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Abstract
Aims/hypothesis Obesity increases the risk of cardiovascular
disease and type 2 diabetes, partly through reduced insulin-
induced microvascular vasodilation, which causes impairment
of glucose delivery and uptake. We studied whether
perivascular adipose tissue (PVAT) controls insulin-induced
vasodilation in human muscle, and whether altered properties
of PVAT relate to reduced insulin-induced vasodilation in
obesity.
Methods Insulin-induced microvascular recruitment was
measured using contrast enhanced ultrasound (CEU), before
and during a hyperinsulinaemic–euglycaemic clamp in 15
lean and 18 obese healthy women (18–55 years). Surgical

skeletal muscle biopsies were taken on a separate day to study
perivascular adipocyte size in histological slices, as well as to
study ex vivo insulin-induced vasoreactivity in microvessels
in the absence and presence of PVAT in the pressure myo-
graph. Statistical mediation of the relation between BMI and
microvascular recruitment by PVAT was studied in a media-
tion model.
Results Obese women showed impaired insulin-induced mi-
crovascular recruitment and lower metabolic insulin sensitiv-
ity compared with lean women. Microvascular recruitment
was a mediator in the association between obesity and insulin
sensitivity. Perivascular adipocyte size, determined in skeletal
muscle biopsies, was larger in obese than in lean women, and
statistically explained the difference in microvascular recruit-
ment between obese and lean women. PVAT from lean wom-
en enhanced insulin-induced vasodilation in isolated skeletal
muscle resistance arteries, while PVAT from obese women
revealed insulin-induced vasoconstriction.
Conclusions/interpretation PVAT from lean women enhances
insulin-induced vasodilation and microvascular recruitment
whereas PVAT from obese women does not. PVAT adipocyte
size partly explains the difference in insulin-induced micro-
vascular recruitment between lean and obese women.
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Introduction

Arterioles, capillaries and venules make up the microcircula-
tion. Important functions of the microcirculation are to dy-
namically optimise nutrient and oxygen supply to tissues,
and to regulate peripheral resistance [1, 2]. Arterioles regulate
flow towards different sites by changing tone [1]. One of the
hallmarks of obesity is reduced vasoreactivity, increasing BP
and insulin resistance through increased peripheral resistance
and decreased delivery of insulin and glucose [3, 4].

Insulin regulates perfusion in the muscle microcircu-
lation, stimulating vasodilation through activation of the
phosphoinositide 3-kinase–Akt–endothelial nitric oxide
synthase (PI3k–Akt–eNOS) pathway, and concomitantly
enhancing vasoconstriction through activating the extra-
cellular signalling regulated kinase 1/2–endothelin 1
(ERK 1/2–ET1) pathway [3]. In insulin-sensitive indi-
viduals, activation of the vasodilator pathway dominates,
increasing muscle perfusion during hyperinsulinaemia,
so-called ‘microvascular recruitment’. In muscle, this
augments insulin-stimulated glucose uptake [4–6].
Insulin-induced microvascular recruitment is blunted in
insulin-resistant states such as obesity, and in turn con-
tributes to insulin resistance [5, 7, 8]. Why insulin-
induced microvascular recruitment is blunted in obesity
is unclear.

We recently identified perivascular adipose tissue (PVAT)
around skeletal muscle resistance arteries in mice as a new
depot of ectopic adipose tissue, and proposed a regulatory role
of PVAT in muscle perfusion and insulin sensitivity [9, 10]. In
mice, we demonstrated that ex vivo, PVAT exerts paracrine
effects on muscle resistance arteries [11]. These paracrine ef-
fects enhance insulin-induced vasodilation in lean mice, are
mediated by adipokines and are abolished in obesity [11]. The
anticontractile effect of healthy PVAT extends previous find-
ings that PVAT controls vascular smooth muscle contractility
[11–15]. Changes in PVAT function in obesity may be caused
by inflammation [13, 16, 17]. Whether PVAT in the muscle
microcirculation enhances insulin-induced vasodilation and
microvascular recruitment in insulin-sensitive humans is
unknown.

In this study, we hypothesised that PVAT influences
insulin-induced vasodilation in the skeletal muscle microcir-
culation and that its effect differs between lean and obese
individuals.

Methods

Participants A total of 15 lean (BMI 18–25 kg/m2) and 18
obese (BMI >30 kg/m2) female volunteers participated in this
study. Because of the different adipose tissue distribution be-
tween men and women, only women participated in this study.

Physical health was determined by medical history, physical
examination and screening blood tests. Inclusion criteria were:
female sex, 18–55 years old and white descent. Exclusion
criteria consisted of current illness, history of cardiovascular
disease, hypertension, diabetes mellitus or impaired kidney
function, use of medication affecting endothelial function or
glucose metabolism, physical exercise more than three times a
week, recent changes in body weight, pregnancy, postmeno-
pausal state, alcohol abuse and smoking. All participants were
recruited through advertisements. The study protocol was ap-
proved by the medical ethics committee of the VU University
Medical Center, and conducted in accordance with the
Declaration of Helsinki. All volunteers provided written in-
formed consent before enrolment in the study.

Study design Participants visited a quiet, temperature con-
trolled room at the Clinical Research Unit on three separate
days within 2 months, the first time for a screening visit, the
second time for the hyperinsulinaemic–euglycaemic clamp
with contrast enhanced ultrasound (CEU) measurements and
the third time for the skeletal muscle biopsy. Participants were
fasted overnight for the screening and the clamp, and refrained
from physical exercise on the day before the clamp, and before
and 2 days after the skeletal muscle biopsy. In three instances,
the skeletal muscle biopsy was taken before the clamp—CEU
measurements were then performed in the contralateral leg to
avoid residual effects of wound healing.

Anthropometry was performed at the screening and before
the clamp and fat percentage was assessed by bioelectrical
impedance analysis (BF906, Maltron, Rayleigh, UK) [5].

Hyperinsulinaemic–euglycaemic clamp After arrival at the
Clinical Research Unit, the participants acclimatised for
30 min. Insulin sensitivity was determined by a
hyperinsulinaemic–euglycaemic clamp, as described pre-
viously and depicted in Fig. 1 [18]. Insulin (Actrapid,
Novo Nordisk, Bagsvaerd, Denmark) was infused in a
primed (240 mU/m2), continuous manner, at a rate of
40 mU m−2 min−1 for 120 min. Euglycaemia was main-
tained at 5 mmol/l, according to whole-blood venous
samples (YSI 2300 STAT Plus Analyzer, Yellow
Springs, OH, USA), by adjusting the administration rate
of the 20% wt/vol. glucose solution, at 5 min intervals.
Whole-body glucose uptake or M value, was determined
from the glucose infusion rate during the last 60 min of
the clamp, and expressed as mg (lean kg)−1min−1.

Microvascular blood volume: CEU CEU measurements
were performed with a Siemens-Acuson Sequoia 512
(Siemens-Acuson, Mountain View, CA, USA), equipped with
a 17L5 transducer as described, at the time-points indicated in
Fig. 1 [5]. The vastus lateralis muscle was imaged 15 cm
proximal of the knee. During the baseline measurement, the

1908 Diabetologia (2015) 58:1907–1915



probe location was outlined, and landmark structures indicat-
ed on-screen. For both the baseline and hyperinsulinaemia
measurements, freshly prepared microbubbles (SonoVue;
Bracco, Milan, Italy) were infused as an undiluted solution,
during constant agitation, at a constant rate of 2.5 ml/min for
4 min in both lean and obese participants. After steady-state
microbubble concentration was achieved (2.5 min; electronic
supplementary material [ESM] Fig. 1), three real-time inflow
curves of 30 s were generated at a mechanical index of 0.28
with linear postprocessing, after destruction of the
microbubbles at a mechanical index of 1.7 [5, 19]. Video-
intensities (VIs) were analysed using the Image Processing
toolbox in MATLAB, version R2011a (Mathworks, Natick,
MA, USA). Mean VI during the first 0.5 s was subtracted to
correct for large vessels and background noise. Real-time
curves from the region of interest in skeletal muscle were
fitted to the exponential function VI=MBV[1−e−MFV(t−0.5)],
where t represents the time (s) after microbubble destruction,
MBV is microvascular blood volume, MFV is microvascular
flow velocity and e is the natural logarithm (See ESM Fig. 1).
CEU does not provide an absolute measure of volume flow
(ml min−1 [g tissue]−1), but is a relative measure used as a
paired measurement within participants, and we therefore re-
port only the percentage change in MBV, to minimise the
chance that depth or different composition of skeletal muscle
(adiposity) affects the outcome [20]. CEU has been shown to
correlate with other methods of estimating insulin effects on
the microcirculation [5].

Skeletal muscle biopsy Surgical skeletal muscle biopsies
were taken in the non-fasting state from the vastus lateralis
muscle at the same location as the CEU measurement. Local
anaesthesia was achievedwith lidocaine 2%wt/vol. before the
open surgical muscle biopsy of approximately 7 mm×7 mm×
7 mm. The tissue was immediately stored in ice-cold (0–5°C)
MOPS-buffer (in mmol/l: 145 NaCl, 4.7 KCl, 3.3 CaCl2, 2.0
MgSO4, 1.4 NaH2PO4, 2.5 pyruvate, 0.02 EDTA, 3.0 MOPS
[3-(N-morpholino) propanesulfonic acid], 5.6 glucose) and
quickly transferred to the laboratory to harvest microvessels
for testing.

Pressure myography To investigate direct effects of PVAT
on insulin-induced vasoreactivity, microvessels were isolated
on ice from one half of the skeletal muscle biopsy, and sepa-
rated from the surrounding PVAT. Microvessels were then
mounted on glass cannulae, and randomly assigned to incu-
bation without, or with PVAT. PVAT from alongside its own
microvessel was then fastened to one of the cannulae. Ex vivo
vasoreactivity of isolated microvessels was studied in the
pressure myograph at 80 mmHg and 37°C in K-MOPS (in
mmol/l: 125 NaCl, 26 KCl, 3.3 CaCl2, 2.0 MgSO4, 1.4
NaH2PO4, 2.5 pyruvate, 0.02 EDTA, 3.0 MOPS, 5.6 glucose
and 0.1% wt/vol . BSA) [11]. Microvessels were
preconstricted by the potassium in the K-MOPS, and inner
diameters recorded to determine baseline diameter. Diameter
changes induced by four cumulative concentrations of insulin
(0.02, 0.2, 2.0 and 20 nmol/l) were examined for 30 min each.
To ascertain having isolated an arteriole or resistance artery,
and to check endothelial integrity, acetylcholine (ACh) 1×
10−7 mol/l and ACh 1×10−6 mol/l was tested at the end of
each experiment. At least 10% vasodilation to ACh 1×
10−6 mol/l had to be achieved; otherwise, it was excluded
from analysis entirely. Maximum diameter was assessed after
administration of papaverine (0.1 mmol/l). Vascular tone was
expressed as the percentage of the maximum diameter. The
insulin-induced vasoreactivity was expressed as the percent-
age change from baseline after preconstriction.

(Immuno-)histology The second half of the skeletal muscle
biopsy was used for histology. This half was stored in buffered
formaldehyde (4% wt/vol.) and paraffin-embedded the next
morning, 5 μm slices were stained with haematoxylin and
eosin. Adipocyte cross-sectional areas were analysed with
Image J in a blinded fashion [21]. Only adipocytes at a dis-
tance no greater than three adipocytes from the microvessel
were included. Macrophage count in PVAT was quantified
after CD68 staining and presented as the fraction of the num-
ber of adipocytes. For CD68 immunohistochemical analysis,
slices were incubated in methanol/H2O2 (0.3% vol./vol.) to
block endogenous peroxidases. Antigens were retrieved by
heat inactivation in citrate buffer, followed by incubation with

Glucose 20% infusion (variable)

Continuous insulin infusion (40 mU m-2 min-1)

Insulin bolus (240 mU/m2)

CEUCEU Meal

-45 0 30 60 90 120

Time (min)

Fig. 1 Outline of the
hyperinsulinaemic–euglycaemic
clamp and microvascular
recruitment study day
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mouse anti-human CD68 (1:400, DakoCytomation, Glostrup,
Denmark). Sections were incubated with Envision (undiluted,
anti-mouse and anti-rabbit, DakoCytomation). Staining was
visualised using 3,3'-diaminobenzidine (DAB 0.1 mg/ml,
0.02% H2O2 vol./vol.) and counterstained with haematoxylin.

Statistical analysis Data were analysed with paired (within
group) and unpaired (between groups) t tests. Normally dis-
tributed data are reported as mean±SD. Non-normally distrib-
uted data were log-transformed, or reported as median and
interquartile range and analysed with the Wilcoxon signed-
rank test for paired data and the Mann–Whitney test for un-
paired data. Pressure myography experiments were analysed
using a two-way ANOVA with Bonferroni post hoc test. A
p value smaller than 0.05 was considered statistically signifi-
cant. Linear regression analyses were performed to examine
the relations between two variables, controlling for age, and
standardised β coefficients are reported. Bias corrected
bootstrapping according to the mediation model by Preacher
and Hayes was used to assess mediation effects [22]. In short,
multiple regression analyses are performed, and the proposed
mediator is important if the effect of the primary factor on the
dependent decreases substantially when the proposed media-
tor is entered. The significance of this mediation is estimated
through bootstrapping, where multiple random subsets of the
dataset are run to estimate the significance of the change in β
coefficient; this significance is indicated with a CI. Analyses
were performed using IBM SPSS Statistics version 21
(Armonk, NY, USA) and Graphpad Prism 5.01 (La Jolla,
CA, USA).

Results

Baseline characteristics of the study participants Baseline
characteristics of the participants involved are presented in
Table 1. In three women in the lean, and six in the obese
group, the skeletal muscle biopsy yielded insufficient tissue
for histology, although pressure myography was successful.

Microvascular recruitment partly explains the difference
in metabolic insulin sensitivity between lean and obese
women To assess insulin-induced microvascular recruitment
and metabolic insulin sensitivity, CEU was performed before
and at the end of the clamp. Metabolic insulin sensitivity
(M value) was higher in lean (14.7 [12.3–17.6] mg [lean
kg]−1min−1) compared with the obese women (11.6 [6.0–
14.1] mg [lean kg]−1min−1), p<0.05. Mean glucose concen-
tration during the clamp was comparable between the lean and
obese women, 5.0±0.3 mmol/l vs 4.9±0.3 mmol/l, p=0.29,
but plasma insulin was lower in lean (551±103 pmol/l) than in
obese women (647±97 pmol/l), p<0.01.

During hyperinsulinaemia, MBV increased in lean, but not
in obese women (Fig. 2a). Hyperinsulinaemia did not alter
MFV in either group. Subsequently we examined whether
the change in MBV statistically explains the difference in
metabolic insulin sensitivity. Using mediation analyses, mi-
crovascular recruitment was indeed identified as a significant
mediator in the relation between group (lean or obese) and
metabolic insulin sensitivity (Fig. 2b).

Increased PVAT adipocyte size mediates the relation
between obesity and disturbed microvascular recruitment
in muscle Perivascular adipocyte size was analysed in the
biopsies. In obese women, median perivascular adipocyte
cross-sectional area was larger than in lean women (Fig. 3a, b),
although perivascular adipocyte size did not correlate with BMI
within these groups (standardised B=0.259, p=0.42 for the lean,
and standardised B=−0.367, p=0.22 for the obese).

Macrophage (CD68+) count per number of adipocytes was
not different (0.43 macrophage/adipocyte in PVAT of lean
women vs 0.25 macrophage/adipocyte in PVAT from obese
women, p=0.19). When expressed as macrophages per adipo-
cyte surface area, this was also not different (2.3 [1.7–3.0] in
lean vs 1.4 [1.0–3.1] in obese, p=0.36).

Table 1 Baseline characteristics

Lean Obese p value

n 15 18

Age (years) 42 (25–47) 41 (36–50) 0.34

Weight (kg) 64±7 96±17 <0.001

Height (m) 1.72±0.06 1.70±0.07 0.49

BMI (kg/m2) 22.4 (20.1–23.6) 33.0 (31.6–34.3) <0.001

Waist/hip ratio 0.82±0.07 0.89±0.06 <0.01

Fat percentage 25.0 (20.7–30.4) 44.6 (40.3–46.3) <0.001

Systolic BP (mmHg) 114±10 127±10 <0.001

Diastolic BP (mmHg) 71±7 74±9 0.36

MAP (mmHg) 85±8 92±8 <0.05

Total cholesterol (mmol/l) 4.9±0.8 4.8±0.9 0.68

LDL-cholesterol (mmol/l) 2.6±0.7 2.7±0.7 0.67

HDL-cholesterol (mmol/l) 1.9 (1.6–2.3) 1.6 (1.4–1.8) <0.02

Triacylglycerol (mmol/l) 0.8 (0.7–1.1) 1.3 (1.1–1.5) <0.01

eGFR (MDRD) 87±13 93±20 0.37

Fasting insulin (pmol/l) 30 (25–36) 64 (41–88) <0.001

Fasting glucose (mmol/l) 4.6±0.4 5.4±1.1 <0.01

HOMA-IR 0.83 (0.78–1.06) 2.12 (1.36–2.80) <0.001

HbA1c (%) 5.3±0.2 5.6±0.5 0.10

HbA1c (mmol/mol) 35±3 38±6 0.10

Data are means±SD, or median (interquartile range), depending on the
distribution of the data

MAP, mean arterial pressure, MDRD, Modification of Diet in Renal
Disease formula (used to estimate the glomerular filtration rate)
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We went on to explore whether PVAT adipocyte size in
PVAT explained the relation between the study group and
microvascular recruitment using mediation analyses. This re-
vealed that PVAT adipocyte size was indeed a significant sta-
tistical mediator in the relation between the study group (lean
vs obese) and insulin-induced microvascular recruitment
(Fig. 3c). Furthermore, perivascular adipocyte size was also
related to metabolic insulin sensitivity (B=−0.45, p<0.05).

PVAT from lean women potentiates insulin-induced vaso-
dilation and PVAT from obese women enhances insulin-
induced vasoconstriction ex vivo To explore the physiolog-
ical significance of the statistical relations between PVAT
properties and insulin-induced vasoreactivity, and to provide
evidence for the causality of the relation, we performed
ex vivo pressure myography with microvessels harvested
from the skeletal muscle biopsies. Figure 4a shows an exam-
ple of a mounted microvessel. Failure to dilate 10% to ACh
10−6 resulted in exclusion in 50% and 56% of the experiments
with lean and obese microvessels, respectively (Table 2).

Microvessels obtained from lean women and incubated
without PVATshowed no insulin-induced changes in diameter
ex vivo, comparable with previous murine results [11]. In
contrast, microvessels incubated with PVAT from the same
individual showed insulin-induced vasodilation (Fig. 4b),
supporting the hypothesis that PVAT secretes factors contrib-
uting to insulin-induced vasodilation. Microvessels from
obese women without PVAT showed no insulin-induced re-
sponses in diameter, which did not differ frommicrovessels of
lean women. However, when incubated with their own PVAT,
microvessels from obese women constricted in response to
increasing doses of insulin (Fig. 4b). These responses were

both different from the obese microvessels without PVAT as
well as from the lean microvessels with PVAT.

Discussion

The relation between microvascular PVAT and microvascular
vasomotor responses in vivo was hitherto unknown. This
study demonstrates a direct relation between PVAT character-
istics and insulin’s effects on muscle perfusion. More specif-
ically, perivascular adipocyte size mediates the difference in
insulin-induced microvascular recruitment between lean and
obese women. These results were extended by ex vivo evi-
dence that PVAT from lean women potentiates the vasodilator
effect of insulin, whereas PVAT from obese women causes
insulin-induced vasoconstriction. These findings suggest that
PVAT regulates insulin-induced vasodilation, and insulin-
induced microvascular recruitment in skeletal muscle.

We studied PVAT which abuts the microcirculation, and
provide direct evidence for a functional role of PVAT in the
regulation of human skeletal muscle perfusion. As others have
found, flow-mediated microvascular vasodilation is related to
PVAT around the brachial artery [23]. In PVAT and vessels
obtained from subcutaneous adipose tissue of lean humans,
PVATshows an anticontractile effect ex vivo in the absence of
insulin, which is lost in obesity [12], and can be restored by
bariatric surgery [24]. In the latter study, a reduced macro-
phage count in obese PVAT after bariatric surgery was found.
We did not find a difference in PVAT macrophage content
between lean and obese women, possibly because our obese
participants were less extremely obese and were healthy. A
difference in macrophage content in PVATwas also not found
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insulin sensitivity. (a) Changes in MBV in lean and obese women. Lean
women show insulin-induced microvascular recruitment (27% [−19 to +
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value (β=−0.37, CI [−1.09, −0.08]). Indeed, the β coefficient from the
BMI group toM value was attenuated to −0.21, p=0.23 (horizontal path,
number outside brackets). *p<0.05, **p<0.01. See ESM Table 1 for CIs
of the unadjusted and adjusted β coefficients from the BMI group to M
value

Diabetologia (2015) 58:1907–1915 1911



by others in high fat diet fed mice, despite altered PVAT func-
tion [25]. Macrophage count may therefore not adequately
reflect the pro-inflammatory potential of PVAT [13, 26].

Our data demonstrate that insulin-induced microvascular
recruitment is a significant mediator in the relationship
between obesity and metabolic insulin sensitivity (Fig. 2b).
Moreover, our results show PVATadipocyte size to be a major
determinant of the difference in the magnitude of insulin-
induced microvascular recruitment between lean and obese
women, even though one of the component analyses was of
borderline significance (p=0.065; Fig. 3c). These observa-
tions suggest that perivascular adipocyte size is more impor-
tant than being lean or obese per se. Perivascular adipocyte
size itself seems an unlikely direct cause of altered PVAT
phenotype. More likely, larger adipocyte size is a proxy for
altered PVAT characteristics (e.g. hypoxia, inflammation) and
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therefore relates to an altered secretory adipokine profile [27].
Because we did not find any difference in macrophage infil-
tration, we did not further explore inflammation as a mediator
in the relationship between obesity and microvascular recruit-
ment. Indeed, others have also shown a relationship between
adipocyte size and insulin resistance, irrespective of inflam-
mation [28], but also between adipocyte size and adipokine
gene expression [29]. Nevertheless, the results show clear me-
diating effects of microvascular recruitment on metabolic in-
sulin sensitivity, and of PVATadipocyte size on microvascular
recruitment. This means that in order to normalise microvas-
cular responses in obesity, normalising PVAT properties could
be of key importance. This is further supported in the study
describing PVAT effects after bariatric surgery, where BMI
was still in the obese range, but microvascular responses to
PVATwere comparable with those of lean healthy participants
[24]. Novel ways to decrease adipocyte size, and in particular
perivascular adipocyte size, are therefore worth investigating.

The mediation model by Preacher and Hayes was original-
ly designed to studymediation effects in large datasets, but has
recently been applied in smaller studies as well. When we
studied the same relations by solely looking at the change in
β coefficient, this yielded similar results, demonstrating the
robustness of the data. We decided to report the mediation
model results because these provide a more insightful analysis
of the mediating effect, together with an estimate of
significance.

The results described in Fig. 4 show that PVAT has vaso-
active effects in conjunction with insulin. PVAT helps explain
the differences in microvascular recruitment between lean and
obese participants. As demonstrated, PVAT is necessary for
insulin to enhance vasodilation, and therefore insulin-induced
microvascular recruitment in vivo. In the absence of PVAT,
the microvessels of lean and obese women respond to insulin
identically, i.e. they do not change diameter. This suggests
that, even though insulin signalling might be different in the
endothelium of lean and obese women, this is not sufficient to
affect insulin-induced vasoreactivity. However, in the pres-
ence of PVAT, a different behaviour of the microvessels is
revealed with insulin-induced vasodilation in lean

participants, and insulin-induced vasoconstriction in the
obese. The divergent responses in the presence of PVAT also
demonstrate the dual activation of vasoactive signalling cas-
cades by insulin [30–32]. The importance of PVAT is also
demonstrated by previous studies that may not always have
removed PVAT properly, thereby potentially influencing their
results [33]. Our present results support the hypothesis that
PVAT is a functional determinant of microvascular recruit-
ment in skeletal muscle, and therefore of insulin resistance.

Mechanistically, hypoxia and inflammation can alter the
adipokines secreted by PVAT. The effects of the hypoxia in
obese PVAT can be inhibited with free radical scavengers,
improving the effect on microvascular vasodilation [12].
Hypoxia may induce c-Jun N-terminal kinase (JNK) activa-
tion in PVAT of obese individuals [11, 34], inhibiting the va-
sodilator effect of PVAT. On the other hand, adiponectin R1
agonists such as adiponectin have been shown to propagate
the vasodilator effects of lean PVAT through signalling via
AMP-activated protein kinase α2 (AMPKα2) [11, 12, 35],
and its secretion decreases when fat is inflamed. Others have
described communication pathways from the endothelium to
PVAT, where PVAT function changes in response to endothe-
lial stress in obesity, in order to negate this stress [36, 37]. Our
current results cannot confirm or refute that hypothesis, but
they at least show that if such a response occurred here, it is
incomplete and fails to normalise the microvascular response
to insulin.

It is worth mentioning some limitations to this study that
need to be considered in conjunction with the results. To the
best of our knowledge, this is the first study in which isolated
human skeletal muscle microvessels were directly examined
in an ex vivo vascular function experiment. Preconstriction
was established through 25 mmol/l potassium, which is high
compared with interstitial concentrations in vivo, but low
compared with other studies examining ex vivo vasoreactivity
[12, 24]. PVATwas physically separated from all microvessels
to prevent concerns about damaging microvessels during sur-
gery, or mechanical restrictions of PVAT on vasoreactivity.
Despite our best efforts, there may be some degree of selection
bias of the microvessels inherent in these experiments,

Table 2 Ex vivo microvessel characteristics

Lean, no PVAT (n=15) Lean+PVAT (n=15) Obese, no PVAT (n=18) Obese+PVAT (n=18)

Number of successful ex vivo experiments
of all biopsies performed (%)

6 (40) 9 (60) 8 (44) 8 (44)

Maximum diameter; papaverine,
0.1 mmol/l (μm)

138 (113–167) 164 (103–259) 172 (126–179) 145 (114–193)

ACh mediated dilation (%) 57 (38–70) 48 (43–75) 21 (10–39)* 32 (11–22)

Tone (% of maximum) 20 (12–45) 42 (29–65) 42 (21–76) 29 (18–68)

Data are n (%) or medians (interquartile range)

*p<0.05 compared with lean microvessels without PVAT
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possibly favouring larger microvessels. Although diameters
did not differ between the two groups, higher orders of
microvessels may have been selected in participants with in-
ward remodelling. Different orders of microvessels might be
regulated differently during microvascular recruitment, al-
though no evidence exists for that with regard to insulin-
induced microvascular recruitment [38]. Moreover, microvas-
cular recruitment measured by CEU is impervious to this the-
oretical bias, leading us to deem this theoretical bias negligible
in this study. Furthermore, as most obese participants had
long-standing obesity, they might exhibit long-standing endo-
thelial dysfunction, so failing the quality 10% vasodilation to
ACh 10−6 may be due to experimental circumstances, or
established endothelial dysfunction.

The insulin resistance in the obese group was not extreme,
probably due to the exclusion of women with diabetes and
hypertension. But despite that, they performed worse with
regards to insulin-induced microvascular recruitment and
perivascular adipocyte size, compared with our lean women.
This shows that even in the phase before the development of
obesity-associated complications, PVAT is an important fac-
tor, which assumingly would only become stronger were
obese women with obesity-associated complications to be in-
cluded. Despite these reservations, the results align with our
own and others’ previous results [11, 12, 15].

Summarising, we have found that PVAT adipocyte size
partly explains the relationship between obesity and blunted
insulin-induced microvascular recruitment through direct reg-
ulation of insulin’s microvascular effects. Therefore, PVAT
may be an important target for the treatment of obesity-
associated microvascular dysfunction.
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