBP Systolic BP
siRNA Small interfering RNA
STZ Streptozotocin
Tg Transgenic
TL Tibial length
TGF-β RI(RII) TGF-β receptor I(II)
WB Western blotting
WT Wild-type

Introduction

Diabetic nephropathy (DN), a leading cause of end-
stage renal disease (ESRD), accounts for ∼50% of all
ESRD cases [1, 2]. While glomerulopathy is a hallmark
of early renal injury in DN [3], tubulointerstitial fibrosis
and tubular atrophy are major features of late-stage DN
and are closely associated with loss of renal function
[4–7]. The mechanisms underlying tubulointerstitial fi-
brosis, however, are incompletely understood. TGF-β1
is considered to be the most potent inducer of
fibrogenesis [8]. Indeed, patients and animal models
with type 1 or 2 diabetes have significantly elevated
serum and urinary TGF-β1 levels [9–11] as well as
heightened TGF-β1 mRNA and protein expression in
glomeruli and the tubulointerstitium [12–16].

We previously reported that high glucose milieu enhances
expression of angiotensinogen (AGT, the sole precursor of all
angiotensins) through generation of reactive oxygen species
(ROS) in cultured rat renal proximal tubular cells (RPTCs)
[17, 18]. Rat AGT overexpression in RPTCs leads to hyper-
tension, albuminuria and RPTC hypertrophy, and enhances
TGF-β1 expression in diabetic AGT-transgenic (Tg) mice
[19, 20]. Conversely, RPTC-selective overexpression of cata-
lase or pharmacological blockade of the renin–angiotensin
system (RAS) attenuates hypertension, ROS generation, kid-
ney injury and normalised RPTC ACE-2 expression in mouse
models of diabetes [21–24]. Taken together, these observa-
tions indicate that oxidative stress-induced upregulation of
AGT expression and downregulation of ACE-2 expression
in RPTCs, resulting in higher angiotensin (Ang)II/Ang 1–7
ratio, may be key determinants of development of hyperten-
sion and nephropathy in diabetes.

We reported that insulin inhibits high glucose stimu-
lation of rat renal Agt gene expression via two nuclear
proteins—heterogeneous nuclear ribonucleoproteins F
and K (hnRNP F, hnRNP K)—that interact with the

insulin-responsive element (IRE) in the Agt gene pro-
moter [25–28], and that hnRNP F overexpression in
RPTCs inhibits Agt gene expression and kidney hyper-
trophy in Akita Hnrnpf-Tg mice [29]. Here, we report
that overexpression of hnRNP F stimulates Ace-2 gene
transcription and suppresses profibrotic gene (Tgf-β1,
Tgf-βrII) expression in RPTCs of Akita Hnrnpf-Tg
mice. We have confirmed these changes by in vitro
studies in rat RPTCs. We also show that hnRNP F
overexpression prevents TGF-β1 signalling and inhibi-
tion of Ace-2 gene expression in RPTCs. Finally, we
identified the putative DNA response elements (REs)
in the Ace-2 gene promoter that are responsive to
hnRNP F and TGF-β1.

Methods

Chemicals and constructs Active human recombinant
TGF-β1 was obtained from R&D Systems (Minneapolis,
MN, USA). SB431542 (a TGF-β receptor I [RI] inhibitor)
and other chemicals were purchased from Sigma-Aldrich
(Oakville, ON, Canada). The antibodies used in the present
study are listed in electronic supplementary material (ESM)
Table 1. The pKAP2 plasmid containing the kidney-specific
androgen-regulated protein (KAP) promoter was a gift from
C. D. Sigmund (University of Iowa, Iowa City, IA, USA) [30].
Full-length rat Hnrnpf cDNA fused with HA tag (encoding
amino acid residues 98–106 [YPYDVPDYA] of human influ-
enza virus hemagglutinin) was inserted into pKAP2 plasmid
at the NotI site at both 5′ and 3′ termini [25, 29]. pGL4.20
vector containing Luciferase reporter was obtained from
Promega (Sunnyvale, CA, USA). Rat Ace-2 gene promoter
(N-1,091/+83) was cloned from rat genomic DNA with spe-
cific primers (ESM Table 2), as described byMilsted et al [31]
and then inserted into pGL4.20 plasmid at HindIII and KpnI
restriction sites. Scrambled Silencer Negative Control no. 1
small interfering RNA (siRNA) and Hnrnpf siRNA were
bought from Ambion (Austin, TX, USA). QuickChange II
Site-Directed Mutagenesis Kit and LightShift Chemilumines-
cent electrophoretic mobility shift assay (EMSA) Kit were
procured from Agilent Technologies (Santa Clara, CA,
USA) and Thermo Scientific (Life Technologies, Bur-
lington, ON, Canada), respectively. The primer biotin-
labelling kit was purchased from Integrated DNATechnologies
(Coralville, IA, USA).

Physiological studies Adult male heterozygous Akita
mice (Mus musculus) with a mutated Ins2 gene
(C57BL6-Ins2Akita/J) were purchased from Jackson Lab-
oratories (Bar Harbor, ME, USA: http://jaxmice.jax.org).
Akita Tg mice (C57Bl/6 background) overexpressing rat
hnRNP F-HA in RPTCs (line 937) were created in our
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laboratory (by J. S. D. Chan) [29]. Male adult non-Tg
and non-Akita littermates served as wild-type (WT) con-
trols, and were tested along with Hnrnpf-Tg, Akita and
Akita Hnrnpf-Tg mice. All animals were housed indi-
vidually in metabolic cages for 24 h before euthanasia
at age 20 weeks. All animals were fed standard mouse
chow and water ad libitum. Animal care and procedures
were approved by the CRCHUM Animal Care Commit-
tee and followed the Principles of Laboratory Animal
Care (NIH publication no. 85-23, revised 1985: http://
grants1.nih.gov/grants/olaw/references/phspol.htm).

Blood glucose levels, following 4–5 h fasting, were deter-
mined with an Accu-Chek Performa System (Roche Diagnos-
tics, Laval, QC, Canada). Body weight (BW) was recorded.
Urine was collected and assayed for albumin/creatinine ratio
(ACR) by enzyme-linked immunosorbent assays (Albuwell
and Creatinine Companion, Exocell, Philadelphia, PA, USA).

GFR was measured as described by Qi et al [32] as recom-
mended by the AnimalModels of Diabetic Complications Con-
sortium (www.diacomp.org) with fluorescein isothiocyanate
inulin [23, 28, 33].

Kidneys were removed immediately after GFR mea-
surement, decapsulated and weighed. The left kidneys
were processed for histology and immunostaining, and
right renal cortices were harvested for renal proximal tu-
bules (RPTs) isolation by Percoll gradient centrifugation
[23, 24, 28, 29]. Aliquots of freshly isolated RPTs from
individual mice were immediately processed for total
RNA and protein isolation.

Immunohistochemical staining Immunohistochemical stain-
ing was performed by the standard avidin-biotin-peroxidase
complex method in four to five sections (4 μm thick) per
kidney and three mouse kidneys per group (ABC Staining

System; Santa Cruz Biotechnology [Santa Cruz, CA, USA])
[23, 24, 28, 29]. Staining was analysed under light microscopy
by two independent, blinded observers. The collected images
were assessed by National Institutes of Health Image J soft-
ware (http://rsb.info.nih.gov/ij/) [23, 24, 28, 29].

Urinary AGT, Ang II and Ang 1–7 measurement Mouse
urinary AGT, Ang II and Ang 1–7 levels were analysed by
ELISA (Immuno-Biological Laboratories, IBL America,
Minneapolis, MN, USA) and normalised by urinary creatinine
levels as described [23, 24, 28, 29, 34].

Cell culture Immortalised rat RPTCs (passages 12–18) [35]
were cultured in 5 mmol/l D-glucose DMEM containing 5%
FBS until they reached 60–70% confluence. The media were
then changed to serum-free DMEM, ensuring that endoge-
nously secreted TGF-β1 would not interfere in the assay. Af-
ter 45 min preincubation, active human recombinant TGF-β1
[36] (0 to 10 ng/ml) was added (considered as time 0 h) and
incubated for various time periods up to 24 h. In separate
experiments, RPTCs were incubated for 24 h in serum-free
medium in the presence or absence of TGF-β1± various con-
centrations of SB431542.

Real-time quantitative PCR Hnrnpf, Ace, Ace-2, MasR,
Tgf-β1, Tgf-βrI, Tgf-βrII, collagen type IV, collagen type I,
fibronectin 1 and β-actin mRNA expression levels in RPTs
were quantified by real-time quantitative PCR (RT-qPCR) with
forward and reverse primers (ESM Table 2) [23, 24, 28, 29].

Western blotting Western blotting (WB) was performed as
described previously [23, 24, 28, 29]. The relative densities of
hnRNP F, ACE, ACE-2, Ang 1–7 receptor (MasR), TGF-β1,
TGF-β RI, TGF-β RII, fibronectin 1, p-Smad2/3, Smad2/3

Table 1 Physiological measurements

WT Hnrnpf-Tg Akita Akita Hnrnpf-Tg

Blood glucose (mmol/l) 10.8±0.64 11.2±0.67 34.5±0.71*** 35.1±0.79***

SBP (mmHg) 110.7±2.71 113.8±2.67 133.4±2.59** 121.5±3.52**††

KW (mg) 398.7±16.01 396.9±1,936 550.0±27.60** 432.7±21.97*†

BW (g) 38.3±1.41 34.9±1.3 26.4±0.85** 25.0±0.45**

TL (mm) 22.6±0.16 22.7±0.21 22.3±0.36 22±0.13

KW/BW ratio 10.5±0.57 11.3±0.38 20.7±0.54** 16.6±1.15**†

KW/TL ratio 17.6±0.67 17.4±0.78 24.6±1.14** 18.7±1.25†

GFR (μl min−1 g−1) 7.3±0.44 8.3±0.39 19.8±1.61** 16.2±0.85**†

Urinary ACR (mg/mmol) 1.8±0.33 1.8±0.35 13.6±3.25** 5.8±1.07*†

Urinary AGT/Cre ratio (pmol/μmol) 1,418±242.4 1,439±137.5 4,512±753.6** 2,804±204.7**†

Urinary Ang II/Cre ratio (pmol/μmol) 19.56±6.065 19.5±7.964 299.38±89.06** 133.05±12.68**†

Urinary Ang 1–7/Cre ratio (pmol/μmol) 17.97±1.807 18.30±2.019 10.99±0.734* 17.45±1.238†

All data are expressed as means±SEM

*p<0.05, **p<0.01 vs WT, † p<0.05, †† p<0.01 vs Akita mice
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and β-actin bands were quantified by computerised laser den-
sitometry (ImageQuant software, version 5.1; Molecular Dy-
namics, Sunnyvale, CA, USA).

Statistical analysis The data are expressed as means±SEM.
Statistical analysis was performed by the Student’s t test or
one-way analysis of variance and the Bonferroni test as
appropriate provided by Graphpad Software, Prism 5.0

(www.graphpad.com/prism/Prism.htm). A value of p≤0.05
was considered to be statistically significant.

Results

Physiological variables in Akita and AkitaHnrnpf-Tg mice
Table 1 documents significantly higher blood glucose levels in
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Fig. 1 hnRNP F overexpression upregulates ACE-2 and MasR expres-
sion in mouse kidneys. Immunohistochemical staining of hnRNP F (a),
ACE-2 (b), MasR (c) and ACE (d) expression in kidney sections (×200);
WB (e–h) and RT-qPCR (i–l) of their respective protein and mRNA

levels in freshly isolated RPTs from non-diabetic WT controls, Hnrnpf-
Tg mice (F-Tg), diabetic Akita mice and AkitaHnrnpf-Tg mice (Akita F-
Tg) at week 20. Values are means+SEM corrected to β-actin, n=6.
*p<0.05; **p<0.01; ***p<0.001
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Akita compared with WT mice and Hnrnpf-Tg mice. Overex-
pression of hnRNP F had no effect on blood glucose levels in
Akita Hnrnpf-Tg mice. Systolic BP (SBP), kidney weight
(KW)/BW and KW/tibial length (TL) ratios, GFR and ACR
were all elevated in Akita mice, compared with both WT con-
trols andHnrnpf-Tgmice. HnRNP F overexpression in RPTCs
markedly attenuated these changes in diabetic Akita Hnrnpf-
Tg mice. Furthermore, Akita mice exhibited elevated urinary
AGTandAng II levels, parallel with decreased Ang 1–7 levels,
compared with WT mice. HnRNP F overexpression partially
reduced urinary AGTand Ang II levels, whereas it completely
normalised urinary Ang 1–7 levels—a novel finding.

Effect of hnRNP F overexpression on AGT, ACE, ACE-2
and MasR expression in Akita Hnrnpf-Tg mouse kidneys
Immunostaining revealed that HnRNP F (Fig. 1a) was

overexpressed in RPTCs of Hnrnpf-Tg and Akita Hnrnpf-Tg
mice compared withWTand Akita mice, respectively. ACE-2
(Fig. 1b) and MasR (Fig. 1c) expression was decreased in
Akita mice compared with WT controls and normalised in
Akita Hnrnpf-Tg mice. RPTC ACE (Fig. 1d) expression did
not differ between WT and Hnrnpf-Tg mice, whereas ACE
expression was significantly higher in Akita mice than in WT
controls and was not normalised in Akita Hnrnpf-Tg mice.
WB and RT-qPCR for hnRNP F, ACE-2, MasR and ACE
protein and their mRNA levels (Fig. 1e–l, respectively) con-
firmed these observations.

Effect of hnRNP F overexpression on TGF-β1, TGF-β
RII and TGF-β RI expression in Akita Hnrnpf-Tg mouse
kidneys Immunostaining of TGF-β1 (Fig. 2a) and TGF-βRII
(Fig. 2b),WB of TGF-β1 (Fig. 2d) and TGF-βRII expression
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Fig. 2 hnRNP F overexpression
attenuates TGF-β1 and TGF-β
RII expression in mouse kidneys.
Immunohistochemical staining of
TGF-β1 (a), TGF-β RII (b) and
TGF-β RI (c) expression in
kidney sections (×200), WB (d–f)
and RT-qPCR (g–i) of their
respective protein and mRNA
levels in freshly isolated RPTs
from non-diabetic WT controls,
Hnrnpf-Tg (F-Tg) mice, diabetic
Akita mice and Akita Hnrnpf-Tg
mice (Akita F-Tg) at week 20.
Values are means+SEM
corrected to β-actin, n=6.
*p<0.05; **p<0.01
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(Fig. 2e), and RT-qPCR of Tgf-β1 (Fig. 2g) and Tgf-βrII
(Fig. 2h) mRNA expression showed significantly higher
TGF-β1 and TGF-β RII expression in RPTCs of Akita mice
than in WT controls and Hnrnpf-Tg mice, and they were at-
tenuated in Akita Hnrnpf-Tg mice. In contrast, TGF-β RI
expression was similar in all groups studied (Fig. 2c,f,i).

HnRNP F overexpression suppresses renal fibrosis in Aki-
ta Hnrnpf-Tg mice Akita mice developed renal structural
damage compared with WT and Hnrnpf-Tg mice (ESM
Fig. 1a, PAS staining), including tubular luminal dilatation
with accumulation of cell debris, increased extracellular ma-
trix proteins in glomeruli and tubules, and proximal tubule cell
atrophy. HnRNP F overexpression markedly reversed but

never completely resolved these abnormalities in Akita mice.
We detected significant increases inMasson’s trichrome stain-
ing (Fig. 3a) and immunostaining for collagen type IV
(Fig. 3b), fibronectin 1 expression (Fig. 3c) and collagen type
I (Fig. 3d) in glomerulotubular areas in Akita mice compared
with WT controls and Hnrnpf-Tg mice. These changes were
reduced in AkitaHnrnpf-Tg mice. Quantification of Masson’s
trichrome-stained (ESM Fig. 1b), immunostaining of collagen
IV (Fig. 3e), fibronectin 1 (Fig. 3f) and collagen I (Fig. 3g),
and RT-qPCR quantification of mRNA levels (Fig. 3h–j) con-
firmed their expression.
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Fig. 3 hnRNP F overexpression
attenuates renal fibrosis and
profibrotic gene expression in
mouse kidneys. Masson’s
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immunostaining of collagen IV
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*p<0.05; **p<0.01
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levels in rat RPTCs in vitro RPTCs stably transfected with
pcDNA 3.1/Hnrnpf (RPTC-pcDNA 3.1/Hnrnpf) exhibited
considerably higher levels of hnRNP F (Fig. 4a,b), lower
amounts of AGT (Fig. 4a,c) and a higher amount of ACE-2
(Fig. 4a,d) than non-transfected RPTCs or RPTCs stably
transfected with pcDNA 3.1 (RPTC-pcDNA 3.1).

In contrast, TGF-β1 and TGF-β RII protein levels were
significantly decreased in RPTC-pcDNA 3.1/Hnrnpf com-
pared with non-transfected RPTCs or RPTC-pcDNA 3.1
(p<0.01) (Fig. 4e,f,g, respectively). TGF-β RI protein level
was similar in non-transfected RPTCs, RPTC-pcDNA 3.1 or
RPTC-pcDNA 3.1/Hnrnpf (Fig. 4h).

RT-qPCR of Hnrnpf, Agt, Ace-2, Tgf-β1, Tgf-βrII and
Tgf-βrI mRNA levels confirmed these findings (ESM
Fig. 2a–f).

TGF-β1 signalling and inhibition ofAce-2 gene expression
in rat RPTCs TGF-β1 inhibited rat Ace-2 gene promoter
activity (Fig. 5a), rat Ace-2 mRNA expression (Fig. 5b) and
rat ACE-2 protein level (Fig. 5c) in a concentration-dependent
manner, which was reversed by SB431542 (a TGF-β RI in-
hibitor) (Fig. 5d–f, respectively). Furthermore, TGF-β1 stim-
ulated Smad 2/3 phosphorylation in a concentration- and time-
dependent manner (Fig. 5g) and reversed by SB431542
(Fig. 5h). These data demonstrate that TGF-β1 inhibition of
Ace-2 gene transcription is mediated, at least in part, via
Smad2/3 signalling.

HnRNP F overexpression prevents TGF-β signalling, and
TGF-β inhibition of Ace-2 and induction of fibrotic gene
expression in RPTCs TGF-β1 had no detectable effect on
hnRNP F protein levels (Fig. 6a,b). Intriguingly, hnRNP F
overexpression prevented TGF-β1 stimulation of Smad 2/3
phosphorylation (Fig. 6a,c), TGF-β RII expression (Fig. 6a,
d) and fibronectin 1 expression (Fig. 6a,e). HnRNP F overex-
pression also prevented TGF-β1-induced downregulation of
MasR (Fig. 6a,f) content in RPTCs. Addition of TGF-β1 did
not affect TGF-β RI expression in RPTCs (Fig. 6a,g).

Furthermore, overexpression of hnRNP F prevented the
inhibitory effect of TGF-β1 on ACE-2 protein (Fig. 6a,h)
and Ace-2 mRNA (Fig. 6i) expression in RPTC-pcDNA 3.1/
Hnrnpf.

Localisation of Hnrnpf- and TGF-β1 (or SMAD)-RE in
rat Ace-2 gene promoter To localise the putative DNA-
RE(s) that mediate(s) the action of hnRNP F or TGF-β1 on
Ace-2 gene promoter activity, plasmids containing various
lengths of the rat Ace-2 gene promoter were transiently
transfected into RPTC-pcDNA 3.1 or RPTC-pcDNA 3.1/
Hnrnpf. The activity of pGL4.20-Ace-2 promoter (N-1,091/+
83) and pGL 4.20-Ace-2 promoter (N-499/+83) exhibited re-
spective fivefold and 12-fold increase as compared with the
control plasmid, pGL 4.20 in RPTC-pcDNA 3.1 (Fig. 7a).
Further deletion of nucleotides N-499 to N-241 (pGL 4.20-
Ace-2 promoter [N-240/+83]) significantly reduced the rat
Ace-2 promoter activity. Moreover, the activity of pGL4.20-
Ace-2 promoter (N-1,091/+83) and pGL4.20-Ace-2 promoter
(N-499/+83) was further increased by 1.5–2.0-fold, whereas
the activity of pGL4.20-Ace-2 promoter (N-240/+83) did not
increase in RPTC-pcDNA 3.1/Hnrnpf as compared with
RPTC-pcDNA 3.1 (Fig. 7a). Interestingly, addition of
TGF-β1 inhibited the promoter activity of pGL 4.20-Ace-2
promoter (N-1,091/+83) and did not affect the activity of
pGL 4.20-Ace-2 promoter (N-499/+83) and pGL 4.20-Ace-2
promoter (N-240/+83) in RPTC-pcDNA 3.1 (Fig. 7b).
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Fig. 4 hnRNP F overexpression inhibits AGT, TGF-β1, TGF-β1 RII
and enhances ACE-2 protein expression in RPTCs. Immunoblotting (a)
and quantification of hnRNP F (b), AGT (c) and ACE-2 (d) protein levels
by densitometry in naive RPTCs, RPTC-pcDNA 3.1 or RPTC-pcDNA
3.1/Hnrnpf after a 24 h culture. Immunoblotting (e) and quantification of
TGF-β1 (f), TGF-β RII (g) and TGF-β RI (h) protein levels in rat
RPTCs. Values, corrected to β-actin protein levels, are mean+SEM, n=
3. The experiments were repeated twice. **p<0.01
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However, TGF-β1 had no inhibitory effect on the promoter
activity of these constructs in RPTC-pcDNA 3.1/Hnrnpf
(Fig. 7c).

In contrast, transfection of Hnrnpf siRNA significantly
inhibited the promoter activity of pGL 4.20-Ace-2 promoter
(N-1,091/+83) and pGL 4.20-Ace-2 promoter (N-499/+83)
without affecting the activity of pGL 4.20-Ace-2 promoter
(N-240/+83) in RPTC-pcDNA 3.1 (Fig. 7d). Deletion of the
nucleotides N-401 to N-393 (5′-ggggagagg-3′) in the Ace-2
gene promoter markedly attenuated the promoter activity of
pGL 4.20-Ace-2 promoter (N-1,091/+83) and pGL 4.20-Ace-
2 promoter (N-499/+83) in RPTC-pcDNA 3.1/Hnrnpf
(Fig. 7e). Interestingly, deletion of the putative proximal
SMAD-RE (nucleotides N-511 to N-504 [5′-cagagaca-3′]) or
distal putative SMAD-RE2 (nucleotides N-789 to N-784 [5′-

gagaca-3′]) in the Ace-2 gene promoter partially attenuated
whereas deletion of both REs (nucleotides N-511 to N-504
and nucleotides N-789 to N-784) completely abolished the
inhibitory action of TGF-β1 on pGL 4.20-Ace-2 promoter
(N-1,091/+83) activity in RPTC-pcDNA 3.1 (Fig. 7f). Fur-
thermore, EMSA showed that the double strand DNA frag-
ments, nucleotides N-405 to N-387 (putative Hnrnpf-RE), nu-
cleotides N-518 to N-497 (putative proximal SMAD-RE1) and
nucleotides N-797 to N-776 (putative distal SMAD-RE2) bind
to the nuclear proteins from RPTCs and they could be
displaced by the respective WT DNA fragments, but not by
mutated DNA fragments (Fig. 7g,h, respectively). Important-
ly, addition of anti-hnRNP F and anti-Smad 2/3 antibody in-
duced a supershift of the respective Hnrnpf-RE and SMAD-
REs with the nuclear proteins, respectively (Fig. 7g,h).
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Fig. 5 Human recombinant
TGF-β1 inhibits Ace-2 gene
expression in rat RPTCs. TGF-β1
inhibits rat Ace-2 gene promoter
activity (a) (white bars, pGL4.20;
black bars, pGL4.20-rat Ace-2
promoter [N-1,091/+83]), Ace-2
mRNA (b) and ACE-2 protein (c)
expression in rat RPTCs in a
dose-dependent manner.
SB431542 (a specific TGF-β RI
inhibitor) reversed the
suppressive effect of TGF-β1 on
Ace-2 gene promoter activity (d),
Ace-2 mRNA (e) and ACE-2
protein (f) levels in rat RPTCs.
TGF-β1 stimulated the
phosphorylation of Smad2/3 in a
dose- and time-dependent manner
(g) and reversed it in the presence
of SB431542 (h). Rat Ace-2 gene
promoter activity was measured
by luciferase activity assay.
Values are mean+SEM, n=3.
Similar results were obtained in
three independent experiments.
*p<0.05; **p<0.01, RLU,
relative light units
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Discussion

The present report identifies a novel mechanism by which
hnRNP F prevents hypertension and kidney injury in diabetic
Akita mice, i.e. hnRNP F stimulation of renal Ace-2 gene
transcription and mitigation of the inhibitory effect of
TGF-β1 on Ace-2 gene transcription.

We reported previously that overexpression of hnRNP F
prevents systemic hypertension, and inhibits renal Agt gene
expression and RPTC hypertrophy in diabetic Akita Hnrnpf-
Tg mice [29]. The present paper provides new in vivo and
in vitro evidence that hnRNP F stimulates Ace-2 gene tran-
scription via binding to the DNA-RE of the Ace-2 gene pro-
moter, which is critical for the formation of renal Ang 1–7 and
subsequent expression of its antihypertensive and
renoprotective actions in Akita mice [37].

HnRNP F, a member of the pre-mRNA-binding protein
family [38] regulates gene expression at both the transcrip-
tional and post-transcriptional levels. Indeed, hnRNP F en-
gages in alternative splicing of various genes [39–41] and
associates with TATA-binding protein, RNA polymerase II,
nuclear cap-binding protein complex and various transcrip-
tional factors.[42, 43]

The Akita mouse is an autosomal-dominant model of spon-
taneous type 1 diabetes in which the Ins2 gene is mutated.
Akita mice develop hyperglycaemia and systemic hyperten-
sion, leading to cardiac hypertrophy, left ventricular diastolic
dysfunction, glomerulosclerosis and enhanced oxidative
stress in RPTs, closely resembling those observed in patients
with type 1 diabetes [44, 45].

Our study provides evidence for a novel mechanism for
hnRNP F lowering of SBP: inhibition of intrarenal Agt gene
expression and RAS activation, concomitant with upregula-
tion of the ACE-2/Ang 1–7/MasR axis. Indeed, our results
show that hnRNP F overexpression inhibited renal AGT and
Agt mRNA expression (ESM Fig. 1 c–e), lowered urinary
AGT and Ang II levels and normalised urinary Ang 1–7
levels.

We consistently observed decreased renal ACE-2 expres-
sion in Akita mice as previously reported [23, 24]. Decreased
ACE-2 expression also has been reported in male
streptozotocin (STZ)-induced diabetic mice [46], STZ-
induced diabetic rats [47, 48] and human type 2 diabetic kid-
neys [49, 50].

The precise mechanism bywhich hnRNP F overexpression
leads to upregulation of renal Ace-2 and MasR gene expres-
sion in diabetes remains unclear. One possibility is that
hnRNP F binds to putative Hnrnpf-RE(s) in the Ace-2 and
MasR gene promoters, subsequently enhancing Ace-2 and
MasR gene transcription. This possibility is supported by our
findings that hnRNP F considerably augments the activity of
an Ace-2 gene promoter and that the Hnrnpf siRNA and dele-
tion of the putativeHnrnpf-REmarkedly reduced the rat Ace-2
gene promoter activity in RPTCs. Furthermore, the
biotinylated-labelled Hnrnpf-RE specifically bound to RPTC
nuclear proteins and the addition of anti-hnRNP F antibody
yielded a supershift of biotinylated-labelled Hnrnpf-RE bind-
ing with nuclear proteins in EMSA. These data demonstrate
that hnRNP F binds to the putative Hnrnpf-RE and stimulates
Ace-2 gene transcription. Of note, hnRNP F is not specific for

pcDNA3.1
pcDNA3.1/

HnrnpfpcDNA3.1
hTGF-β1
(ng/ml) 0 0 0 2 2 2 2 2 2

p-Smad2/3
(60 KDa)

Smad2/3
(60 KDa)

β-Actin
(42 KDa)

MasR
(43 KDa)

FN1
(220 KDa)

TGF-β RI
(56 KDa)

TGF-β RII
(70-80 KDa)

hnRNP F
(46 KDa)

ACE-2
(90 KDa)

β-Actin
(42 KDa)

0

1

2

3

4

**NS **

hn
R

N
P

 F
(f

ol
d 

of
 c

on
tr

ol
)

0

1

2

3

*****

T
G

F
-β

 R
II

(f
ol

d 
of

 c
on

tr
ol

)

0

1

2

3

4

5

*****

p-
S

m
ad

2/
3/

S
m

ad
2/

3
(f

ol
d 

of
 c

on
tr

ol
)

0

1

2

3

4

******

M
as

R
(f

ol
d 

of
 c

on
tr

ol
)

0
1
2
3
4
5
6
7

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

****

RPTC
pcDNA3.1

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

RPTC
pcDNA3.1

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

RPTC
pcDNA3.1

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

RPTC
pcDNA3.1

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

RPTC
pcDNA3.1

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

RPTC
pcDNA3.1

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

RPTC
pcDNA3.1

RPTC
pcDNA3.1

RPTC
pcDNA3.1/

Hnrnpf

RPTC
pcDNA3.1

**

F
N

1
(f

ol
d 

of
 c

on
tr

ol
)

0

1

2

NS NS
NS

T
G

F
-β

 R
I

(f
ol

d 
of

 c
on

tr
ol

)

0

0.5

1.0

1.5

2.0

2.5 ****

A
C

E
-2

(f
ol

d 
of

 c
on

tr
ol

)

0

50

100

150

200
****

A
ce

-2
 m

R
N

A
(%

 o
f c

on
tr

ol
)

a

c

b

d

e

h

g

i

f

Fig. 6 hnRNP F overexpression prevents TGF-β1 signalling, stimula-
tion of profibrotic gene and inhibition of ACE-2 expression in rat RPTCs.
(a) Immunoblotting of hnRNP F, Smad2/3 phosphorylation, TGF-β RII,
TGF-β RI, fibronectin 1 (FN1), MasR and ACE2 levels in naive RPTCs,
RPTC-pcDNA 3.1 or RPTC-pcDNA 3.1/Hnrnpf in the presence or ab-
sence of TGF-β1 (2 ng/ml) after 24 h culture. Quantification of the level
of hnRNP F (b), Smad2/3 phosphorylation (c), TGF-β RII (d), fibronec-
tin 1 (e), MasR (f), TGF-β RI (g), ACE-2 (h) and Ace-2 mRNA (i).
Values are mean+SEM, n=3. Similar results were obtained in three in-
dependent experiments. *p<0.05; **p<0.01
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Fig. 7 Identification of Hnrnpf-RE and SMAD-RE in the Ace-2 gene
promoter. (a) Luciferase activity of the plasmid containing various
lengths of Ace-2 gene promoter in RPTC-pcDNA 3.1 (white bars) and
in RPTC-pcDNA 3.1/Hnrnpf (black bars); (b) in RPTC-pcDNA 3.1±
TGF-β1 (white bars, without hTGF-β1; black bars, with 2 ng/ml
hTGF-β1); and (c) in RPTC-pcDNA3.1/Hnrnpf±TGF-β1 (white bars,
without hTGF-β1; black bars, with 2 ng/ml hTGF-β1); (d) in RPTC-
pcDNA 3.1±Hnrnpf siRNA (white bars, treated with 50 nmol/l scram-
bled siRNA; black bars, treated with 50 nmol/l Hnrnpf siRNA), cultured
in normal glucose media for 24 h. (e) Promoter activity of the Ace-2 gene
±Hnrnpf-RE in RPTC-pcDNA 3.1 (white bars) and in RPTC-pcDNA
3.1/Hnrnpf (black bars) or (f)±SMAD-REs in RPTC-pcDNA 3.1 in the
absence or presence of TGF-β1 (white bars, without hTGF-β1; black

bars, with 2 ng/ml hTGF-β1). Values are mean+SEM, n=6. The exper-
iments were repeated twice. *p<0.05; **p<0.01. EMSA and supershift
EMSA of the putative biotinylated Hnrnpf-RE (g) and biotinylated
SMAD-REs (h) with RPTC nuclear proteins±excess unlabelled WT
Hnrnpf-RE or mutated Hnrnpf-REs (M1 to M4 are mutants of Hnrnpf-
RE with nucleotides mutated or deleted in the binding motif as shown in
ESM Table 2) orWT SMAD-RE or mutant SMAD-REs (SMAD-RE1 [M1
and M2] and SMAD-RE2 [M1 and M2] are mutants of respective SMAD-
RE1 and SMAD-RE2 with nucleotides mutated in the binding motif as
shown in ESM Table 2). Rabbit IgG or rabbit anti-hnRNP F or anti-
Smad2/3 antiserum was added to the reaction mixture and incubated for
30 min on ice before incubation with the biotinylated probe. Results are
representative of three independent experiments. SS, supershift band
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Ace-2 gene expression but also affects the expression of Agt
[25] and other genes [51, 52].

Currently, little is known about the mechanisms by which
TGF-β1 downregulates renal Ace-2 gene expression in diabe-
tes. Chou et al [53] reported that SB431542 inhibited high
glucose and TGF-β1 inhibition of Ace-2 mRNA expression
in cultured NRK-52 cells. Our findings confirm these obser-
vations. Our present studies also demonstrate that TGF-β1
inhibits the activity of pGL 4.20-rat Ace-2 promoter (N-1,
091/+83) and that deletion of putative SMAD-REs in the
Ace-2 gene promoter mitigates the inhibitory effect of
TGF-β1 on the Ace-2 gene promoter activity. Furthermore,
biotinylated-labelled SMAD-REs bound to RPTC nuclear pro-
teins and the addition of anti-Smad2/3 antibody yielded a
supershift of labelled DNAwith nuclear proteins. These data
demonstrate that the inhibitory effect of TGF-β1 on Ace-2
gene transcription is mediated, at least in part, via the
SMAD-REs in the Ace-2 gene promoter.

Intriguingly, hnRNP F overexpression prevented TGF-β1
signalling on Smad2/3 phosphorylation and on TGF-β1 inhi-
bition of Ace-2 gene promoter activity in RPTCs. At present,
the underlying molecular mechanism of how hnRNP F pre-
vents TGF-β1 inhibition of Ace-2 gene transcription is not yet
defined. One possibility might be that hnRNP F directly in-
hibits Tgf-β1rII gene expression as shown in our studies. The
second possibility is that hnRNP F might interfere or prevent
the interaction of Smad2/3 with other transcriptional factor(s)
to inhibit Ace-2 gene transcription. Clearly, more studies are
needed to define the molecular interaction of hnRNP F with
Smad2/3 on Ace-2 gene transcription.

In summary, the present study suggests a major role for
hnRNP F in attenuating systemic hypertension and renal fi-
brosis in experimental diabetes and possibly in diabetic hu-
man kidneys. Our observations raise the possibility that selec-
tive targeting of this antihypertensive and anti-fibrotic protein
may represent a novel approach for preventing or reversing
the pathological manifestations of DN, particularly tubular
fibrosis.
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