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Abstract Viruses are considered to be potential key modula-
tors of type 1 diabetes mellitus, with several possible mecha-
nisms proposed for their modes of action. Here we discuss the
evidence for virus involvement, including pancreatic infection
and the induction of T cell-mediated molecular mimicry. A
particular focus of this review is the further possibility that
virus infection triggers bystander activation of pre-existing
autoreactive lymphocytes. In this scenario, the virus triggers
dendritic cell maturation and proinflammatory cytokine secre-
tion by engaging pattern recognition receptors. These proin-
flammatory cytokines provoke bystander autoreactive lym-
phocyte activation in the presence of cognate autoantigen,
which leads to enhanced beta cell destruction. Importantly,
this mechanism does not necessarily involve pancreatic virus
infection, and its virally non-specific nature suggests that it
might represent a means commonly employed by multiple
viruses. The ability of viruses specifically associated with type
1 diabetes, including group B coxsackievirus, rotavirus and
influenza Avirus, to induce these responses is also examined.
The elucidation of a mechanism shared amongst several vi-
ruses for accelerating progression to type 1 diabetes would
facilitate the identification of important targets for disease
intervention.

Keywords Bystander activation . Dendritic cells . Review .

Toll-like receptors . Type 1 diabetes . Type 1 interferon .

Viruses

Abbreviations
CVB Group B coxsackievirus
cDC Conventional dendritic cell
DC Dendritic cell
IA-2 Islet autoantigen-2
LCMV Lymphocytic choriomeningitis virus
MDA-5 Melanoma differentiation-associated protein 5
MLN Mesenteric lymph nodes
MyD88 Myeloid differentiation primary response

protein 88
PBMC Peripheral blood mononuclear cell
pDC Plasmacytoid dendritic cell
PLN Pancreatic lymph nodes
PRR Pattern recognition receptor
RIG-I Retinoic acid-inducible gene 1
RRV Rhesus monkey rotavirus
TLR Toll-like receptor

Introduction

Type 1 diabetes mellitus is a chronic autoimmune disease
marked by the development of insulitis and the destruction
of insulin-producing beta cells by autoreactive T cells [1].
Disease onset can be predicted by the inheritance of high-
risk HLA genes in combination with the presence of circulat-
ing islet autoantibodies and islet-specific T cells [1]. Discor-
dance between monozygotic twins suggests that high-risk
genes alone cannot completely predict diabetes development
[2]. Furthermore, high-riskHLA gene prevalence in patients is
declining concurrently with increased diabetes incidence and
a trend towards a younger age at onset, indicating a potentially
important role for environmental factors [3].

Numerous environmental triggers have been linked to dia-
betes onset, including exposure to specific dietary antigens,
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intestinal microflora and infection [4]. Viruses are considered
to be key potential diabetes modulators. For example, infec-
tion by members of the Enterovirus genus of the
Picornaviridae family, or the Rotavirus genus in the
Sedoreovirinae subfamily of the Reoviridae family, has been
associated with altered diabetes development in humans and
mice [5–8]. However, a direct causal relationship between a
specific environmental stimulus and diabetes onset has proven
difficult to establish. In part, this relates to the multiple poten-
tial environmental modulators experienced during the extend-
ed pre-clinical phase of diabetes. The effect of any putative
causative agent may not be identifiable at diabetes diagnosis.
Additionally, multiple mechanisms may trigger disease onset
and environmental factors may modulate autoimmunity fol-
lowing an initial genetically determined trigger.

NOD mice are commonly used to investigate markers of
diabetes development and virus roles. Like humans, diabetes
onset in these mice is influenced by genetic and environmental
factors and preceded by insulitis development [9]. Although
aspects of disease development in NOD mice differ from that
in humans, these mice are a valuable tool for understanding
potential mechanisms of diabetes modulation that cannot be
directly assessed in humans. Virus infections are hypothesised
to contribute to diabetes development by three distinct but not
mutually exclusive general mechanisms: pancreatic infection,
T cell molecular mimicry and bystander activation. Increased
intestinal inflammation and permeability have also been im-
plicated in diabetes development [4], and certain bacterial in-
fections and intestinal microbiota may modulate diabetes in
these ways [10, 11]. Here we briefly discuss the potential roles
of pancreatic infection and molecular mimicry, which have
been extensively reviewed previously [12, 13]. The primary
focus of this review is the potential role of bystander activation
as a non-specific mechanism of autoimmune activation.

Detection of virus in the pancreas Viral infection of pancre-
atic beta cells can result in cytolysis or cell damage [14, 15].
While cytolysis directly reduces beta cell mass, beta cell dam-
age may contribute to diabetes progression through the release
of sequestered autoantigens and induction of a local proin-
flammatory immune response [16]. A similar cascade of pro-
inflammatory events indirectly leading to beta cell damage or
death may also occur following infection of bystander pancre-
atic cells, such as alpha cells [17]. Current human studies are
particularly directed towards the detection of virus-infected
cells and viral nucleic acids in the pancreas during diabetes
development or after diagnosis [18]. Pancreatic virus detec-
tion relies on the assumption that a particular virus infection
occurs near the time of diabetes onset, occurs multiple times
throughout pre-clinical diabetes development or has become
chronic. However, if a virus infects only once, acutely, or is
cleared by the time of diabetes diagnosis, then detection of
pancreatic virus is unlikely. Furthermore, viruses might

contribute to diabetes through extra-pancreatic infection at
sites like the pancreatic lymph nodes (PLN) or the small in-
testine. Low-grade pancreatic enterovirus infection in new-
onset diabetic patients was recently reported [18]. However,
viral cytolytic activity was absent, precluding conclusions as
to causality [18]. Although one study detected intestinal en-
terovirus infection more frequently in diabetic patients, asso-
ciated with inflammation [19], a subsequent investigation did
not support this observation [20]. Rather than a causative role,
at least in some cases, higher enterovirus detection rates may
indicate greater patient susceptibility to enterovirus infection.
Establishing the nature of any association between pancreatic
virus presence and type 1 diabetes is clearly a research prior-
ity. However, future studies should not discount the potential
for viruses to alter diabetes development by exerting their
effects in the PLN or intestine.

T cell molecular mimicry In the context of viral infection,
molecular mimicry occurs when viral peptide loaded onto
MHC molecules at the antigen-presenting cell surface is
recognised by autoreactive T cells, leading to their activation.
This generally arises from sequence similarity between viral
and self peptides. RIP-LCMV mice, which express particular
lymphocytic choriomeningitis virus (LCMV) proteins under
the control of the rat insulin promoter (RIP) in the pancreas
[21], have been used extensively to understand the role of
molecular mimicry in diabetes. In this model, diabetes occurs
following infection with wild-type LCMV (which contains
the exact self LCMV protein sequence), but not with LCMV
variant strains or the cross-reactive Pichinde virus (which ex-
hibits sequence similarity with the self LCMV protein). The
ability of LCMV infection to induce diabetes in RIP-LCMV
mice depends on virus replication in CD11c+ dendritic cells
(DCs) that are refractory to type I IFN production due to
Usp18 expression [22]. Type I IFNs are innate signalling mol-
ecules, and include IFNα and IFNβ. LCMV replication,
LCMV-specific T cell expansion and diabetes incidence are
reduced in the absence of CD11c+ DCs [22]. Interestingly,
CD11c+ DC depletion or prevention of LCMV replication
by ribavirin treatment in RIP-LCMV mice also diminishes
serum IFNα production following LCMV infection [22].
Since Usp18-expressing CD11c+ DCs productively infected
with LCMV would not produce IFNα, bystander CD11c+

DCs are the probable source of IFNα. Thus, both LCMV-
specific T cell expansion and heightened type I IFN responses
may contribute to diabetes progression. However, the inability
of other viruses and non-replicating antigen to induce or ac-
celerate diabetes in this model casts doubt on the ability of
molecular mimicry alone to contribute to disease progression
[22–24].

Potential mimics of islet autoantigens have been identified
in several viruses, including the Enterovirus, group B
coxsackievirus (CVB) and rotavirus [25, 26]. Peripheral
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blood mononuclear cells (PBMCs) from diabetic patients can
concomitantly respond to an immunologically dominant pep-
tide of glutamic acid decarboxylase 65 (GAD65), a known
islet autoantigen, and a region of the CVB P2-C protein as a
result of shared sequence similarity [25]. However, CVB4
does not induce diabetes in mice expressing the NOD-
specific MHC II allele that allows GAD65 peptide presenta-
tion, but lacking all other NOD-specific diabetes susceptibility
factors [16]. In addition, GAD65-specific T cell clones isolat-
ed from diabetic patients fail to respond to homologous CVB
P2-C protein [27]. These data suggest that molecular mimicry
alone is insufficient to induce diabetes onset. Similarly, human
islet autoantigen-2 (IA-2)-specific CD4+ T cells previously
stimulated with IA-2 peptide can be restimulated with a pep-
tide mimic from the rotavirus protein VP7. The binding affin-
ity of this VP7 peptide to high-risk HLA class II molecules is
comparable with that of the related IA-2 peptide [28]. The au-
thors postulate that this molecular mimicry may contribute to
diabetes development synergistically with other mechanisms
[28]. Compared with NOD mice, T cell receptor-transgenic
8.3-NOD mice develop diabetes more rapidly and have a
larger reservoir of CD8+ T cells recognising the islet
autoantigen islet-specific glucose-6-phosphatase catalytic
subunit-related protein (IGRP). Infection by Rhesus mon-
key rotavirus (RRV) in 8.3-NOD mice activates IGRP-
specific CD8+ T cells independently of molecular mimicry
[29]. Mimicry between IA-2 and RRV has not been in-
vestigated in mice. However, the potential RRV peptide
mimic is not conserved in human rotaviruses, and MHC
class II peptide presentation differs between mice and
humans. We conclude that IA-2-specific molecular mim-
icry is unlikely to contribute to the accelerated diabetes
onset observed following RRV infection in NOD mice.
Overall, any accelerated diabetes onset by viruses through
T cell molecular mimicry would seem subject to a strict
set of important criteria that would be difficult to meet in
non-transgenic animal models and humans.

Bystander activation Bystander activation is characterised
as Tcell activation occurring independently of peptide presen-
tation on MHCs to T cell receptors, or B cell activation with-
out antigen recognition by the B cell receptor [30] (Fig. 1).
The lack of antigen presentation on MHCs distinguishes by-
stander activation from pancreatic infection and molecular
mimicry. It is distinct from bystander death, which requires
direct pancreatic infection and the non-specific killing or dam-
age of bystander beta cells by virus-specific Tcells. Converse-
ly, bystander activation involves DC activation by pattern rec-
ognition receptor (PRR) engagement and secretion of soluble
cell-stimulating factors such as type I IFN (Fig. 1). These
factors induce the activation of bystander lymphocytes, in-
cluding autoreactive T cells, which contribute to beta cell
death [31].

As bystander activation is expected to depend on a popu-
lation of pre-existing autoreactive cells, it is likely to occur
where autoreactive cells and cognate autoantigen accumulate,
and depend critically on the extent of autoimmunity (i.e. age).
This explains why bystander activation in type 1 diabetes is
pancreas-specific rather than systemic. Autoreactive cells ac-
cumulate with age in the PLN and pancreas of NOD mice
[32], the PLN being an important site for priming with
autoantigen [33]. Autoreactive T cells are present in human
pancreas [34] and can be expanded from the PLN of diabetic
patients [35].Whether autoreactive Tcells accumulate at these
sites during human diabetes development or are present prior
to initial beta cell damage is unknown. Bystander activation
might occur independently of pancreatic infection and instead
contribute to T cell activation in the PLN [33]. These findings
could help explain why virus modulation of diabetes is not
always associated with virus presence in the pancreas, and can
depend on mouse age at infection [7, 16, 36]. The requirement
for pre-existing autoreactive cells also suggests that bystander
activation accelerates disease progression rather than initiating
beta cell damage. Pancreatic virus infection or other re-
sponses, such as beta cell stress or dysfunction, may produce
such damage. Murine physiological beta cell death triggers
autoantigen presentation by DCs and is required for subse-
quent innate immune cell activation and IFNα secretion in
NOD mice [37, 38].

Studies increasingly address bystander activation as a pos-
sible mechanism triggered by virus infection to accelerate di-
abetes onset. Although most are animal studies, bystander
activation in humans is feasible. Whilst some points may be
unresolved, the data implicate cytokine-secreting DCs and
PRRs. Although direct evidence is lacking to date, this area
of research is worthy of further consideration.

Do cytokine-secreting DCs contribute to diabetes
development?

DCs are a diverse population of innate immune cells with
functionally distinct subsets. In the context of type 1 diabetes,
their functionality varies with age and stage of autoimmune
development [39]. This suggests that DCs might contribute to
both delayed and accelerated diabetes onset. In broad terms
there are two main DC types. Conventional DCs (cDCs) com-
monly present antigen on MHCs to T cells but can also ex-
press high levels of IL-12p70. This active form of IL-12 is a
heterodimer of IL-12p35 and IL-12p40, encoded by IL-12A
and IL-12B, respectively. IL-12p70 is a T cell-stimulating fac-
tor that enhances proinflammatory cytokine expression and
favours cytotoxic T cell activity [40]. The expression of
HLA-DR/MHC II and CD11c can be used to identify cDCs
in humans and mice. Plasmacytoid DCs (pDCs) produce and
secrete high levels of type I IFNs upon activation, which
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possess potent anti-viral activity and help shape innate and
adaptive immune responses [41]. Murine pDCs can be classi-
fied by their low to intermediate levels of expression of MHC
II and CD11c and co-expression of CD45R and plasmacytoid
dendritic cell antigen-1 (PDCA-1). Human pDCs are
characterised as HLA-DR+CD11c− with co-expression of
blood dendritic cell antigen-2 (BDCA-2), blood dendritic cell
antigen-4 (BDCA-4) and CD123.

Ablation of all cDC subsets in NOD mice reduces the
insulitis and T cell activation induced following adoptive
transfer of diabetogenic CD4+ T cells, suggesting that the
cDC population plays a role in inducing disease [42]. How-
ever, expanding CD8+ cDCs alone protects mice from diabe-
tes [43]. This implies the existence of functional diversity in
the contributions of cDC subsets to diabetes development.
NOD mouse cDCs are considered to contribute to diabetes
primarily by capturing autoantigens in the PLN and presenting
them to autoreactive Tcells. However, these cDCs also secrete
IL-12p70 to a greater extent than cDCs from non-diabetes-
prone BALB/c mice [44]. In NODmice, IL-12p70 is dispens-
able for diabetes development, whereas IL-12p70 treatment of

mice with established insulitis accelerates diabetes onset [45,
46]. Thus, IL-12p70 probably influences the rate of progres-
sion to diabetes but is redundant for disease onset. No consis-
tent correlation between cDC number or frequency and dia-
betes development has been observed in humans, although a
polymorphism in IL-12B is associated with onset [47–49].
Therefore, cDCs may contribute to diabetes by presenting
autoantigen and secreting IL-12p70.

Diabetes development in NOD mice is associated with in-
creased numbers of IFNα-producing pDCs in the PLN at 3–
4 weeks of age [50]. This temporally correlates with elevated
levels of type I IFN-induced genes in islets [51]. Transient
blockade of the type I IFN receptor, pDC depletion or block-
ade of pDC IFNα expression prior to insulitis development
greatly reduces diabetes incidence [38, 50, 52]. IFNα produc-
tion by pDCs in NODmice requires B-1a cells and neutrophils
and is associated with functionally impaired macrophages, ac-
cumulation of DNA complexes and activation of the PRR,
Toll-like receptor (TLR) 9 [38]. When insulitis is established,
type I IFN responses again peak in the pancreas but the pDCs
appear to be tolerogenic [42, 51, 53]. Interestingly, NOD mice
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Fig. 1 Bystander activation of lymphocytes by cytokine-secreting den-
dritic cells (DCs). (a) DCs (either conventional or plasmacytoid) encoun-
ter a stimulus, such as viral components, which interact with pattern
recognition receptors (PRRs), such as Toll-like receptors, expressed either
at the DC surface or intracellularly within endosomes. (b) This leads to
DC maturation, shown by increased expression of MHC class I, MHC
class II, CD80 and CD86. (c) Depending on the stimulus and PRRs,
signalling pathways, including nuclear factor κB (NF-κB), are activated,
ultimately resulting in the expression of proinflammatory cytokines. The
cytokines produced depend on the DC subtype and signalling pathway
activated, but may include type I IFNs and IL-12p70. (d) Heightened
expression of MHC and co-factors also increases the ability of DCs to

present antigen to CD4+ and CD8+ T cells. If this occurs in the PLN or
islets where autoantigen accumulates, then autoantigen can be presented
to and activate autoreactive T cells. (e) Secreted type I IFN and IL-12p70
directly induces non-specific bystander lymphocyte activation. This may
include the activation and expansion of T cells, including autoreactive T
cells, as determined by upregulation of activation markers, secretion of
proinflammatory cytokines, such as TNF and IFNγ, or increases in cyto-
lytic activity. Additionally, B cells may be activated, as shown by their
elevated MHC class I, MHC class II, CD80 and CD86 expression, lead-
ing to increased autoantigen presentation to CD4+ and CD8+ T cells and
further activation and expansion of autoreactive T cells
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lacking a functional type I IFN receptor develop insulitis and
diabetes similarly to wild-type NOD mice [51]. This suggests
that type I IFN affects diabetes onset only if transiently in-
duced at critical points during diabetes development. Howev-
er, it remains possible that a transient blockade in type I IFN
responses may trigger other unknown but beneficial modifi-
cations. Like cDCs, pDCs may play a dual role in diabetes
development. For pDCs this duality may involve autoantigen
presentation and CD4+ T cell activation [47]. Blood of at-risk
and diabetic patients shows either increased or decreased
numbers or frequencies of pDCs compared with controls.
However, earlier reports of reduced pDC levels in diabetic
patients may result from technical issues [47, 48, 54, 55].
Furthermore, diabetes development is preceded by the devel-
opment of a transient type I IFN signature [56, 57].

Role of PRRs in diabetes development

DCs use PRRs such as TLRs to recognise pathogen-
associated molecular patterns, including lipopolysaccharide
and nucleic acids. Signalling through these receptors predom-
inantly leads to activation of the nuclear factor κB (NF-κB)
pathway and production of proinflammatory cytokines such
as type I IFNs. These responses are critical for clearance of
bacterial and virus infections [41], and multiple studies have
suggested that these pathways contribute to type 1 diabetes
development [58–60]. Therefore, infections that trigger spe-
cific PRRs might also inadvertently alter autoimmune
responses.

Apart from TLR3, all TLRs commonly signal through the
adaptor protein known as myeloid differentiation primary re-
sponse protein 88 (MyD88) [61]. Some TLRs, including
TLR2 and TLR4, are found on the cell surface, while others,
like TLR3, TLR7 and TLR8, are located within intracellular
endosomes. TLR2, TLR3 and TLR4, which recognise
lipopeptides, double-stranded RNA and bacterial lipopolysac-
charide, are mainly expressed in cDCs. In contrast, TLR7 and
TLR9, which detect single-stranded RNA and DNA, are pre-
dominantly found in pDCs. This explains the biases of cDC
and pDC responses towards bacterial and virus infection,
respectively.

NOD mice lacking MyD88 are completely protected from
diabetes [11]. This protection depends on the presence of com-
mensal bacteria, as MyD88 knockout NOD mice bred under
germ-free conditions still develop diabetes [11]. Importantly,
as knockout ofMyD88 in NODmice under specific-pathogen-
free conditions alters the intestinal microflora, altered abun-
dance of a particular bacterial species may contribute to dia-
betes protection. Although an exact mechanism for this pro-
tection is not yet identified, this finding shows the importance
of MyD88-dependent responses to intestinal microorganisms
for autoimmune progression but not initiation in NOD mice.

Interestingly, MyD88-dependent autoimmune activation is
localised to the PLN in mice housed under specific-
pathogen-free conditions [11].

Blockade of specific TLRs has variable affects on diabetes
development. NOD mice lacking TLR3 or TLR4 remain sus-
ceptible to diabetes [11]. However, Tlr2 knockout can delay
diabetes onset [62]. Tlr9 knockout NOD mice show reduced
IFNα expression, pDC numbers and autoreactive CD8+ T
cells, with delayed diabetes onset, compared with heterozy-
gous littermates [62]. Although diabetes development has not
been assessed in Tlr7 knockout NOD mice, treatment of 8.3-
NODmice with the TLR7 antagonist IRS661 inhibits diabetes
onset [63]. Further supporting a role for endosomal TLRs, the
prevention of endosomal acidification delays diabetes onset in
NOD mice [62]. Human polymorphisms in genes encoding
TLR2 and TLR3 are associated with an elevated risk of dia-
betes [64]. However, a role for TLR7 or TLR9 in human
diabetes development has not been documented.

The converse of TLR blockade, TLR stimulation, can con-
tribute to disease progression. For example, activation of
TLR3 following administration of the double-stranded RNA
viral mimic polyinosinic-polycytidylic acid can induce diabe-
tes in BALB/c mice given insulin self-peptide [65]. Further-
more, TLR7 or TLR9 activation by agonist treatment acceler-
ates diabetes onset in NOD mice [62, 63]. Neither TLR2 nor
TLR9 appears to affect type I IFN-dependent signalling in the
pancreas. However, CD8+ T cell activation and IFNα produc-
tion in the PLN can be induced in NOD and 8.3-NOD mice
following stimulation of TLR7 or TLR9 [51, 62, 63]. Diabetes
still occurs, in some cases delayed, in single-TLR-knockout
mice, suggesting a potential redundancy of these receptors for
diabetes development. However, signalling through these
pathways in the context of an infection might accelerate dia-
betes onset.

Importantly, heightened pDC responses to TLR stimulation
are observed in NOD mice but not in diabetes-resistant
C57BL/6 mice [66]. A similar increase in pDC-dependent
IFNα secretion in response to TLR stimulation is found in
PBMCs from diabetic patients comparedwith healthy controls
[48]. Additionally, TLR-activated human pDCs from diabetic
patients have a greater capacity than control pDCs to induce
the differentiation of naive CD4+ T cells into IFNγ-secreting
CD4+ Tcells [48]. Together, these results suggest that humans
and mice pre-disposed to diabetes may be more likely to show
a heightened response to TLR stimulation, in particular, TLR7
or TLR9. Interestingly, most viruses linked to diabetes devel-
opment contain RNA genomes (e.g. CVB and rotavirus).
Moreover, several signal via TLR7, suggesting a potential link
between viral induction of pDC-mediated IFNα expression
and the ability of these viruses to accelerate diabetes onset.

The cytoplasmic receptors, melanoma differentiation-
associated protein 5 (MDA-5) and retinoic acid-inducible
gene 1 (RIG-I), also detect viral RNA. MDA-5 recognises
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long double-stranded RNA segments while RIG-I recognises
short double-stranded RNA and single-stranded RNA mole-
cules. Both receptors signal through the mitochondrial
antiviral-signalling (MAVS) protein and are expressed by hu-
man islets [67]. Polymorphisms in the MDA-5 gene (also
known as IFIH1) in humans are associated with type 1 diabe-
tes [68, 69]. One study found higher levels of MDA-5 expres-
sion in individuals with diabetes-susceptibility alleles over
those with diabetes-resistance alleles [70]. Therefore, innate
signalling pathways apart from those triggered by TLRs may
also contribute to diabetes development.

How might bystander lymphocyte activation
contribute to diabetes onset?

B and T cells play important roles in diabetes development in
NOD mice [31, 71]. T cells inducing proinflammatory re-
sponses are considered to be the main effector cells contribut-
ing to beta cell destruction [72]. In NOD mice, T cells are
primed in the PLN and potentially the mesenteric lymph
nodes (MLN) prior to trafficking to the pancreas [33, 73].
Furthermore, B cells accumulate in the PLN and show in-
creased activation in an age-dependent manner [74]. Although
islet autoantibody production is associated with diabetes pro-
gression, there is increasing evidence to suggest that antigen
presentation by B cells on MHC class I and MHC class II
molecules to autoreactive T cells is critical for autoreactive T
cell expansion and diabetes development in mice [75, 76].
Autoreactive T cells are detected in the pancreas of some type
1 diabetic patients and show a proinflammatory phenotype
[34, 77]. Additionally, B cell depletion in newly diagnosed
patients partially preserves beta cell function [78].

IL-12p70 and type I IFNs can directly influence the activa-
tion and expansion of T cells. IL-12p70 secretion, together
with high CD86 expression by TLR-activated DCs, is known
to induce the development of IFNγ-secreting T helper-1 cells
[79]. In concert with appropriate T cell receptor and co-
stimulatory signals, type I IFN also contributes to the expan-
sion and differentiation of CD8+ Tcells [41]. This implies that
the presence of autoantigen at the site of bystander activation
would be critical for autoreactive CD8+ T cell activation.
Virus-induced bystander activation in the PLN and pancreas
in the presence of autoantigen would favour autoreactive
CD8+ T cell activation. In the absence of autoantigen, type I
IFN would promote an antiviral state rather than trigger cell
expansion. This may also explain why virus-induced diabetes
modulation seems highly dependent on the timing of infec-
tion, as it is considered that autoantigen and autoreactive T
cells progressively accumulate in the PLN and pancreas as
autoimmunity develops [33]. Type I IFNs can also directly
increase the ability of B cells to present antigen to T cells,
promote B cell survival and differentiation and increase

expression of endogenous TLR7 [80]. Thus, pDC-dependent
type I IFN expression, particularly within the PLN, may in-
crease autoantigen presentation, responses of B cells to viruses
and antibody production. Overall, bystander lymphocytes, ac-
tivated by exposure to proinflammatory cytokines secreted by
DC, are likely to contribute to accelerated diabetes onset.

Viruses that may trigger bystander activation
to accelerate diabetes development

CVB This single-stranded RNAvirus spreads via the faecal–
oral route to cause a diverse range of disease symptoms. CVB
strains have a long-standing history of association with type 1
diabetes [5, 81]. In humans, infection is associated with either
an increased risk (as with CVB1 infection) or a decreased risk
(as with CVB3 and CVB6 infection) [82, 83]. CVB infects
isolated human andmurine beta cells [84–86]. In human islets,
beta cell infection is associated with IFNα production [17].
However, in this context, type I IFN expression within islets
prevents CVB replication and rapid beta cell death [17]. In the
blood of diabetic children, the detection of IFNα and CVB
mRNA is also linked [87]. Stimulation of PBMCs from non-
diabetes-prone individuals with some but not all human
CVB1 isolates increases IFNα expression, as does stimulation
of PBMCs from diabetic patients with CVB4 [48, 88]. The
latter depends on the presence of pDCs [48]. Although PRRs
are not specifically implicated in this process by these studies,
it is probable that the pDC-dependent expression of IFNα is
mediated by TLR7. MDA-5 is also important for induction of
type 1 IFN responses following murine CVB infection [89].
Any link between human diabetes susceptibility and enhanced
MDA-5 expression might lead to enhanced type 1 IFN re-
sponses to CVB infection in genetically susceptible children.
Further analysis of this possibility is required.

The role of type I IFN in the acceleration ofmurine diabetes
by CVB is less well understood. Strains of CVB1, CVB3 and
CVB4 that productively infect islets in NOD mice with
established insulitis are capable of diabetes acceleration [36,
90, 91]. For CVB4, this acceleration requires a threshold num-
ber of autoreactive T cells and therefore the presence of pre-
existing autoimmunity [92]. Based onmouse studies, CVB4 is
thought to induce diabetes not by inducing beta cell death or
molecular mimicry, but instead by evoking beta cell damage,
release of sequestered antigens and presentation of these anti-
gens by resident macrophages to autoreactive T cells [14, 16,
93]. Type I IFN expression within islets prevents CVB repli-
cation and CVB-induced diabetes acceleration [94]. Little is
known regarding CVB presence within PLN and the type I
IFN response at this site following CVB infection. Thus, it is
unknown whether type I IFN-mediated bystander activation
following CVB infection in diabetes-prone hosts plays a role
in diabetes acceleration by CVB.
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Rotavirus These viruses are a leading cause of gastroenteritis
in young children and animals. The triple-layered, infectious
rotavirus particle contains a genome comprising 11 double-
stranded RNA segments. Rotavirus shows a natural tropism
for the differentiated enterocytes of the small intestine, but
also spreads extraintestinally and commonly causes viraemia
in children and mouse models [95, 96]. In an Australian study
of children with a high genetic risk of developing type 1 dia-
betes, a temporal correlation was observed between serum
anti-rotavirus antibodies and the presence of antibodies
against the islet autoantigens insulin, GAD65 and IA-2 [6].
More recently, rotavirus infection before 6 months of age in
combination with exposure to cow’s milk was also associated
with an increase in autoantibodies to GAD65 [97].

Infection of older NODmice with established insulitis with
the rotavirus strain RRV accelerates diabetes onset [7]. This
acceleration is dependent on the presence of insulitis, as dia-
betes development is delayed or unaffected following RRV
infection of infant and young adult NOD mice [98]. Diabetes
acceleration by RRV is associated with a minimal degree of
intestinal inflammation and is independent of pancreatic in-
fection [7, 29]. Instead, it involves virus spread to the MLN
and PLN, where virus associates with antigen presenting cells,
including DCs, inducing cellular maturation [99]. Rotavirus
has been detected within the MLN during human infection
[100]. However, rotavirus presence in human PLN has not
been reported to date. While RRV does not directly associate
with B or Tcells in NODmice, these cells in the lymph nodes,
islets and spleen show markers of increased activation [29].
Using an ex vivo model, we have demonstrated that rotavirus-
exposed pDCs contribute to the activation of B and T cells,
including autoreactive T cells, through TLR7 and type I IFN
signalling [30]. These data indicate that rotavirus can induce
bystander lymphocyte activation of NODmouse cells.Where-
as CVB induction of type I IFN is strain-specific in human
PBMCs [48, 88], stimulation of murine lymphocytes by rota-
virus seems independent of virus strain or replicative ability.
Instead, RRV-mediated diabetes acceleration by bystander ac-
tivation appears to depend on the ability of the virus to first
spread to particular lymph nodes where autoreactive lympho-
cytes accumulate. Indeed, although it replicates in the intes-
tine, the porcine rotavirus CRW-8 neither efficiently spreads
to the MLN or PLN nor modulates type 1 diabetes onset in
NOD mice [99]. Although these NOD mouse studies suggest
that TLR7 is critical for bystander activation, signalling
through MDA-5 plays a role in rotavirus-induced type I IFN
expression [101]. Therefore, a role for enhanced signalling
through MDA-5 in rotavirus acceleration of diabetes, like that
proposed for CVB, cannot be ruled out.

Infection of non-diabetes-prone mice with murine rotavirus
induces type I IFN-dependent B cell activation [102]. This
suggests that type I IFN-dependent activation of autoreactive
lymphocytes in NOD mice may occur and contribute to

diabetes acceleration. Furthermore, rotavirus induces pDC-
dependent activation of human B cells, suggesting that by-
stander activation by rotavirus might occur in humans [102].
Whether type I IFN responses are heightened in PBMCs of
diabetic patients in response to rotavirus, as observed for
CVB, remains to be determined. However, this hypothesis is
supported by the observation that exposure to RRV ex vivo
induces significantly greater activation of B cells from NOD
mice than C57BL/6 mice [30].

Other viruses Influenza A virus is the type species of the
Influenzavirus A genus, family Orthomyxoviridae. These
single-stranded RNA viruses primarily replicate in the respi-
ratory tract. Influenza A viruses also replicate in isolated pri-
mary human pancreatic islets, and spread to the pancreas in
turkeys, causing exocrine and endocrine tissue damage [103].
Recent studies identified a possible link between pandemic
H1N1 influenza A virus infection and diabetes development
in humans [104, 105]. However, their involvement in human
diabetes remains speculative. A recent history of upper respi-
ratory tract infections has been associated with a transient type
I IFN response prior to diabetes development in children [56].
Additionally, influenza A virus induced significantly more
pDC-dependent IFNα secretion by PBMCs from diabetic pa-
tients compared with PBMCs from healthy controls [48].
Higher IFNα secretion correlated with increased numbers of
pDCs vs cDCs [48]. Other single-stranded RNAviruses, such
as those caus ing rube l l a and mumps f rom the
Paramyxoviridae family, have also been linked to childhood
diabetes development [106]. Rubella and mumps viruses can
infect and replicate in beta cells [107, 108]. Some evidence
suggests that rubella virus may elicit antibody- or T cell-
mediated molecular mimicry [109, 110]. It would be interest-
ing to determine whether these viruses also induce heightened
IFNα responses in diabetic patients, as this might represent a
common mechanistic pathway for accelerated diabetes onset
by such viruses.

Conclusions

Much current research is focused on virus detection within the
pancreas of patients with type 1 diabetes. Detection at diabetes
onset is likely to be a rare occurrence for many viruses. Fur-
thermore, pancreatic virus may not necessarily indicate a role
in diabetes, as this may result from increased susceptibility to
infection owing to pancreatic injury. Despite shortcomings,
pancreatic virus detection is important for understanding
virus-induced pancreatic cell death and inflammation. By-
stander activation as a mechanism for diabetes acceleration
by viruses is influenced by the timing and location of virus
infection and may operate remotely from the pancreas. This
would help explain why viruses are not always detectable in
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the pancreas and potentially allow identification of additional
diabetogenic viruses and their infections. Future human stud-
ies should determine whether autoreactive T cells accumulate
and become activated in the PLN and other remote sites, as
well as the pancreas, and attempt to identify the role of by-
stander activation at these sites in diabetes development.More
efforts should be directed towards virus detection and inflam-
mation analysis in the PLN and other remote sites in humans
progressing towards diabetes. As bystander activation is non-
specific and does not require presentation of peptide on
MHCs, it may represent a common mechanism employed by
multiple viruses. Therefore, unbiased virus detection studies
should be conducted in patients and potential links between
the immune responses induced by these viruses should be
identified. Evidence indicates that diabetes-prone mice and
humans may be more susceptible to these bystander responses
to viruses, supporting a role for the interaction between virus
infection and genetic susceptibility. Therefore, understanding
the phenotype of specific genetic variants, such as theMDA-5
polymorphisms associated with diabetes, may allow identifi-
cation of important virus-specific immune responses that are
heightened in at-risk patients. Overall, future studies should
investigate the possibility that infections inducing bystander
lymphocyte activation may contribute to diabetes progression
in at-risk children.
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