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Abstract
Aims/hypothesis Gestational diabetes mellitus is associated
with adverse maternal and fetal outcomes during, as well as
subsequent to, pregnancy, including increased risk of type 2
diabetes and cardiovascular disease. Because of the impor-
tance of early risk stratification in preventing these complica-
tions, improved first-trimester biomarker determination for
diagnosing gestational diabetes would enhance our ability to
optimise both maternal and fetal health. Metabolomic profil-
ing, the systematic study of small molecule products of bio-
chemical pathways, has shown promise in the identification of
key metabolites associated with the pathogenesis of several
metabolic diseases, including gestational diabetes. This article
provides a systematic review of the current state of research on
biomarkers and gestational diabetes and discusses the clinical
relevance of metabolomics in the prediction, diagnosis and
management of gestational diabetes.
Methods We conducted a systematic search of MEDLINE
(PubMed) up to the end of February 2014 using the key term
combinations of ‘metabolomics,’ ‘metabonomics,’ ‘nuclear
magnetic spectroscopy,’ ‘mass spectrometry,’ ‘metabolic pro-
filing’ and ‘amino acid profile’ combined (AND) with ‘ges-
tational diabetes’. Additional articles were identified through
searching the reference lists from included studies. Quality
assessment of included articles was conducted through the use
of QUADOMICS.
Results This systematic review included 17 articles. The bio-
markers most consistently associated with gestational diabetes
were asymmetric dimethylarginine and NEFAs. After

QUADOMICS analysis, 13 of the 17 included studies were
classified as ‘high quality’.
Conclusions/interpretation Existing metabolomic studies of
gestational diabetes present inconsistent findings regarding
metabolite profile characteristics. Further studies are needed
in larger, more racially/ethnically diverse populations.
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Abbreviations
ADMA Asymmetric dimethylarginine
BCAA Branched-chain amino acid
CVD Cardiovascular disease
GDM Gestational diabetes mellitus
IADPSG International Association of Diabetes and

Pregnancy Study Groups
LC-MS Liquid chromatography-mass spectrometry
NGT Normal glucose tolerance
NMR Nuclear magnetic resonance

Introduction

Gestational diabetes mellitus (GDM), defined as diabetes
diagnosed during pregnancy that is not clearly overt diabetes,
affects from 5–6% to 15–20% of pregnancies in the USA,
depending on population demographics, screening methodol-
ogy and diagnostic criteria in use [1]. Several risk factors have
been found to correlate highly with GDM, including advanced
maternal age, race/ethnicity, obesity and family history of type
2 diabetes [2]. Studies have also shown that a pregnancy
complicated by GDM is a significant risk factor for the sub-
sequent development of type 2 diabetes [1] and cardiovascular
disease (CVD) [3–5]. Although healthcare providers agree on
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the importance of diagnosing GDM, current risk assessment
protocols recommended by professional societies vary. Con-
sequently, healthcare providers are inclined to follow the
recommendations from the professional society with which
they are most closely aligned. Guidelines from the Interna-
tional Association of Diabetes and Pregnancy Study Groups
(IADPSG) recommend that a one-step 2 h, 75 g OGTT be
performed between 24 and 28 weeks’ gestational age [1]. In
contrast, the National Institutes of Health (NIH) and the
American College of Obstetrics and Gynecology (ACOG)
suggest a two-step diagnostic approach. Women who meet
or exceed the screening threshold after a 1 h, 50 g oral glucose
load test next undergo a 3 h, 100 g OGTT between 24 and
28 weeks’ gestational age [1]. The ADA, which previously
endorsed the one-step approach, now considers both methods
acceptable for GDM screening [1]. The ADA encourages
further research in this area because evidence definitively
demonstrating the superiority of either approach is lacking.

Given the escalating national burden of type 2 diabetes [1]
and CVD [6], earlier identification of GDM is critical to
providing an opportunity for the application of primary pre-
vention strategies. However, prior efforts to identify first-
trimester biomarkers and risk algorithms for subsequent
GDM diagnosis have been limited. Associations have been
found between levels of the following first-trimester bio-
markers and increased risk of GDM: low follistatin-3 [7];
low sex hormone-binding globulin [8, 9]; high C-reactive
protein [9, 10]; and high tissue plasminogen activator and
low HDL-cholesterol [11]. Although these models had vari-
able degrees of predictive power based on the choice of
clinical variables or biochemical surrogates of adiposity, none
explored first-trimester metabolites to identify women at risk
of GDM.

Metabolomics, the science of systematically constructing
metabolite profiles to study metabolic pathways, has shown
promise in the identification of novel pathways and early
biomarkers indicative of insulin resistance and type 2 diabetes
[12, 13]. Metabolomic detection, identification and quantifi-
cation are typically carried out by liquid chromatography-
mass spectrometry (LC-MS), gas chromatography-mass spec-
trometry (GC-MS) or nuclear magnetic resonance (NMR)
spectroscopy [12], all highly sensitive metabolomic tech-
niques. MS, which uses an analyser within an electromagnetic
field, first allows the separation of ions within an analyte
according to their mass-to-charge ratio. The detection of spe-
cific metabolite classes is possible when MS is coupled with
gas or liquid chromatography, allowing analytical compound
separation. Conversely, NMR spectroscopy uses a strong
magnetic field to determine the structural and chemical prop-
erties of relevant molecules, allowing the identification of
single metabolites and quantification of metabolite levels [12].

The current literature demonstrates the use of metabolomic
profiling in the assessment of plasma, serum, urine, breast

milk or amniotic fluid in the fasting, post-glucose load or
postprandial state [14]. Recent investigations have also sug-
gested combining metabolomics and the OGTTas an effective
method of revealing unique metabolic phenotypes [15–17].
Metabolomic analyses of samples from participants before
and after an OGTT have been used to detect early shifts in
metabolism during the progression from early insulin resis-
tance to type 2 diabetes [15]. Consequently, metabolomics can
potentially improve on current diagnostic methods for GDM
that focus solely on data from the OGTT.

Detailed reviews of metabolomic studies in type 2 diabetes
have been presented elsewhere [12, 13] and have implicated
specific clusters of metabolites, particularly among branched-
chain and aromatic amino acids in the pathogenesis of type 2
diabetes. These findings point to perturbations in normal
metabolism and allow the potential identification of novel
pathways in the development of diabetes, thereby enriching
our understanding of metabolic syndromes. The purpose of
our review is to critically examine the clinical studies that both
characterise metabolite profiles to predict GDM and distin-
guish metabolite profiles of women with GDM from those
without GDM. Patterns of metabolic pathways found in the
literature, as well as directions for future research, will be
discussed in the context of metabolomics as a potential diag-
nostic tool for GDM.

Methods

Search strategy

Literature searches of MEDLINE (PubMed) for relevant arti-
cles were conducted up to the end of February 2014 with the
key term combinations of ‘metabolomics’, ‘metabonomics’,
‘nuclear magnetic spectroscopy’, ‘mass spectrometry’, ‘meta-
bolic profiling’ and ‘amino acid profile’ combined with ‘ges-
tational diabetes’. To minimise selection bias, two investigators
(J. Huynh and G. Xiong) independently reviewed titles, ab-
stracts and available full-text articles for relevance. Additional
articles were identified through searching the reference lists
from included studies. Disagreements were resolved by con-
sensus and by a third investigator (R. Bentley-Lewis).

Eligibility criteria

Articles were included or excluded on the basis of full-text
articles. The following prespecified inclusion criteria were
applied: (1) participants included pregnant women classified
as having GDM; (2) the control population was specified (e.g.
women with normal glucose tolerance [NGT]); (3)
metabolomic techniques such as LC-MS or NMR spectrosco-
py were used to construct metabolite profiles; and (4) metab-
olites were examined in maternal plasma, serum, urine or
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amniotic fluid. Studies were excluded if they (1) analysed
metabolite profiles in animals or (2) did not have an appro-
priate control group.

Data extraction and analysis

Data on population characteristics and metabolomic tech-
niques and study results were extracted. One investigator
performed the data extraction (J. Huynh), which was verified
by a second investigator (R. bentley-Lewis). Owing to the
limited number of studies relevant to GDM and metabolo-
mics, the substantial methodological heterogeneity and the
considerable variations in study population characteristics, a
quantitative meta-analysis of the data was not appropriate.

Methodological quality assessment

The study team used QUADOMICS to assess the methodo-
logical quality of the studies. QUADOMICS—an adaptation
of QUADAS, a quality assessment tool used in systematic
reviews of diagnostic accuracy studies—was developed to
assess quality issues specific to ‘-omics’ research, including
the quality assessment of studies included in systematic re-
views [18]. The methodologies of studies that achieved 12/16
or more on the QUADOMICS tool were classified as ‘high
quality’, whereas those that scored 11/16 or lower were clas-
sified as ‘low quality’.

Results

Study characteristics

The selection algorithm for the 17 studies that met the
inclusion/exclusion criteria for our systematic review is de-
tailed in Fig. 1. All included studies compared metabolites in
women with GDM with those in women with NGT. The
sample size of the GDM study population varied among the
studies, ranging from eight to 79 participants. In addition, the
GDM diagnostic criteria used varied among the studies. Two
studies specified using O’Sullivan and Mahan criteria [19,
20], seven studies used Carpenter–Coustan criteria [21–27];
three studies referenced the World Health Organization
[28–30], one study referenced the Fourth International Gesta-
tional Diabetes Workshop criteria, and four studies did not
specify the GDM diagnostic criteria used [31–34].

One study used amniotic fluid only [31], eight used mater-
nal plasma only [19, 20, 22, 23, 25, 26, 29, 35], three used
maternal serum only [21, 24, 30], two used maternal urine
only [28, 34], one used both amniotic fluid and urine [33], and
one used both maternal urine and plasma [32]. Three studies
examined metabolite profiles in the setting of other prenatal

disorders [28, 33, 34]; however, only data on women with
GDM without these potential confounders were abstracted
from these studies. The analytical platforms used for metabo-
lite detection included ion exchange chromatography [19],
amino acid analyser [20], fluorescence polarisation immuno-
assay [21, 22], HPLC/dual wavelength spectrophotometry
[23], Immunolite 2000 assay [24], ELISA-based assay [29,
30], HPLC/fluorescence spectroscopy [25], ultra-performance
LC-MS [33], GC-MS [27] and 1HNMR spectroscopy [28, 31,
32, 34]. The methodologies, metabolites and regulation pat-
tern (‘upregulated’, ‘downregulated’ or ‘unchanged/not statis-
tically significantly different’) in each study are summarised
in Table 1.

Quality assessment

Electronic supplementary material (ESM) Table 1 summarises
the quality assessment process in accordance with the
QUADOMICS tool [18]. Four of the 17 studies were classi-
fied as ‘low quality’ fulfilling fewer than 12 of the 16 criteria
[18]. None of the studies stated whether the index test results
were interpreted without knowledge of the results of the
reference standard and the converse, thus failing criteria 12
and 13 of the QUADOMICS tool [18].

Discussion

Specific metabolite groups

Several investigations of metabolite profiles have identified
specific biochemical groups to facilitate identification of po-
tential mechanistic pathways for disease states. For example, a
recent review has identified branched-chain and aromatic
amino acids as highly significant predictors of the develop-
ment of type 2 diabetes [12]. Metabolomic studies of preg-
nancies complicated by GDM have yielded inconsistent re-
sults, perhaps reflecting several potential contributory factors
such as small participant populations, differing methodology
of metabolomic analysis across studies, and variations in
glycaemic control or treatment among participants. In this
systematic review, the biomarkers most consistently associat-
ed with GDM are asymmetric dimethylarginine (ADMA) [25,
26, 29] and NEFAs [19, 27, 30, 35].

Branched-chain amino acids (BCAAs) BCAAs—valine, leu-
cine and isoleucine—considered to be the most hydrophobic
of the amino acids have been associated with risk factors for
diabetes, including obesity [36] and insulin resistance [37]. In
fact, studies have demonstrated elevated levels of BCAAs in
non-diabetic individuals who later developed type 2 diabetes
[12, 13]. In contrast, although several studies have reported
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higher levels of BCAAs in women with GDM than controls
[19, 20], these elevated levels have not been seen in all
circumstances [23, 35]. One of the earliest studies conducted
on protein metabolism and GDM observed elevated levels of
fasting and postprandial BCAAs in women with GDM com-
pared with those without at 30–39weeks’ gestational age [19].
Similar results were reported for postprandial BCAAs but not
fasting BCAAs at 32–36 weeks’ gestational age [20]. More
recent investigations by Cetin et al [23] and Pappa et al [35]
with larger populations of women with GDM, however, re-
ported no differences in circulating levels of BCAAs in ma-
ternal plasma for women with GDM compared with controls
at 37–41 and 30–33 weeks’ gestational age, respectively.

Aromatic amino acids The aromatic amino acids, tyrosine and
phenylalanine, are characterised by the presence of an aromat-
ic ring in their side chains. Along with BCAAs, aromatic
amino acids have been implicated in the aetiology of liver
failure [38]. Several large cohort studies on type 2 diabetes
have also shown significantly increased levels of aromatic
amino acids compared with controls [12, 39, 40]. With respect
to GDM, higher levels of fasting and postprandial aromatic
amino acids have been found by Butte et al [20] at 32–
36 weeks’ gestational age in maternal plasma. However,
Pappa et al observed no changes in aromatic amino acids at
30–33 weeks’ gestational age, and Metzger et al [19] and
Cetin et al [23] observed no changes in phenylalanine levels
in maternal plasma at 30–39 or 37–41 weeks’ gestational age,
respectively.

Sulfur-containing compounds Sulfur-containing amino
acids—methionine, cystine, cysteine and homocysteine—

play a significant role in the maintenance of cellular systems.
For example, defects in the regulation of sulfur concentrations
in the body have been associated with vascular disease and
cancer [41]. Butte et al [20] observed higher levels of cysteine
in fasting and 2 h postprandial plasma levels for women with
GDM compared with controls. Decreased methionine levels
in maternal plasma have also been observed for women with
GDM compared with controls [23]. Tarim et al [22], Seghieri
et al [21] and Guven et al [24] found enhanced homocysteine
levels in women with GDM at 24–28 weeks’ gestational age.
However, Idzior-Waluś et al [30] and Akturk et al [25] found
no difference in homocysteine levels between women with
GDM and controls at 26–32 and 32–39 weeks’ gestational
age, respectively. Further study in larger populations is needed
to elucidate the effects of GDM on BCAAs, aromatic amino
acids and sulfur-containing compounds.

ADMA ADMA, closely related to the amino acid, L-arginine,
is a metabolic byproduct of repeated protein modification
processes in the cytoplasm. It is considered a potential medi-
ator of endothelial dysfunction [42], and clinical studies have
observed increased levels of ADMA in individuals with sev-
eral cardiometabolic diseases, including insulin resistance
[43], hypercholesterolaemia [44], atherosclerosis [45], hyper-
tension [46], chronic heart failure [47], type 2 diabetes
mellitus [48], chronic renal failure [49] and histories of
GDM [50–52]. Several clinical studies and reviews have also
highlighted the potential role of ADMA as an independent
predictor of the progression of atherosclerosis, cardiovascular
death and all-cause mortality [42, 53–56].

Three studies of maternal plasma in women with GDM
found increased levels of ADMA compared with women with

Initial search through PubMed
(n=69)

Titles screened
(n=69)

Abstracts screened
(n=16)

Reasons for initial exclusion:
• Reviews (n=4)
• Use of non-metabolomic
technologies/evaluated compounds are not
metabolites (e.g. proteins, RNA) (n=37)
• Animal studies (n=11)
• Articles not in English (n=1)

Full-text articles screened
(n=8)

Reasons for exclusion:
• Reviews (n=2) 
• Evaluated compounds are not metabolites
(e.g. proteins, RNA) (n=5)
• Use of non-metabolomic technologies (n=1)

Additional articles identified
through manually searching

bibliographies
(n=9)

Studies included in
systematic review

(n=17)

Fig. 1 Systematic review study
selection algorithm. The 17
studies that fulfilled the inclusion/
exclusion criteria for this
systematic review were selected
from among 69 articles identified
in the initial PubMed literature
review. The process for selecting
the 17 articles is displayed
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impaired glucose tolerance at gestational ages ranging from 24
to 39 weeks [25, 26, 29]. Sertkaya et al [26] observed that the
increased ADMA correlated significantly with insulin
sensitivity/resistance indices and moderately with 2 h insulin
levels after an OGTT. The elevated levels of ADMA associ-
ated with GDM may be explained, in part, by the increased
risk of concurrent hypertensive disorders during pregnancy
[57, 58] and the increased subsequent cardiometabolic disease
risk in women with GDM [3–5]. In addition, significant
endothelial dysfunction has been observed among women
with GDM compared with those with NGT during the third
trimester of pregnancy [59], potentially implicating ADMA in
the pathogenesis of this disease.

Other amino acids Additional amino acids have been exam-
ined in the context of GDM. Butte et al [20] also found higher
fasting levels of taurine, hydroxyproline, glutamic acid and
glutamine in maternal plasma in the third trimester among
Hispanic women with insulin-treated GDM. These results
suggest that, despite satisfactory maternal glycaemic control,
protein metabolism reflected by elevated plasma amino acid
concentrations is altered in women with GDM compared with
those with NGT [20]. Another study by Cetin et al [23], which
tested several amino acids in maternal plasma only, found
higher levels of ornithine, an amino acid involved in the urea
cycle, in women with GDM at delivery. However, to our
knowledge, these results have not been replicated.

NEFAs NEFAs, the major components of triacylglycerols, are
used as an energy source by many body tissues [60]. Adipose
tissue lipolysis of triacylglycerols releases NEFAs and glyc-
erol [60]. In addition, increased circulating levels of NEFAs
have been well described in studies of insulin resistance and
type 2 diabetes [61, 62]. Specifically, investigations on the
inhibition of lipolysis by acipimox or nicotinic acid have
shown improvement in meal tolerance and insulin sensitivity
in patients with type 2 diabetes [63, 64].

Four studies have found upregulated levels of NEFAs in
women with GDM in the third trimester of pregnancy [19, 27,
30, 35]. Chen et al [27] observed that, at 15 weeks’ gestational
age, women with GDM had upregulated levels of essential
and non-essential fatty acids, including myristic acid, palmitic
acid, palmitoleic acid, eicosapentaenoic acid, total saturated
fatty acids and total NEFAs, compared with those with NGT.
During the third trimester, the same women with GDM had
higher levels of myristic acid, palmitic acid, stearic acid,
palmitoleic acid, oleic acid, linoleic acid, linolenic acid,
eicosapentaenoic acid, docosahexaenoic acid, total saturated
fatty acids, total monounsaturated fatty acids, polyunsatured
fatty acids, and total NEFAs. Chen et al [27] also found that
the dietary intake of polyunsaturated fatty acids was de-
creased, but saturated fatty acids were increased in women
with GDM compared with control subjects. Because

differences in fatty acid composition in women with GDM
may exist because of diet or maternal adiposity levels, more
research in this area is needed to elucidate potential
mechanisms.

Other metabolites Biochemical pathways involving other me-
tabolites have been implicated in the pathogenesis of type 2
diabetes, including triacylglycerols [65], acylcarnitines [66]
and ketone bodies [67]. Specifically, non-fasting triacylglyc-
erol levels have been associated with an increased risk of a
number of cardiometabolic disorders, including myocardial
infarction, ischaemic heart disease, hypertension and type 2
diabetes [65, 68]. Increased acylcarnitine levels have been
associated with insulin resistance [69, 70] and correlated with
obesity and type 2 diabetes [66]. In addition, higher levels of
circulating ketone bodies have been associated with obesity
and type 2 diabetes and prediction of worsening
hyperglycaemia [67].

Idzior-Waluś et al [30] and Tarim et al [22] observed higher
levels of triacylglycerols in women with GDM, but these were
not found to be significantly different by Seghieri et al [21].
Diaz et al [32] reported upregulated levels of 3-
hydroxyisovalerate, N-methylnicotinamide and 2-
hydroxyisobutyrate with lower levels of trimethylamine N-
oxide and betaine in the second trimester, but these results
were not observed by Sachse et al [28] when examining
maternal urine levels in the third trimester. Pappa et al [35]
observed lower levels of fasting acylcarnitine esters and
higher levels of fasting β-hydroxybutyrate in maternal plasma
of women with GDM at 30–33 weeks’ gestational age and
suggested that there may be a shift from gluconeogenesis to
ketone body production as the predominant energy source in
GDM. However, these results have not been replicated by
other investigative teams. Therefore, because there is still
sufficient variability across observations, more research on
these metabolites in larger population studies is warranted.

Metabolomic studies in the prediction of GDM

Five recent metabolomic studies of urine, amniotic fluid and/
or plasma have attempted to determine biomarkers for diag-
nosing GDM at 14–25 weeks’ gestational age [28, 31–34], but
findings have been inconsistent. Studies using NMR spec-
trometry have found increases in several metabolites in wom-
en with GDM, including acetate, creatine, creatinine, choline
[34], 3-hydroxyisovalerate and hydroxyisobutyrate [32]. In
addition, decreases in trimethylamine N-oxide and betaine
levels have also been observed in women with GDM [32].
Furthermore, in one study using NMR and LC-MS technolo-
gies, Graça et al [31] found small increases in several amino
acids and organic acids. Yet, in a subsequent follow-up study,
Graça et al [33] found no significant changes in metabolite
profiles between women with GDM and controls. Sachse et al
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[28] also studied differences in metabolite levels between
women with GDM and controls at 8–20 weeks’ gestational
age, but did not identify any reliable biomarkers for the
diagnosis of GDM. Enhanced identification of maternal me-
tabolites in the prediction of GDM necessitates further studies
in larger, more racially/ethnically diverse populations.

The future of metabolomics

The application of metabolomics in diabetes research has
provided the scientific community with new insights into the
pathogenesis of diabetes. Several putative metabolic markers
and associated pathways have been identified and validated in
association with type 2 diabetes. Pathways implicated include
those relevant to carbohydrate metabolism, lipid metabolism,
amino acid metabolism (specifically with BCAAs and aromat-
ic amino acids) and bile acids [71]. Our systematic review of
women with GDM has revealed similar metabolic biomarkers
and derangements in carbohydrate, lipid and amino acid me-
tabolism.Women with GDM have consistently shown reduced
peripheral insulin sensitivity [72], reduced suppression of he-
patic glucose production [73], defects in pancreatic beta cell
function [74], and an increase in the production of inflamma-
tory cytokines [75], all of which have been shown to enhance
chronic maternal insulin resistance [76]. In this systematic
review, we suggest two additional pathways involving ADMA
and NEFAs in the pathogenesis of GDM. Further research is
needed to determine if the metabolite profiles associated with
type 2 diabetes would also distinguishwomenwith GDM from
those with NGT. The elucidation of these relationships would
be particularly informative because GDM is associated with an
increased risk of subsequent type 2 diabetes [1]; GDM and
type 2 diabetes potentially share a common genetic basis [77],
and both disorders are characterised by insulin resistance and
impaired insulin secretion [78].

Strengths of this systemic review include the rigorous and
detailed way in which the literature was evaluated. However,
the inconsistent elevation/reduction of some of the biomarkers
and the small sample sizes of some of the study populations
limit the ability to draw definitive conclusions from these data.
Nonetheless, harnessing the benefits of metabolomics to gath-
er information on GDM is a relatively new endeavour that
requires further investigation in larger, more diverse popula-
tions. Therefore, it is important to examine current gaps in the
literature as we carefully consider the best direction for sub-
sequent research.

One conspicuous gap in the literature is the lack of large,
well-defined cohorts that can offer robust analysis and com-
prehensive data on fasting and 2 h plasma samples. Using an
OGTT in metabolomic studies of GDM will provide informa-
tion on both anabolic and catabolic processes as well as
indicate how effectively women with GDM process glucose
loads during pregnancy. Recent investigations have shown

that metabolomic analysis of samples from participants before
and after an OGTT can be used to detect early shifts in
metabolism during the progression from early insulin resis-
tance to type 2 diabetes [15, 16]. For example, Ho et al [15]
studied a community-based population of 377 men and wom-
en with diabetes using LC-MS and found significant blunted
changes after OGTT for β-hydroxybutyrate, isoleucine, lac-
tate and pyridoxate in participants with insulin resistance
compared with non-insulin-resistant individuals. Also, a pilot
study of women with a history of GDM by Bentley-Lewis
et al [17] reported metabolite decreases after an OGTT of
similar magnitude to those found by Ho et al [15]. Moreover,
Bentley-Lewis et al identified that the greatest changes in
metabolite levels after an OGTT in women with a history of
GDM was significantly associated with a longer duration of
breastfeeding, higher BMI, increasing fasting glucose levels,
race, adiponectin and parity, suggesting a relationship be-
tween metabolite profiles and behavioural and clinical char-
acteristics [17]. Because the investigation of women with
GDM often incorporates an OGTT to biochemically diagnose
GDM at 24–28 weeks of gestation, future studies could in-
clude biological fluid collection for metabolomic analyses. In
addition, consideration of clinical and behavioural factors of
the population is critical to maximally characterise the impact
of metabolite profile data [17].

Furthermore, the metabolomic methodology used should
be optimised. Studies using a multiplatform approach, with
both LC-MS and NMR spectroscopy for example, may pro-
vide a better understanding of metabolic derangements than
studies only using one analytical tool. In addition, current
studies of GDM have examined maternal urine, amniotic
fluid, maternal plasma and maternal serum. Although the fluid
used will depend in part on the outcome to be analysed,
additional studies examining several biological fluids concur-
rently may provide a more complete overview of the meta-
bolic and biochemical events that occur during a pregnancy
complicated by GDM.

In addition, the timing of the investigation is critical. The
majority of current metabolomic studies on GDM are con-
ducted during the third trimester or after delivery. Yet, the
ADA, ACOG, IADPSG and NIH recommend that women
undergo OGTTs at the second trimester, and only women at
high risk of type 2 diabetes are screened in the first trimester
[1]. Consequently, there is a need to bridge the gap between
clinical research and clinical practice, and to begin conducting
metabolomic studies on specimens obtained during the earli-
est prenatal encounter. Metabolites identified in current stud-
ies of GDM require further research in larger, prospective,
more racially/diverse populations before potential use in clin-
ical practice. As we continue to consider the implications of
emerging technologies in clinical practice, we advance to-
wards more comprehensive models of care that can benefit
the long-term health outcomes for mother and offspring.
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