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Abstract
Aims/hypothesis The canonical nuclear factor-κB (NF-κB)
pathway mediated by the inhibitor of NF-κB kinase (IKK)
regulates the transcription of inflammatory genes involved in
the pathogenesis of diabetes, from the early phase to progres-
sion and final complications. The NF-κB essential modulator
binding domain (NBD) contained in IKKα/β is essential for
IKK complex assembly. We therefore investigated the func-
tional consequences of targeting the IKK-dependent NF-κB
pathway in the progression of diabetes-associated nephropa-
thy and atherosclerosis.
Methods Apolipoprotein E-deficient mice with diabetes in-
duced by streptozotocin were treated with a cell-permeable
peptide derived from the IKKα/β NBD region. Kidneys and
aorta were analysed for morphology, leucocyte infiltrate, col-
lagen, NF-κB activity and gene expression. In vitro studies
were performed in renal and vascular cells.
Results NBD peptide administration did not affect the meta-
bolic severity of diabetes but resulted in renal protection, as

evidenced by dose-dependent decreases in albuminuria, renal
lesions (mesangial expansion, leucocyte infiltration and fibro-
sis), intranuclear NF-κB activity and proinflammatory and
pro-fibrotic gene expression. Furthermore, peptide treatment
limited atheroma plaque formation in diabetic mice by de-
creasing the content of lipids, leucocytes and cytokines and
increasing plaque stability markers. This nephroprotective and
anti-atherosclerotic effect was accompanied by a decline in
systemic T helper 1 cytokines. In vitro, NBD peptide
prevented IKK assembly/activation, p65 nuclear transloca-
tion, NF-κB-regulated gene expression and cell proliferation
induced by either high glucose or inflammatory stimulation.
Conclusions/interpretation Peptide-based inhibition of IKK
complex formation attenuates NF-κB activation, suppresses
inflammation and retards the progression of renal and vascular
injury in diabetic mice, thus providing a feasible approach
against diabetes inflammatory complications.
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Th T helper
VSMC Vascular smooth muscle cells

Introduction

Diabetes mellitus is a disease of metabolic dysregulation,
characterised by hyperglycaemia and the development of
diabetes-specific pathology. Complications affecting the
macrovasculature and microvasculature are the major causes
of morbidity and mortality among diabetic patients [1].
Diabetic nephropathy, which largely contributes to end-stage
renal disease, is an important risk factor for macrovascular
disease, while atherosclerosis is the main reason for impaired
life expectancy in diabetic patients [2, 3]. Hyperglycaemia,
hyperlipidaemia and chronic inflammation are involved in
the clinically well-recognised complications of diabetes. In
fact, released inflammatory cytokines and chemokines con-
tribute to atherosclerotic plaque formation, while growth fac-
tors and adhesion molecules promote inflammatory cell re-
cruitment into the renal microvasculature, predisposing pa-
tients to diabetic nephropathy development [4, 5].

The nuclear factor-κB (NF-κB) intracellular pathway con-
trols numerous biological processes and its activation has been
linked to many pathological conditions including inflamma-
tory diseases [6, 7]. The canonical pathway of NF-κB activa-
tion downstream of pro-inflammatory stimuli (e.g. TNFα, IL-
1 and bacterial endotoxin) is mediated by the inhibitor of
NF-κB (IκB) kinase (IKK) complex, which phosphorylates
the inhibitory IκBα protein to induce its polyubiquitination
and proteasome-mediated degradation. Thus, NF-κB subunits
(predominantly the p65–p50 heterodimer) are released and
translocated to the nucleus where they regulate inflammatory
gene transcription [6, 7]. The IKK complex is formed by two
catalytic subunits (IKKα and IKKβ) and the regulatory sub-
unit (NF-κB essential modulator [NEMO]) [8]. IKKα and
IKKβ share significant homology and contain an N‐terminal
kinase domain, a central ubiquitin‐like domain and an elon-
gated α‐helical scaffold/dimerisation domain followed by a
NEMO‐binding domain (NBD; Fig. 1a) [9]. IKKα/β kinase
activity critically depends on the phosphorylation of two ser-
ine residues located in the activation loop [9], while the NBD
region contained in the C-terminus of IKKα (L738-L743) and
IKKβ (L737 and L742) is essential for assembly and
stabilisation of the heteromeric IKKα/β-NEMO complex
[10].

Clinical and experimental evidence implicates NF-κB ac-
tivation and regulated genes in the early phases, progression
and final complications of diabetes and, as such, its inhibition
offers therapeutic intervention opportunities [11–17].
Although several NF-κB inhibitors have reached phase II/III
clinical trials for inflammatory diseases [18, 19], most re-
search into cardiovascular or renal diseases is only in the

preliminary experimental phase [20]. This work investigates
whether IKK-targeted NF-κB inhibition improves diabetic
complications. To that end, the nephroprotective and anti-
atherosclerotic properties of a cell-permeable peptide span-
ning the IKKα/β NBD region (in order to disrupt IKKα/β-
NEMO interactions) were analysed in a mouse model of dia-
betes and in cells under hyperglycaemic/inflammatory
stimulation.

Methods

Peptide synthesis Peptides derived from the IKKβ NBD re-
gion (TALDWSWLQTE; mutant W→A; Fig. 1a) were syn-
thesised in tandem with a cationic cell-penetrating peptide
(octalysine; ProteoGenix, Schiltigheim, France), and rhoda-
mine-conjugated, dissolved and filter sterilised.

In vitro studies Primary mouse mesangial cells (MC), vas-
cular smooth muscle cells (VSMC) and a proximal
tubuloepithelial cell line (MCT) were cultured in medium
containing 10% FCS (Life Technologies, Rockville, MD,
USA) [21–24]. Quiescent cells were treated for 90 min with
peptides before short-term incubation with high glucose (HG;
30 mmol/l D-glucose, 60 min) or lipopolysaccharide (LPS;
1 μg/ml, 30 min; Sigma-Aldrich, St Louis, MO, USA).
NF-κB activation was assessed by immunofluorescence and
immunoprecipitation/western blot using antibodies against
p65 (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
NEMO (BD Biosciences, Erembodegem, Belgium),
IKKα/β, phospho-IKKα/β and histone H3 (Cell Signaling
Technology, Danvers, MA, USA). NF-κB DNA-binding ac-
tivity was assessed by an ELISA-based assay (Active Motif,

�Fig. 1 NBD peptide inhibits IKK/NF-κB activation in vitro. (a) Domain
structure of IKKβ protein (KD, kinase domain; ULD, ubiquitin‐like
domain; SDD, scaffold/dimerisation domain); the sequence of residues
701–745 containing the NBD region is underlined, and the sequence of
synthetic cell-permeable NBD and mutant (red, W→A) peptides is
shown. (b) Fluorescence images (n=3 experiments) showing cytosolic
distribution of rhodamine-NBD peptide (2 μmol/l) in VSMC over time.
(c) Confocal images (n=4 experiments) of NBD peptide and p65 NF-κB
subunit localisation in MCT and VSMC after 60 min of HG stimulation.
(d–f)Western blot analysis of p65 protein (loading control, histone H3) in
nuclear extracts from MC (d, e) and VSMC (f) treated with peptides
(2 μmol/l, 90 min) before stimulation (HG, 60 min; LPS, 30 min). (g)
DNA-binding ELISA assay to quantify NF-κB activation in nuclear
extracts from MC and VSMC. (h) Immunoprecipitation of NEMO with
IKKα /β subunits in MC. (i) Immunodetection of IKKα/β
phosphorylation (Ser176/180) in MC. Representative immunoblots and
summary of normalised densitometric quantification are shown. Results
expressed as relative increases over basal (arbitrarily set to 1) are means±
SEM of 3–5 independent experiments each performed in duplicate
assays. White bars represent basal; diagonal-striped bars, basal+NBD;
black bars, stimulus; grey bars, NBD+stimulus; horizontal-striped bars,
mutant + stimulus.*p<0.05 vs basal; †p<0.05 vs stimulus. IP,
immunoprecipitate; Mut, mutant
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Carlsbad, CA, USA). Gene expression after long-term co-in-
cubation of peptide with HG and LPS was analysed by real-
time quantitative PCR (Applied Biosystems, Foster City, CA,
USA). C-C chemokine ligand 2 (CCL2) levels were measured
by ELISA (BD Biosciences). For cell proliferation studies,
cells were maintained for 48 h in medium containing low
glucose (5 mmol/l) or HG (30 mmol/l) and different peptide

concentrations, and then assessed by a tetrazolium dye color-
imetric assay.

In vivo studies Animal studies conformed to the Directive
2010/63/EU of the European Parliament and were approved
by the Institutional Animal Care and Use Committee (IIS-
Fundacion Jimenez Diaz). Model type 1 diabetes was induced
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in 10-week-old male apolipoprotein E knockout (Apoe−/−)
mice (Jackson Laboratory, Bar Harbor, ME, USA) by
streptozotocin injection (125 mg kg−1, two consecutive days)
[21, 24]. Mice with overt diabetes (glycaemia>19.4 mmol/l)
were injected i.p. with either NBD peptide (0.7μmol/kg, n=7;
4μmol/kg, n=9; every other day) or vehicle (0.1% acetonitrile
in 200 μl saline, n=9) during 10 weeks. Age-matched Apoe−/−

mice (NBD 4 μmol/kg, n=4; vehicle, n=4) were used as non-
diabetic controls. Ex vivo confocal microscopy studies were
performed after a single dose of rhodamine-labelled peptide.
At the study endpoint, 16 h-fasted mice were anaesthetised,
saline-perfused and killed, and organs were collected.
Paraffin-embedded kidney sections were stained with periodic
acid–Schiff (PAS) and blindly graded (0–3 scale) according to
the extent of glomerular (hypertrophy, hypercellularity and
mesangial expansion; 30 glomeruli per sample), tubular
(atrophy and degeneration; 20 fields at ×40 per sample)
and interstitial (fibrosis and infiltration; 20 fields at ×40
per sample) lesions [21]. Glomerular size and PAS+

mesangial area were quantified by morphometry.
Atherosclerotic lesions were analysed in Oil Red
O/haematoxylin-stained aortic root sections [23].
Immunodetection of macrophages (F4/80 and monocyte/
macrophage marker (MOMA-2); Serotec, Oxford, UK), T
lymphocytes (CD3; DAKO, Glostrup, Denmark), VSMC
(α-actin-Cy3; Sigma-Aldrich), CCL2 (Peprotech, Rocky
Hill, NJ, USA), CCL5 (Antibodies-online, Aachen,
Germany) and TNFα (Santa Cruz Biotechnology) was per-
formed by immunoperoxidase/immunofluorescence.
Collagen was examined by picrosirius red staining.
Activated NF-κB was assessed by in situ south-western his-
tochemistry [23, 25]. Positive staining (two to three tissue
slices/mouse) was expressed as percentage of total area and
number of cells (per glomerulus or mm2). Gene expression
was analysed by real-time quantitative PCR and normalised
to housekeeping 18S. Serum lipids and transaminases were
measured by automated methods, blood HbA1c and urine
albumin by ELISA (Gentaur, Kampenhout, Belgium; Cell
Trend, Luckenwalde, Germany) and creatinine by enzymatic
assay (Abcam, Cambridge, UK).

Statistics Data shown are the means±SEM of determinations
in duplicate/triplicate per group. Differences across groups
were considered significant at p<0.05 (two-wayANOVAwith
Bonferroni’s post hoc test).

Results

Inhibition of the NF-κBpathway and cellular responses by
NBD peptide in vitro Fluorescence microscopy in VSMC
(Fig. 1b) and MCT (not shown) revealed a time-dependent
delivery of cell-permeable rhodamine-conjugated NBD

peptide that was homogeneously distributed in the cytoplasm.
Further co-localisation experiments demonstrated that NBD
inhibits the nuclear translocation of the p65 subunit in MCT
and VSMC after short-term HG incubation (Fig. 1c). NBD
also significantly reduced p65 content (Fig. 1d–f) and DNA-
binding activity (Fig. 1g) in nuclear extracts from MC and
VSMC stimulated with either HG or LPS. Further
immunoprecipitation/western blot studies confirmed that
NBD peptide disrupts the interaction of NEMO with
IKKα/β subunits in HG-stimulatedMCwithout affecting bas-
al levels (Fig. 1h), and also prevents IKKα/β phosphorylation
(Fig. 1i). Real-time PCR revealed a dose-dependent inhibition
of NF-κB-dependent genes (Ccl2, Ccl5 and Tnfα) by the
NBD peptide in HG-stimulated MCT (Fig. 2a, b), with an
inhibition efficiency (IC50=2.1–3.4 μmol/l) in a similar
micromolar range as previously tested [10, 26]. In MC,
NBD peptide decreased pro-inflammatory gene expression
induced by HG and LPS stimulation (Fig. 2c, d) and also
attenuated CCL2 chemokine secretion (ng/ml: basal 6 h
0.6±0.1; HG 6.9±2.0; NBD+HG 0.7±0.2, p=0.03 vs
HG; n=4). Sustained inhibition (up to 24 h exposure)
was also observed in HG-stimulated VSMC (Fig. 2e).
Remarkably, NBD peptide did not influence cell viability,
but it was able to inhibit, in a dose-dependent manner, the
proliferation of MC induced by long-term exposure to HG
(Fig. 2f). In all these experiments, no significant effects
were observed with mutant peptide (Figs 1, 2).

NBD peptide treatment protects mice from diabetic renal
injury The therapeutic potential of IKK-targeted NF-κB in-
hibition was evaluated in diabetic Apoe−/− mice, an experi-
mental model of combined hyperglycaemia and hyperlipidae-
mia that accelerates nephropathy and atherosclerosis develop-
ment [21, 27]. Fluorescence experiments revealed efficient
accumulation of rhodamine-peptide in mouse tissues
(Fig. 3a). Subsequently, we analysed the evolution of diabetic
mice and non-diabetic controls treated with either vehicle or
NBD peptide at two different doses (0.7 and 4 μmol/kg) for a
period of 10 weeks. Peptide administration had no significant
effect on hyperglycaemia, body weight and serum lipid profile
in diabetic mice (Table 1). Throughout the study, neither overt
toxicity or lethality, nor hepatic or splenic damage were ob-
served in NBD-treated groups (not shown). Serum transami-
nase activities were also similar across the groups (Table 1),
indicating preserved liver function. Remarkably, NBD treat-
ment dose-dependently improved renal function in diabetic
mice, as evidenced by significant reductions of serum creati-
nine, urine albumin-to-creatinine and kidney-to-body weight
ratios (Table 1).

Histological analysis of PAS-stained renal samples
(Fig. 3b, c; Table 1) revealed that NBD peptide ameliorated
the following pathologic changes associated with diabetes: (1)
glomerular hypertrophy, hypercellularity and mesangial
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matrix expansion; (2) tubular atrophy, dilation and deposits of
glycogen; and (3) interstitial fibrosis and inflammatory infil-
trate. Picrosirius red staining (Fig. 3b, d) also demonstrated
reduced renal fibrosis in NBD-treated mice. A non-significant
effect of NBD peptide was observed in the renal samples from
non-diabetic groups (Fig. 3b–d). Real-time PCR analysis in
diabetic kidneys demonstrated significant decreases in the
mRNA expression of the tubular damage marker kidney inju-
ry molecule-1 (Kim-1, also known as Havcr1; Fig. 3e) and
pro-fibrotic genes (transforming growth factor-β [Tgfβ], fi-
bronectin and collagen type 1; Fig. 3f) by NBD peptide. We
also found a dose-dependent effect of NBD on diabetes-
associated inflammation, as evidenced by lower infiltration
of F4/80+ monocytes/macrophages and CD3+ T lymphocytes
(Fig. 4a–c) and decreased gene expression of Ccl2, Ccl5 and
Tnfα (Fig. 4d).

NBD therapy affects atherosclerotic plaque size and com-
position in diabetic mice Morphometric analysis (Oil Red
O/haematoxylin staining; Fig. 5a) in serial aortic root sections
from diabetic mice revealed that NBD markedly reduced the
size (% reduction vs vehicle: NBD0.7, 35±6, p<0.05; NBD4,
45±8; p<0.01), extension (Fig. 5b) and lipid content (Fig. 5c)
of atheroma plaques. Furthermore, NBD-treated mice
displayed less inflamed, more stable plaque phenotypes,
characterised by decreased MOMA-2+ macrophages and

CD3+ T lymphocytes (Fig. 5d) and increased content of col-
lagen and α-actin (Fig. 5e), compared with vehicle control
mice. Concurrently, NBD treatment also resulted in a dose-
dependent decrease in the gene and protein expression of
chemokines and cytokines in the aorta of diabetic mice
(Fig. 6a–c).

We further analysed the expression of T helper (Th) repre-
sentative genes in spleen, the major source of cytokines in-
volved in the initiation of systemic inflammation. NBD treat-
ment reduced pro-inflammatory Th1 cytokines (IFN-γ, IL-12
and TNFα), but not anti-inflammatory Th2 cytokines (IL-4
and IL-10; Fig. 6d), suggesting a systemically protective
effect.

In vivo treatment with NBD peptide effectively blocks
diabetes-induced NF-κB activation NF-κB activation in di-
abetic mice was analysed in situ by south-western histochem-
istry. Diabetic kidneys displayed an intense nuclear staining
widely distributed in glomeruli and tubulointerstitium, where-
as a significant decrease in the number of NF-κB+ cells was
observed in NBD-treated groups (Fig. 7a–c). Furthermore,
NBD administration dose-dependently decreased NF-κB ac-
tivation in atherosclerotic lesions (Fig. 7a, d). Pearson’s test in
the experimental groups revealed statistically significant cor-
relations of renal NF-κB staining with the urine albumin-to-
creatinine ratio (r=0.515, p=0.020), macrophages (F4/80+:
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r=0.491, p=0.024), lymphocytes (CD3+: r=0.500, p=0.021)
and collagen (picrosirius red: r=0.507, p=0.027), while
NF-κB staining in atherosclerotic plaques correlated with le-
sion size (r=0.521, p=0.032) and leucocyte content (MOMA-
2+: r=0.509, p=0.037; CD3+: r=0.640, p=0.019), suggesting
that NF-κB activation is a marker of diabetic nephropathy and
atherosclerosis.

Discussion

Nephropathy and atherosclerosis are common vascular com-
plications in type 1 and type 2 diabetes. However, the patho-
genesis of renal and vascular injury in diabetic patients has not
been completely clarified, and treatments are limited and un-
satisfactory [4, 5]. This is consistent with the hypothesis that
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Table 1 Biochemical and renal
variables of non-diabetic and
diabetic Apoe-/-mice after
10 weeks of treatment

Variables Non-diabetic Diabetic

Vehicle (4) NBD4 (4) Vehicle (9) NBD0.7 (7) NBD4 (9)

ΔBW (final−initial) 2.2±0.2 2.3±0.6 2.2±0.4 1.9±0.2 1.6±0.2

BG (mmol/l) 8.9±0.4 9.3±0.2 29.9±0.8* 29.9±1.5* 28.9±2.0*

HbA1c (%) ND ND 3.3±0.4 3.3±0.3 3.2±0.3

HbA1c (mmol/mol) ND ND 12.0±0.2 13.0±0.1 11.0±0.1

Chol (mmol/l) 8.5±0.5 8.6±0.5 15.6±0.4* 15.9±0.6* 16.0±1.4*

LDL-Chol (mmol/l) 8.0±0.2 8.3±0.1 14.9±0.4* 14.7±1.1* 14.5±1.4*

HDL-Chol (mmol/l) 0.34±0.03 0.41±0.01 0.31±0.03 0.37±0.03 0.28±0.02

TG (mmol/l) 0.6±0.1 0.7±0.1 0.9±0.1 0.9±0.1 0.9±0.1

AST (μkat/l) 3.0±0.3 3.0±0.5 3.6±0.2 3.4±0.7 3.3±0.6

ALT (μkat/l) 1.9±0.2 1.7±0.5 2.1±0.2 2.0±0.4 2.0±0.3

KBWR (g/kg) 15.3±0.6 14.6±0.7 20.0±1.3* 17.7±1.1 15.7±0.7†

SCr (μmol/l) 7.1±1.8 6.2±2.6 34.5±3.5* 22.9±1.8*† 20.3±2.6*†

UAC (μg/μmol) 8.2±0.6 7.8±0.2 24.4±1.5* 19.4±0.5*† 13.9±1.2†

Glomerular area (μm2) 2,188±165 2,146±209 3,949±264* 3,014±154*† 2,555±182*†

PAS+ mesangial area (%) 7.0±0.2 7.4±0.1 13.8±1.0* 10.0±0.4*† 8.6±0.6*†

Results reported as means±SEM (number of animals), and were analysed by two-way ANOVA followed by
Bonferroni’s post hoc test

*p<0.05 vs non-diabetic+vehicle; † p<0.05 vs diabetic+vehicle

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BG, mean blood glucose; ΔBW, body weight
change; Chol, cholesterol; KBWR, kidney-to-body weight ratio; ND, not determined; SCr, serum creatinine; TG,
triacylglycerol; UAC, urine albumin-to-creatinine ratio
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key pathogenic mechanisms and intracellular pathways lead-
ing to progression of diabetes complications are not modified
by the current therapies [11, 20]. Herein, we report that a cell-
permeable peptide derived from the IKKα/βNBD domain
inhibits the canonical NF-κB pathway and ameliorates renal
dysfunction and atherosclerosis in diabetic mice primarily
through the attenuation of local and systemic inflammation.

Dysregulated NF-κB activation contributes to many
immune-inflammatory diseases, including diabetes [6–9].
NF-κB gene polymorphisms influence the susceptibility to
type 1 and 2 diabetes and affect microvascular and

atherosclerotic complications in patients [13, 28, 29].
Hyperglycaemia, dyslipidaemia, oxidative stress and inflam-
mation can also lead to the occurrence of diabetes complica-
tions by activating canonical NF-κB-driven genes [15].
Studies in animal models with either total or cell-specific in-
activation of NF-κB family members (e.g. c-Rel, NF-κB1 and
NEMO) further implicate NF-κB in diabetes [30–32].
Moreover, anti-inflammatory compounds exhibit an amelio-
rating effect on diabetic symptoms and long-term complica-
tions by directly inhibiting IKK activity [33, 34], although
limitations due to cellular toxicity and immunosuppression
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have prompted a search for alternative strategies [19]. Our
results in an experimental model of combined hyperglycaemia
and hyperlipidaemia (diabetic Apoe−/− mice) demonstrate that
NF-κB activation status in kidney and aorta highly correlates
with the severity of nephropathy and atherosclerosis, thus
confirming the key role of the NF-κB inflammatory pathway
in the pathogenesis of diabetic complications.We also provide
in vivo and in vitro evidence that peptide-based inhibition of
IKK complex formation may be an alternative strategy to
suppress NF-κB-mediated inflammation in diabetes. In renal
and vascular cells cultured under hyperglycaemic and inflam-
matory conditions, we demonstrate that NBD peptide, but not
the mutated sequence, disrupted the interaction of IKKα/β
with NEMO, therefore preventing short-term IKK activation,
p65 nuclear translocation, and NF-κB-driven gene expression.

These findings are consistent with those of previous studies
characterising the in vitro NF-κB blocking effect of different
NBD peptide sequences in cytokine-stimulated mononuclear
cells, osteoclasts and fibroblasts [26, 35–38]. Remarkably,
NBD peptide reversed the cellular responses induced by
long-term exposure to HG, but did not influence either
NF-κB or cell viability under normoglycaemic conditions.
Hence, the primary role of NF-κB in normal cellular functions
is preserved, resulting in less toxicity, which represents an
advance over other NF-κB inhibitors [18, 19, 35].

Our results constitute the first in vivo characterisation of
the nephroprotective effect of NBD peptide. Indeed, NBD
therapy did not affect the metabolic severity of diabetes, as
evidenced by no changes in hyperglycaemia, lipid profile and
body weight. Interestingly, we found good tissue distribution,
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effective anti-inflammatory action and renal histological im-
provement without any observable toxicity, liver damage or
other detrimental side effects. Moreover, kidneys from NBD-
treated mice displayed less intranuclear NF-κB activity and
NF-κB-regulated gene expression, along with an attenuation
of diabetes-induced structural and functional abnormalities.
These results are comparable to those reported with different
cell-permeable NBD versions in animal models of acute in-
flammation [10, 39], arthritis [38], inflammatory bowel dis-
ease [35], lung inflammation [40], muscular dystrophy [41], B
cell lymphoma [42] and neuroinflammation [37].

Excessive production of cytokines is important in the path-
ogenesis of diabetic nephropathy, and cell proliferation and
fibrosis are the major contributors to diabetes-induced renal
pathological changes. Moreover, hyperglycaemia upregulates
inflammatory gene expression and hastens the recruitment of
leucocytes [16, 17, 21], which further contribute to diabetic
renal injury, either by direct interaction with mesangial and
tubular cells or by releasing pro-inflammatory and pro-fibrotic
mediators [4, 5]. Our work demonstrates that NBD peptide
administration in diabetic mice improves renal function vari-
ables (creatinine and albumin-to-creatinine ratio) and glomer-
ular lesions (leucocyte infiltration, hypertrophy, mesangial ex-
pansion and glomerulosclerosis). NBD also protected from
the development of tubular atrophy and interstitial fibrosis
and inflammation, hallmarks of end-stage renal failure.
These observations, in conjunction with reduced expression
of chemokines, cytokines, growth factors and extracellular
matrix proteins suggest that NBD peptide effectively attenu-
ates renal inflammation and fibrosis, two key mechanisms for
diabetic renal disease. Therefore, our findings indicate that the
NF-κB pathway is a potential upstream target for the devel-
opment of therapeutic agents in diabetic nephropathy.

NF-κB is a crucial pro-atherogenic factor that regulates
gene expression involved in all phases of the atherosclerosis
process, from early fatty streak formation and advanced
plaque progression to thrombotic complications [15, 43].
Several compounds targeting main steps in the NF-κB signal-
ling pathway (e.g. IKK activation, IκB phosphorylation,
ubiquitin–proteasome system, nuclear translocation and
DNA binding) have been reported to ameliorate atherosclero-
sis in experimental models [43, 44]. We have provided in vivo
evidence that NBD peptide dose-dependently attenuates
NF-κB activation in the aorta and limits atheroma plaque for-
mation in type 1 diabetic Apoe−/− mice. This finding is in
agreement with that of a recently published report showing
that NBD improved vascular dysfunction (in terms of myo-
genic tone and endothelium-dependent relaxation) in coronary
and mesenteric resistance arteries from a mouse model of type
2 diabetes [45]. Importantly, we observed that NF-κB inhibi-
tion altered plaque composition and inflammation in mouse
atherosclerotic lesions without affecting serum lipid levels. In
fact, the decrease in atheroma size correlated with reduced

numbers of macrophages and T cells within the lesions of
diabetic mice and reduced aortic expression of pro-
inflammatory factors (CCL2, CCL5 and TNFα) involved in
migration and activation of vascular cells. Atheroprotection
by NBD peptide also resulted in the development of a more
stable plaque phenotype characterised by higher collagen:lipid
and VSMC:macrophage ratios than those in untreated diabetic
mice. Considering that most acute clinical events of athero-
sclerosis, such as myocardial infarction and stroke, are caused
by the rupture of an unstable (leucocyte- and lipid-rich, colla-
gen-poor) plaque [46], efficient strategies to modulate harmful
NF-κB-mediated cell responses by directly targeting IKK
could be of benefit in slowing lesion progression.

Besides a local anti-inflammatory effect on mouse kidney
and aorta, we also detected an indirect action of NBD on
systemic inflammation, as evidenced by reduced splenic ex-
pression of pro-inflammatory Th1 cytokines, but not anti-
inflammatory Th2 genes. It is well recognised that NF-κB
transcriptional activity directly controls the main cytokine
drivers of the Th1 response [7, 47]. Furthermore, elevated
levels of Th1 cytokines correlate with proteinuria [48] and
the risk of cardiovascular complications [49] in patients with
type 2 diabetes. Consistent with this, our findings indicate that
regulation of the systemic Th1-mediated immunoinflammato-
ry response may account, at least in part, for the in vivo
protective effect of NBD in diabetic mice.

In conclusion, our results demonstrate that NBD peptide
potently inhibits NF-κB-mediated inflammatory responses in
diabetic mice, thereby preventing the progression of diabetes-
associated nephropathy and atherosclerosis. Given the pivotal
role of NF-κB activation in diabetes development, we suggest
selective inhibition of the IKK-dependent canonical NF-κB
pathway as a feasible approach against diabetes inflammatory
complications.
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