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Abstract
Aims/hypothesis The mechanisms for diet-induced
intramyocellular lipid accumulation and its association with
insulin resistance remain contentious. In a detailed time-
course study in rats, we examined whether a high-fat diet
increased intramyocellular lipid accumulation via alterations
in fatty acid translocase (FAT/CD36)-mediated fatty acid
transport, selected enzymes and/or fatty acid oxidation, and
whether intramyocellular lipid accretion coincided with the
onset of insulin resistance.
Methods We measured, daily (on days 1–7) and/or weekly
(for 6 weeks), the diet-induced changes in circulating sub-
strates, insulin, sarcolemmal substrate transporters and trans-
port, selected enzymes, intramyocellular lipids, mitochondrial
fatty acid oxidation and basal and insulin-stimulated sarco-
lemmal GLUT4 and glucose transport. We also examined
whether upregulating fatty acid oxidation improved glucose
transport in insulin-resistant muscles. Finally, inCd36-knockout
mice, we examined the role of FAT/CD36 in intramyocellular

lipid accumulation, insulin sensitivity and diet-induced glucose
intolerance.
Results Within 2–3 days, diet-induced increases occurred
in insulin, sarcolemmal FAT/CD36 (but not fatty acid bind-
ing protein [FABPpm] or fatty acid transporter [FATP]1 or
4), fatty acid transport and intramyocellular triacylglycer-
ol, diacylglycerol and ceramide, independent of enzymatic
changes or muscle fatty acid oxidation. Diet-induced in-
creases in mitochondria and mitochondrial fatty acid oxi-
dation and impairments in insulin-stimulated glucose
transport and GLUT4 translocation occurred much later
(≥21 days). FAT/CD36 ablation impaired insulin-
stimulated fatty acid transport and lipid accumulation, im-
proved insulin sensitivity and prevented diet-induced glu-
cose intolerance. Increasing fatty acid oxidation in insulin-
resistant muscles improved glucose transport.
Conclusions/interpretations High-fat feeding rapidly in-
creases intramyocellular lipids (in 2–3 days) via insulin-
mediated upregulation of sarcolemmal FAT/CD36 and fatty
acid transport. The 16–19 day delay in the onset of insulin
resistance suggests that additional mechanisms besides
intramyocellular lipids contribute to this pathology.
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GPAT Glycerol-3-phosphate acyltransferase
FAT/CD36 Fatty acid translocase
FATP Fatty acid transporter
FABPpm Fatty acid binding protein
IMF Intermyofibrillar
KO Knockout
mtDNA Mitochondrial DNA
PGC-1α Peroxisome proliferator-activated receptor γ

co-activator 1α
SS Subsarcolemmal
WT Wild type

Introduction

Skeletal muscle insulin resistance has been associated
with lifestyle factors, including diet. However, the
mechanisms involved have remained the subject of con-
siderable debate. Recent work has focused on insulin
resistance induced by changes in intramyocellular lipid
metabolism [1–7], possibly due to reductions in peroxi-
some proliferator-activated receptor γ co-activator 1α
(PGC-1α) and mitochondrial content [8–10], and/or in-
complete fatty acid oxidation due to mitochondrial fatty
acid oversupply [11, 12]. Yet these putative mechanisms
remain controversial [13–15]. Alternatively, enhanced
transport of fatty acids into muscle could account for
a diet-induced increase in intramyocellular lipid accumu-
lation and the induction of skeletal muscle insulin
resistance.

Fatty acid entry into skeletal muscle is highly regulated
[16]. Among fatty acid transporters, fatty acid translocase
(FAT/CD36) is key; it has a high rate of fatty acid transport
[17] and, like GLUT4, is insulin sensitive [16]. Yet in insulin-
resistant human and rodent muscle, FAT/CD36, unlike
GLUT4, is permanently relocated to the sarcolemma via un-
known mechanisms [16]. It has been suggested that persistent
diet-induced increases in insulin may be key to repositioning
FAT/CD36 to the sarcolemma, thereby increasing fatty acid
transport and intramyocellular lipid accumulation [18].
Several groups have now begun to question the relationship
between intramyocellular lipid accumulation and the onset of
insulin resistance in muscle [19–23].

To understand the complex series of molecular and bio-
chemical events that develop in muscle with high-fat feeding
we determined the daily and/or weekly changes in variables
involved in regulating fatty acid transport and metabolism,
as well as glucose transport. Additional studies were per-
formed in Cd36-knockout (KO) mice to identify the role
of FAT/CD36, and its insulin dependence, in regulating fatty
acid transport and metabolism.

Methods

Male Sprague Dawley rats (Crl:SD) (100–125 g) were
purchased (Charles River, St Constant, QC, Canada). Wild-
type (WT) and Cd36-KO mice (C57Bl/6: 26.3±0.9 g and
25.9±0.8 g, respectively; a gift from M. Febbraio, Cleveland
Clinic, Cleveland, OH, USA) and WT and Akt2-KO mice
(C57Bl/6: 20.3±0.6 g and 16.9±0.6 g, respectively; a gift
from Pfizer, New York, NY, USA) were bred on site [24].
Mice were age-matched in the experiments. All animals were
housed in a temperature-regulated environment (20°C) with a
reversed 12:12 h light–dark cycle. The principles of laboratory
animal care were followed (as in NIH publication no. 85–23,
revised 1985, available at http://grants1.nih.gov/grants/olaw/
references/phspol.htm) and the experiments were approved by
the Animal Care Committee, University of Guelph.

Experimental design

Upon arrival, animals were assigned alternately to either a
chow or high fat diet group. Experimenters were necessarily
aware of group assignments, as this information was required
for analytical purposes. No animals were excluded from the
experiments. Rats were fed isoenergetically for 6 weeks with
chow (10% energy from fat, D05092806BM; n=410) or a
high-fat diet (60% energy from fat, D05120801; n=417)
(Research Diets, New Brunswick, NJ, USA). Body weight
was monitored every second day. In fasted rats, tail vein blood
andmuscle samples were obtained for the first 7 days (high fat
only) and weekly thereafter (chow and high fat) for 6 weeks.

During the course of the study, highly oxidative (red tibialis
anterior [RTA] and red gastrocnemius [RG]) and highly gly-
colytic (white tibialis anterior [WTA] and white gastrocnemi-
us [WG]) rat hindlimb muscles were sampled from
anaesthetised rats (sodium pentobarbital, 6 mg/100 g body
weight i. p.; Ceva Sante Animale, Libourne, France), frozen
and stored (−80°C). Muscles were analysed for mitochondrial
DNA (mtDNA), proteins and intramyocellular lipids.
Substrate transporters were measured in homogenates and sar-
colemma. Functional measurements, including fatty acid and
glucose transport (basal and insulin-stimulated), mitochondri-
al fatty acid oxidation and glucose tolerance were also obtain-
ed. Additionally, we examined in WT and Cd36-KO mice the
effects of insulin-induced FAT/CD36 and GLUT4 transloca-
tion, fatty acid and glucose transport, and fatty acid and glu-
cose metabolism. In WT and Akt2-KO mice we examined the
effects of insulin on FAT/CD36 translocation and fatty acid
transport.

Analytical procedures

Serum samples were analysed for insulin, glucose, triacylglyc-
erol and fatty acids (see electronic supplementary material
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[ESM] for further details). Basal and adrenaline (epinephrine)-
stimulated fatty acid release from adipose tissues was per-
formed as previously described [25].

We determined mtDNA as previously described [26].
Western blotting was used to measure proteins [27, 28] (see
ESM for further details). Insulin and radiolabelled substrates
were purchased (see ESM for further details).

Fatty acid transport and transporters, and intramyocellular
lipids In overnight-fasted rats sarcolemmal FAT/CD36
(basal and insulin-stimulated) and fatty acid transport
were determined. Intramyocellular lipids were deter-
mined in freeze-dried muscle [17, 27, 28] (see ESM
for further details).

Palmitate oxidation by isolated mitochondria Palmitate
oxidation and carnitine palmitoyltransferase 1 (CPTI) activity
were measured in isolated subsarcolemmal (SS) and
intermyofibrillar (IMF) mitochondria [26, 27] (see ESM for
further details).

Glucose tolerance, glucose transport, plasmalemmal
GLUT4, Akt2 and AS160Glucose tolerance was determined
in overnight-fasted rats. The insulin sensitivity of glucose
transport was determined in basal and insulin-stimulated per-
fused muscles [26]. An insulin injection was performed to
examine phosphorylation of protein kinase B (Akt)-(ser473)
and Akt substrate of 160 kDa (AS160) (see ESM for further
details).

Effects of improving palmitate oxidation on glucose trans-
port In insulin-resistant muscle, insulin-stimulated glucose
transport was examined when fatty acid oxidation had been
increased by Pgc-1α (also known as Ppargc1a) transfection
(see ESM for further details).

Studies in Cd36-KO and Akt2-KO mice We examined
insulin-stimulated sarcolemmal FAT/CD36 and fatty acid
transport in WT and Cd36-KO mice, and in WT and Akt2-
KOmice, and lipid and glucose metabolism inCd36-KOmice
[27–29]. Glucose tolerance was determined in chow- and fat-
fed WT and Cd36-KO mice (weeks 0, 3 and 6) (see ESM for
further details).

Statistics

Data were analysed using analyses of variance and Fisher’s
least significant difference (LSD) post hoc test when appro-
priate. For some comparisons Student’s t tests were appropri-
ate. Data are reported as mean±SEM.

Results

In rats, we examined the chronological changes induced by a
high-fat diet (ESM Table 1) in molecular and biochemical
events involved in regulating: (1) skeletal muscle fatty acid
transport and metabolism; and (2) glucose transport. We also
examined: (3) the temporal relationship of intramyocellular
lipid accretion with the onset of muscle insulin resistance.
These studies were supplemented with studies in genetically
altered mice. Time-series westerns blots are shown in ESM
Fig. 1.

Basal metabolic characteristics in chow- and fat-fed rats

Weight gains were comparable in pair-fed chow- and fat-fed
animals (Fig. 1a). In fat-fed animals: insulin (Fig. 1b) and
glucose (Fig. 1c) were increased after 2 days and 3 weeks,
respectively; circulating levels of triacylglycerol were unal-
tered (Fig. 1d); but circulating levels of fatty acids (Fig. 1e)
were reduced from day 2 onwards. These rapid fatty acid
reductions were not attributable to altered adipose tissue fatty
acid handling, as no changes were observed in the insulin-
mediated suppression of plasma fatty acids (data not shown),
hepatic fatty acid transport (data not shown) or fatty acid re-
lease from adipose tissue depots (Fig. 1f).

High-fat diet-induced changes in muscle fatty acid
transport and lipid metabolism

Diet-induced changes in FAT/CD36 and fatty acid
transport in rats In muscle, no diet-induced changes oc-
curred in the protein expression or sarcolemmal content of select-
ed fatty acid transporters (fatty acid binding protein [FABPpm],
fatty acid transporter [FATP]1 or 4; ESM Fig. 2a–f), nor in
FAT/CD36 protein expression (Fig. 2a). However, the high-fat
diet provoked rapid increases in sarcolemmal FAT/CD36
(Fig. 2b) and palmitate transport (Fig. 2c) after 2 days (red
muscle) and 3 days (white muscle). Changes in these two
variables were highly correlated (r≥0.92, ESM Fig. 3a), as
were the increased rates of fatty acid transport and reductions
in circulating fatty acids (r=−0.84, ESM Fig. 3b).

Insulin sensitivity of FAT/CD36 translocation and its
diet-induced impairment in rats Circulating insulin was
highly correlated with sarcolemmal FAT/CD36 content
(r≥0.92, Fig. 3a) and fatty acid transport (r≥0.85, ESM
Fig. 3c). Insulin administration (bolus) induced the transloca-
tion of FAT/CD36 throughout the 6 weeks in chow-fed rats
(Fig. 3b), but this was impaired in fat-fed rats. Specifically,
after 1 week (red muscle) or 2 weeks (white muscle) of high-
fat feeding, insulin failed to increase sarcolemmal FAT/CD36
beyond that induced by the high-fat diet (Fig. 3c).
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Diet-induced changes in intramyocellular lipids in rats To
determine the consequences of rapid increases in fatty acid
transport we examined intramyocellular lipids. In concert with
temporal changes in fatty acid transport, intramyocellular tri-
acylglycerol (Fig. 4a), diacylglycerol (Fig. 4b) and ceramide
accumulation (Fig. 4c) was rapidly increased (red muscle,
2 days; white muscle, 3–4 days). These changes were associ-
ated with increases in selected fatty acids, including 16:0,
16:1, 18:0, 18:1 and 18:2 (ESM Table 2 and ESM Figs 4–6).

The rapid diet-induced changes in intramyocellular lipids
were not related to changes in selected enzymes, as these
remained unaltered (diacylglycerol acyltransferase 2
[DGAT2], Fig. 4d), or were decreased after 1 week (white
muscle) and 3 weeks (red muscle) (glycerol-3-phosphate acyl-
transferase [GPAT], Fig. 4e). In contrast, intramyocellular lip-
id accumulation in both red and white muscle was correlated
with fatty acid transport (r=0.60–0.92) (Fig. 4f).

Diet-induced changes in fatty acid oxidation and
mitochondrial biogenesis in rats Increases in intramyocellular

lipids were not attributable to mitochondrial dysfunction, as
2 weeks of high-fat feeding increased fatty oxidation by red
muscle IMF (Fig. 5a) and SSmitochondria (Fig. 5b), indepen-
dent of changes in CPTI activity (Fig. 5c, d). Diet-induced
increases in PGC-1α protein occurred after 2 weeks (red mus-
cle only) (Fig. 5e), while DNA copy number was increased
after 3 weeks (red muscle) and 6 weeks (white) (Fig. 5f).
Based on the relative muscle content of SS and IMF mito-
chondria [30], and the increase in muscle mitochondria
(Fig. 5f), we calculated that there was a diet-induced increase
in whole-muscle fatty acid oxidation after 3 weeks (red mus-
cle) and 5 weeks (white muscle) (Fig. 5g).

Cd36-KO and Akt2-KO mice demonstrate that fatty acid
transport and intramyocellular lipid accumulation are
insulin-, FAT/CD36- and Akt2-dependent To establish the
role of insulin on FAT/CD36, we examined the effect of insu-
lin in the muscle of Cd36-KO and Akt2-KO mice. Insulin
stimulated fatty acid transport in WT mice by inducing the
translocation of FAT/CD36 to the sarcolemma (Fig. 6a), via
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Akt2 activation (Fig. 6b). In Cd36-KO mice, reduced fatty
acid transport (Fig. 6a) was associated with reductions in
intramyocellular lipids (Fig. 6c), basal and insulin-stimulated
fatty acid esterification (Fig. 6d), and basal and caffeine-
stimulated fatty acid oxidation (Fig. 6e).

Diet-induced skeletal muscle insulin resistance

Diet-induced changes in insulin-stimulated GLUT4
translocation and glucose transport in rats After 3 weeks
of high-fat feeding, whole-body glucose tolerance (Fig. 7a),
insulin-stimulated glucose transport (Fig. 7b, c) and GLUT4

translocation, but not GLUT4 expression (Fig. 7d), were im-
paired (Fig. 7e, f). Diet-induced impairments in GLUT4 trans-
location did not coincide with concurrent impairments in in-
sulin signalling (Fig. 7g–l), as in white muscle only, there
were diet-induced increases in Akt2 (week 4) and AS160 pro-
teins (week 1) (Fig. 7g, j). Concurrently, insulin-stimulated
Akt phosphorylation (ser473), although somewhat reduced,
was not significantly altered (p>0.05, Fig. 7h, i). Insulin-
stimulated AS160 phosphorylation was reduced under basal
(red muscle, week 1) and insulin-stimulating conditions (red
muscle, week 2; white muscle, week 1) (Fig. 7k, l), 2 weeks
prior to the onset of insulin resistance.
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Cd36-KO mice display improved insulin sensitivity and
resistance to diet-induced impairment in glucose tolerance
We examined sarcolemmal GLUT4, glucose transport and
glucose tolerance inCd36-KOmice in which intramyocellular
lipids are reduced (see Fig. 4c). In Cd36-KO mice, insulin-
stimulated sarcolemmal GLUT4 content (Fig. 8a), and glu-
cose transport (Fig. 8b) and oxidation (Fig. 8c) were in-
creased. With high-fat feeding, the impaired glucose tolerance
observed from week 3 onwards inWTmice was not observed
in Cd36-KO mice (Fig. 8d).

Marked delay between alterations in intramyocellular
lipids and insulin resistance

In both muscle types there was a striking 16–19 day delay be-
tween the rapid (2–3 days), diet-induced increases in selected
aspects of lipid metabolism and the onset of insulin resistance
(3 weeks) (Fig. 9). In red muscle compared with white muscle,
the rapid increases in fatty acid transport and intramyocellular
lipid accumulation occurred 1–2 days earlier and were greater.
In addition, fatty acid oxidation upregulation occurred 2 weeks
earlier (red muscle, week 3; white muscle, week 5).
Nevertheless, muscle insulin resistance occurred at the same
time (week 3) in both muscle types (see Fig. 7b, c, e, f).

Interestingly, in diet-induced insulin-resistant muscle at 4 weeks,
a PGC-1α-induced upregulation of fatty acid oxidation im-
proved insulin-stimulated glucose transport (ESM Fig. 7).

Discussion

We have shown that, independent of changes in either fatty
acid oxidation or selected lipid metabolism enzymes, a high-
fat diet very rapidly increases intramyocellular lipids
(2–3 days), concurrent with rapid increases, within 2–3 days,
in insulin, sarcolemmal FAT/CD36 and fatty acid transport.
These effects in lipid metabolism preceded the onset of muscle
insulin resistance by 16–19 days.

High-fat-diet-induced increase in insulin, plasmalemmal
FAT/CD36, fatty acid transport and intramyocellular
lipids

Our present study and others have observed rapid (≤7 days)
increases in insulin (+60 to +100%) induced by a high-fat diet
[18, 31, 32]. The dietary-associated mechanism(s) for these
rapid insulin increases remain undefined. It is possible that
enhanced insulin secretion is induced by dietary fats via their
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stimulation of gastric inhibitory polypeptide (GIP), which has
potent insulinotropic effects on beta cells [33]. Alternatively,
enhanced insulin secretion may be induced by dietary fatty
acids via a FAT/CD36-dependent process in pancreatic beta
cells (MIN6) [34]. Finally, the rapid development of insulin
resistance in liver and adipose tissues, which occurs several
weeks prior to muscle insulin resistance [21, 32, 35], may also
contribute to the early insulin increase. In view of the high
correlations between circulating insulin and sarcolemmal
FAT/CD36 (r≥ 0.92), and the insulin sensitivity of
FAT/CD36-mediated fatty acid transport, it appears that the
diet-induced increase in insulin regulates the permanent redis-
tribution of FAT/CD36 to the sarcolemma. The concurrent
upregulation of fatty acid transport may account for the con-
comitant reduction in circulating fatty acids (r≥−0.84), as he-
patic and adipose tissue fatty acid handling were not altered.

Diet-induced increases in intramyocellular triacylglycerol,
diacylglycerol and ceramide occur much more rapidly
(2–3 days) (present study, [18]) than has previously been
recognised. Yet we and others have shown that neither chang-
es in selected lipid metabolism enzymes nor fatty acid oxida-
tion can account for rapid intramyocellular lipid accumulation
(present study, [19, 36–38]). Instead, we found that, just as in
human obesity and type 2 diabetes [36, 39, 40], fatty acid

transport is highly correlated with the accumulation of
intramyocellular lipids (r=0.60–0.92). Moreover, our present
studies in Cd36-KO mice demonstrate a central role for
FAT/CD36 in intramyocellular lipid accumulation.

Diet-induced insulin resistance of FAT/CD36 and GLUT4

With high-fat feeding, FAT/CD36 insulin sensitivity became
impaired several weeks before the onset of GLUT4 insulin
resistance. This might suggest that FAT/CD36 is more insulin
sensitive than GLUT4. Nevertheless, after ≥3 weeks the
GLUT4 and FAT/CD36 subcellular localisations were juxta-
posed, with GLUT4 being compartmentalised intracellularly
and FAT/CD36 being retained at the sarcolemma. Insulin sig-
nalling via the phosphoinositide 3-kinase (PI3)–kinase–Akt2
pathway is required to increase sarcolemmal FAT/CD36 (pres-
ent study, [41]), just as this is required for GLUT4 transloca-
tion. However, given the juxtaposed subcellular repositioning
of FAT/CD36 and GLUT4 in insulin-resistant muscle, their
signalling and/or trafficking diverge at some point. AS160 is
discounted as impaired FAT/CD36 insulin insensitivity was
temporally dissociated from impaired insulin-stimulated
AS160 phosphorylation. Substrate transporter selectivity
may not necessarily be modulated at the level of signalling,
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but may occur at the level of trafficking (i.e. via soluble NSF
attachment protein receptor [SNARE] proteins), particularly
as vesicle associated membrane protein (VAMP)4 and 7 have
been found to discriminate between FAT/CD36 and GLUT4
traffic, respectively [42].

FAT/CD36 contributes to the regulation of insulin-
stimulated glucose transport

In Cd36-KO mice, reductions in intramyocellular lipids were as-
sociated with increased insulin-stimulated glucose transport (pres-
ent study, [28, 43]). In addition, a high-fat diet did not impair
glucose tolerance (present study) or glucose use in Cd36-KO
mice [44], and FAT/CD36 ablation mitigated against diet-
induced selected metabolic changes [45]. Thus, by limiting
FAT/CD36-associated fatty acid transport and/or intramyocellular
lipid accumulation, insulin sensitivity is preserved.

Diet-induced changes in insulin resistance, lipid
metabolism and mitochondrial variables

It is well known that fat quality can influence insulin sensitiv-
ity. However, it is unclear howmuch dietary monounsaturated
fat (%) is required to counterbalance the reduction in muscle
insulin sensitivity induced by dietary saturated fatty acids. In
our study, the high-fat diet did induce insulin resistance,

although its magnitude may have been attenuated by dietary
monounsaturated fats.

Diet-induced increases in intramyocellular triacylglycerol,
diacylglycerol and ceramide (present study, [21, 23]), were
not attributable to reductions in fatty acid oxidation, as this
was unaltered for at least 3–5 weeks. Thereafter, it was upreg-
ulated because of increases in mitochondrial content and mi-
tochondrial fatty acid oxidation. When we increased muscle
fatty acid oxidation by overexpressing PGC-1α in insulin-
resistant muscle from either Zucker obese rats [27] or high-
fat-fed rats (present study), insulin-stimulated glucose trans-
port was increased. This suggests that the upregulation of fatty
acid oxidation observed in fat-fed rats (present study, [21, 23])
may be adaptive to limit further impairment in glucose
transport.

Long delay between intramyocellular lipid accumulation
and insulin resistance

Although intramyocellular lipids have frequently been linked
with the onset of insulin resistance, this relationship has re-
cently been questioned [20–23]. In our study, diet-induced
impairments in glucose tolerance and insulin-stimulated
GLUT4 translocation and glucose transport occurred
16–19 days after increases in intramyocellular diacylglycerol
and ceramide. Moreover, the intramyocellular diacylglycerol
and ceramide content observed at the onset of insulin resis-
tance (week 3) had been attained 16–19 days earlier. Clearly,
muscle insulin resistance, if it is induced via intramyocellular
lipid accumulation, requires considerable time to develop, and
likely involves additional mechanisms that remain to be
identified.

Are studies of insulin resistance in rodents relevant
to humans?

Direct comparison between so-called high-fat studies in ro-
dents and/or humans are difficult as high-fat diets can differ
with respect to the content of fat, their fatty acid composition
(saturated vs unsaturated) and the use of various supplements,
all of which may have separate and independent effects [46,
47]. Thus, whether the present observations in fat-fed rats can
be applied to humans is perhaps uncertain. Although there is
disagreement about whether the increase in muscle fatty acid
oxidation observed in insulin-resistant rat muscle (present
study, [15, 48]) is also observed in human insulin resistance
(obesity and type 2 diabetes) [13, 14], a recent analysis by
Holloszy [13] concluded that ‘most of the studies comparing
fat oxidation in insulin-sensitive and insulin-resistant individ-
uals have shown that fat oxidation is higher in T2DM patients
and obese insulin-resistant individuals than in insulin-
sensitive control subjects’ [13].
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The effects of a high-fat diet on FAT/CD36 in humans are
equivocal, as muscle FAT/CD36 protein expression and/or its
sarcolemmal content may or may not be increased [31, 49,
50]. Nevertheless, there are very similar relationships between
circulating insulin and sarcolemmal FAT/CD36 in fat-fed rats
(Fig. 3a, r≥0.92) and insulin-resistant humans (r=0.80,
unpublished data), and between fatty acid transport and
intramyocellular triacylglycerol in fat-fed rats (Fig. 4f,
r≥0.87) and insulin-resistant humans (r=0.98, [39]). This in-
dicates that in fat-fed rodent models of insulin resistance and
human insulin resistance there is considerable consistency in:
(1) the insulin-associated increases in sarcolemmal
FAT/CD36; and (2) the positive relationship between
FAT/CD36-mediated fatty acid transport and intramyocellular
lipid accumulation.

Experimental caveats

We controlled body weights in the two groups via pair-feed-
ing. We acknowledge that this does not imply that body com-
positions between the groups were comparable. Also, in the
present study we supplemented our studies with ex vivo stud-
ies. We recognise that these cannot fully mimic the in vivo
situation. Nevertheless, ex vivo studies are commonly used to
derive possible mechanistic explanations for in vivo
observations.

Summary

We found that, independent of changes in fatty acid oxidation
and selected enzymes, a high-fat diet induced a very rapid,
insulin-associated increase in sarcolemmal FAT/CD36 and
fatty acid transport (2–3 days), which accounted for the very
rapid intramyocellular accumulations of triacylglycerol, diac-
ylglycerol and ceramide. However, it appears that other mech-
anisms besides intramyocellular accumulations contribute to
the onset of insulin resistance, as rapid intramyocellular lipid
accumulations (2–3 days) preceded the onset of diet-induced
insulin resistance by 16–19 days.
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