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Abstract
Aims/Hypothesis Although obesity is a major risk factor for
diabetes, little is known about weight gain trajectories across
adulthood, and whether they are differentially associated with
metabolic markers of diabetes.
Methods We used fasting blood samples and longitudinal
weight data for 5,436 adults (5,734 observations, aged
18–66 years) from the China Health and Nutrition Survey
(1991–2009). Using latent class trajectory analysis, we iden-
tified different weight gain trajectories in six age and sex

strata, and used multivariable general linear mixed effects
models to assess elevated metabolic markers of diabetes
(fasting glucose, HbA1c, HOMA-IR, insulin) across weight
trajectory classes. Models were fitted within age and sex
strata, and controlled for baseline weight (or baseline weight
by weight trajectory interaction terms), height, and smoking
habit, with random intercepts to control for community-level
correlations.
Results Compared with weight gain, classes with weight
maintenance, weight loss, or a switch from weight gain to loss
had lower values for metabolic markers of diabetes. These
associations were stronger among younger women (aged
18–29 and 30–39 years) and men (18–29 years) than in
older (40–66 years) men and women. An exception was
HOMA-IR, which showed class differences across all ages
(at least p<0.004).
Conclusion Trajectory analysis identified heterogeneity in
adult weight gain associated with diabetes-related metabolic
markers, independent of baselineweight. Our findings suggest
that variation in metabolic markers of diabetes across patterns
of weight gain is masked by a homogeneous classification of
weight gain.
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Abbreviations
CHNS China Health and Nutrition Survey
LCTA Latent class trajectory analysis

Introduction

Although obesity is a major risk factor for diabetes [1], the
long-term patterns of adult weight gain associated with
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diabetes and insulin resistance are not well understood. Much
previous research has used simple measures of weight change,
typically assuming a population average trajectory [2–5].
Some recent reports have characterised weight change using
methods to derive patterns, such as principal components [6,
7], to examine diabetes risk. However, more complexmethods
can identify distinct groups with similar underlying weight
trajectories that differ in their functional form [8–10]. While
such methods have been used to classify trajectories of weight
change [11–14], they have not been widely used to examine
differential metabolic markers of diabetes as a function of
different weight trajectory patterns across adulthood.

China presents a unique model for weight change, having
recently undergone transition from a history of undernutrition
to a rapid increase in obesity [15, 16]. In addition, the consid-
erable geographic and temporal heterogeneity in the timing of
the transition from underweight to overweight across China
provides sufficient variation in the shape of weight trajectories
to investigate a potential differential association with diabetes
markers. The incidence of obesity-related noncommunicable
diseases, such as diabetes, has more than doubled over the past
two decades from approximately 3% in 1994 to 7–10% in
2008 [17, 18]. Such diseases are now the leading causes of
morbidity, disability and mortality in China [15, 19].

This study uses longitudinal weight data for 5,436 individ-
uals (25,734 observations), along with markers of diabetes
(fasting glucose, HbA1c, insulin and insulin resistance
[HOMA-IR]) obtained in 2009. Using latent class trajectory
modelling to characterise weight trajectories over 18 years, we
examine longitudinal patterns of weight gain to determine
whether subgroups of individuals with different weight trajec-
tories show variations in glucose, HbA1c, HOMA-IR and
insulin levels. We tested the hypothesis that, after controlling
for initial weight, a large weight gain over 18 years is associ-
ated with higher levels of glucose, HbA1c, HOMA-IR and
insulin compared with stable weight or a smaller weight gain
over the same time period.

Methods

The China Health and Nutrition Survey

The China Health and Nutrition Survey (CHNS) collected
health data in 228 communities (nine diverse provinces:
Guangxi, Guizhou, Heilongjiang, Henan, Hubei, Hunan,
Jiangsu, Liaoning and Shandong) throughout China in seven
survey rounds from 1991 to 2009 (1991, 1993, 1997, 2000,
2004, 2006 and 2009). The 2009 surveywas the first to collect
fasting blood samples. Using a multistage, random cluster
design, a stratified probability sample was used to select
counties and cities stratified by income and urbanicity using
State Statistical Office definitions [20]. Communities and

households were then randomly selected from these strata.
The CHNS cohort initially mirrored national age–sex–educa-
tion profiles [21–23], and by 2011 the provinces in the CHNS
sample constituted 47% of the Chinese population (according
to the 2010 census). Survey procedures have been described
elsewhere [24]. The study was approved by the Institutional
Review Board at the University of North Carolina at Chapel
Hill, the China–Japan Friendship Hospital, the Ministry of
Health and China, and the Institute of Nutrition and Food
Safety, China Centers for Disease Control. Participants gave
informed consent.

Study population

The present analysis limited eligibility to adults aged 18 years
at study entry to 66 years at the 2009 examination (to avoid
age-related reductions in weight caused by sarcopenia [25]),
with biomarker data (n=8,149). Additional inclusion criteria
were anthropometric measures from at least two surveys to
derive weight trajectories (n=6,470), fasting blood collection,
and not pregnant at 2009 (n=5,436). The number of visits
providing anthropometry measures ranged from two to seven
measurement occasions (two visits, n=666; three visits,
n=885; four visits, n=842; five visits, n=1,059; six visits,
n=804; seven visits, n=1,180; median=five visits; total
n=5,436 participants across 25,734 observations).

Measures

Diabetes indicators Following overnight fasting, a 12 ml
blood sample was collected by venipuncture. Whole blood
was immediately centrifuged and serumwas tested for glucose
using a glucose oxidase phenol 4-aminoantipyrine peroxidase
kit (Randox, Crumlin, UK) and a Hitachi 7600 analyzer
(Hitachi; Tokyo, Japan). Serum insulin was tested using
radioimmunology assay kit (North Institute of Biological
Technology; Beijing, China) using a XH-6020 gamma coun-
ter (North Institute of Biological Technology). Whole blood
HbA1c high performance liquid chromatography analysis
(model HLC-723 G7; Tosoh Corporation, Tokyo, Japan) gen-
erated continuous outcomes for fasting glucose, HbA1c, insu-
lin and natural log transformed HOMA-IR, calculated as
(insulin × glucose/6.945 pmol/l) [26, 27].

Anthropometry At each visit, the height of participants was
measured without shoes to the nearest 0.2 cm using a portable
SECA stadiometer (SECA; Hamburg, Germany). Weight was
measured without shoes and in light clothing to the nearest
0.1 kg using a calibrated beam scale.

Weight trajectories: latent class trajectory modelling We used
latent class trajectory modelling (LCTA) to identify weight
gain trajectories using the SAS version 9.2 (SAS Institute,
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Cary, NC) TRAJ procedure with a censored normal model
[28, 29]. LCTA has only recently been used to identify other-
wise unresolved trajectory classes in epidemiological data
[30]. Unlike traditional growth curve analysis, which assumes
that individuals vary around a single mean growth curve,
LCTA has the advantage of classifying individuals into dis-
tinct groups with similar underlying trajectories [8–10]. The
differential age-related patterns of weight gain in China over
the past two decades provided the rationale for examining
trajectories within age groups. We modelled weight change
in six sex-by-baseline age subgroups (male, female: 18 to
29 years, 30 to 39 years, and 40 to 66 years), allowing for a
variety of different order polynomials. We used statistically
rigorous criteria to determine best fit via: (1) model selection
using lowest Bayesian information criterion, a well-accepted
model comparison metric often used for latent class models
[31]; and (2) inclusion of at least 2% of the sample population
within each trajectory class. Although models might differ
across age groups according to different order polynomials,
trajectories were assumed to follow the same order polynomi-
al within each age group. Once weight gain trajectories were
determined, a nominal categorical variable was created to
describe the trajectory membership of each individual, which
was then used in central analyses.

Demographic and behavioural variables Ever smoking and
number of cigarettes per day were reported at each exam.
Urbanicity was defined using a multidimensional 12 compo-
nent urbanisation index capturing community-level physical,
social, cultural and economic environments, and represented
the heterogeneity otherwise missed in an urban vs rural mea-
sure based only on population density [32]. Household
income was reported in Yuan.

Statistical analyses

After class identification, analyses used R (version 2.13; R
Development Core Team, Vienna, Austria) [33]. Demographic
variables and continuous and categorical diabetes-related out-
comes were summarised across age and sex strata as percent-
ages (categorical variables), median, and 25th and 75th per-
centiles (continuous variables). Continuous diabetes-related
outcomes were compared across weight trajectory classes
within age and sex strata using multivariable general linear
mixed effects models that included covariates determined a
priori to be of interest: (1) baseline weight; (2) mean adult
height (averaged across all repeated measures); (3) time; (4)
ever smoker status; and (5) current number of cigarettes.
Random intercepts were included to account for community-
level correlations. Baseline weight, height and number of
cigarettes (for men only, given the low prevalence [3.3%] of
female smokers) were included as cubic splines with four knots
at equally spaced quartiles based on distribution. The use of

flexible splines allowed us to capture a true linear trend when
necessary and provided protection against possible
misspecification, without imposing order on the trajectories.
We accounted for the relationship between baseline weight and
trajectory by including weight in the model (the combination
of baseline weight and trajectory effectively describe an indi-
vidual’s weight in 2009), and adjusted for height to estimate
the effects of trajectories independent of height. The statistical
significance of an interaction between trajectory class variables
with baseline weight was set at p<0.05, and results were
compared with models with and without trajectories to test
group differences. We systematically tested whether diabetes-
related outcomes differed depending upon (1) trajectory and
(2) specific class differences. Such testing did not impose order
on the trajectories.

To aid the interpretation of findings, expected diabetes-
related outcomes with 95% CIs are shown in all figures
derived from model results set at average covariate levels for
each weight trajectory class within each age–sex strata. For
each model, an overall test for weight trajectories was includ-
ed when testing for statistically significant differences be-
tween classes. In sensitivity testing, model fit was compared
between trajectory models and a set of similarly specified
models using only the most recent weight (as opposed to the
weight trajectories and baseline weight). This was done to
assess whether weight trajectories provided important addi-
tional information for predicting elevated values of metabolic
markers of diabetes. Models were compared using Akaike
information criteria.

We conducted a simulation study to identify correlations
between the rank of the trajectory classes and levels of meta-
bolic markers of diabetes. Ranks of the trajectory groups were
recorded, with rank 1 being assigned to the trajectory class
with the highest estimate. This process was repeated 1,000
times to determine the frequency of each ranking for each
trajectory class. We also conducted a sensitivity analysis to
compare results with and without the 139 individuals who
reported taking diabetes medications or insulin, or who re-
ported that they had been diagnosed with diabetes by a doctor.

Results

Participant characteristics

Compared with the overall eligible CHNS population
(n=8,149), the group included in the study (n=5,436) was
older, of lower weight, shorter and from less-urbanised areas,
and had smoked more than the excluded group (n=2,713;
see Electronic supplementary material [ESM] Table 1).

Overall, the median age in 2009 was 49.0 (range 21–66)
years and the median baseline weight was 56.4 kg (Table 1).
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There was variation across age strata in income and urbanisa-
tion, and higher levels of smoking in men.

In general, levels of metabolic markers of diabetes were
higher in older age groups. Exceptions were insulin, which
was slightly lower in older men, and log HOMA-IR, which
was lower in 30–39-year-old men (Table 2).

Weight trajectories and metabolic markers of diabetes

Each participant was assigned a trajectory variable based on
the posterior probability of membership in each class: the
median assignment probability for assigned classes was 0.70
(interquartile range 0.55–0.92) [8]. The shape of the latent
class weight trajectory curves was determined for each age
and sex group (Figs 1a, c, e and 2a, c, e; each weight trajectory
class is represented by a different colour). The association of
each trajectory class with each diabetes-related outcome mea-
sure was determined (Figs 1 and 2; parts a, c, e; asterisks
indicate statistically significant group differences in weight
trajectories). Results are shown for mean baseline weight,
except where the interaction between trajectory class variables
and baseline weight was statistically significant. Each age–sex
stratum included a different set of weight gain trajectory
classes.

Analysis of men For men, there was a differential effect of
class trajectories by baseline weight for the 18–29 years and
40–66 years age strata, and for glucose only (Fig. 1). Among
men aged 18–29 years at baseline (Fig. 1a), there were signif-
icant group differences across all outcomes, with higher glu-
cose, HbA1c, insulin and log HOMA-IR in the high weight
gain (dark blue) trajectory than in all other trajectories. In
general, diabetes markers were higher in all weight gain
trajectory classes (blue shades) than in the stable weight or
low weight gain trajectory class (grey). Statistically significant
group differences for all outcomes indicate that glucose,
HbA1c, insulin and log HOMA-IR varied across trajectory
classes.

Although there was a differential baseline weight effect for
glucose, the pattern of association was similar across the 25th
percentile, mean and 75th percentile of baseline weight. The
most significant differences among groups (ESM Tables 2–6;
p<0.0001) were observed for HOMA-IR, with considerably
higher values observed for the classes with a greater increase
in weight over time (groups 3 and 4) relative to those with less
or no weight gain (groups 1 and 2).

In men aged 30–39 years (Fig. 1c), there were significant
group differences in log HOMA-IR, with higher HOMA-IR
values in the weight gain trajectories (blue shades) than in the
weight maintenance (grey) and low weight gain (maroon)
classes. For men aged 40–66 years at baseline (Fig. 1e),
patterns were similar to those for men aged 18–29 years: there
were significant group differences across all outcomes except
for HbA1c, and higher glucose, insulin and log HOMA-IR in
the high weight gain (dark blue) group relative to the other
trajectories.

There was a differential effect of class trajectories by base-
line weight on glucose. Gradations in the levels of cardiomet-
abolic markers were clearest for insulin and log HOMA-IR,
with the highest values in the weight gain trajectories (blue
shades) and lowest values in the maintenance (grey) and low
weight gain (maroon) trajectory classes.

Among men, the pattern of HOMA-IR values was consis-
tent across the three age strata: the higher weight gain trajec-
tories had higher log HOMA-IR values relative to the stable
weight or declining weight trajectories. Differences among
weight trajectories remained statistically significant even after
accounting for baseline weight.

Analysis of women Among women, differential effects of class
trajectories by baseline weight were seen for baseline
30–39 years and 40–66 years cohorts, but not for the age
18–29 years baseline cohort. In the 18–29 years baseline cohort
(Fig. 2a), glucose, HbA1c and log HOMA-IR were generally
higher in the higher weight change trajectories (blue shades and
green) than in the other trajectories, despite some overlap in CIs.

Table 2 Diabetes and insulin markers by sex and age strata

Strata n Glucose (mg) HbA1c (%; mmol/mol) Insulin (μIU/ml) Log HOMA-IR

Women

18–29 899 88.2 (82.8–95.4) 5.3 (5.1–5.6); 34 (32.2–37.7) 9.9 (7.4–14.3) 0.79 (0.46–1.15)

30–39 1,054 91.4 (84.6–99.2) 5.5 (5.2–5.8); 36.6 (33.3–39.9) 10.2 (7.2–14.5) 0.81 (0.46–1.20)

40–66 889 93.4 (86.0–102.6) 5.6 (5.4–6.0); 37.7 (35.5–42.1) 10.8 (7.7–15.9) 0.93 (0.53–1.38)

Men

18–29 904 88.4 (82.4–97.0) 5.4 (5.1–5.7); 35.5 (32.2–38.8) 10.7 (7.4–15.3) 0.85 (0.44–1.26)

30–39 838 92.2 (84.6–102.8) 5.5 (5.2–5.8); 36.6 (33.3–39.9) 9.4 (6.6–13.7) 0.78 (0.39–1.20)

40–66 852 93.3 (85.5–103.1) 5.6 (5.3–5.9); 37.7 (33.3–41) 9.9 (6.7–14.3) 0.84 (0.39–1.25)

Data shown as median (25th to 75th percentile). Statistical significance for heterogeneity for each variable by age group was set at p<0.001

IU, international units
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However, there were some exceptions. The strongest group dif-
ferences (ESM Tables 5–7; p<0.0001) were observed for
HOMA-IR across all age groups, with considerably higher values
for groups with increasing weight over time (3, 4, 6 and 5) than in
the weight maintenance (2) and low weight gain (1) classes.

For women aged 30–39 years (Fig. 2c), there was a differ-
ential effect of baseline weight for glucose, albeit with lower
significance at low and average baseline weights. The trajec-
tory of one of the lower weight classes (5 green) was curvi-
linear, with an initial increase followed by a loss of weight.

This class had low glucose and log HOMA-IR values compared
with other weight gain classes. Findings for logHOMA-IRwere
similar to those of the 18–29 years baseline age group: a
stepwise increase in log HOMA-IR was observed for the higher
weight gain trajectories (light and dark blue). For the cohort
aged 40–66 years at baseline (Fig. 2e), significant group differ-
ences were seen for all outcomes except insulin, with increasing
values for trajectories with increasing weight gain.

There was a differential effect of class trajectories by base-
line weight on glucose and HbA1c levels. Gradations in
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Fig. 1 Predicted metabolic markers of diabetes by corresponding weight
change trajectory summaries across three age strata in men. Predicted
diabetes outcomes were generated from general linear mixed models: (a,
b) 18–29 years; (c, d) 30–39 years; (e, f) 40–66 years. Data represent the
expected outcomes with 95% CIs at three baseline weights: the sex-
specific 25th percentile (quartile Q1), average, and 75th percentile (quar-
tile Q3), where interaction between trajectory class and baseline weight
was statistically significant (a, e), and by average baseline weight where
the interaction was not statistically significant (c). Each y-axis

corresponds to the outcome noted below the figure. Results are shown
for never smokers with mean baseline weight (62 kg) and mean adult
height (167 cm), living in an average community. The percentage sample
in each class is shown below the graphs. *p<0.05 for group differences in
an overall test for weight trajectories.Weight trajectory summaries show a
different colour for each weight trajectory class (b, d, f), with percentage
of sample in each class shown below parts (a), (c) and (e). Shorter lines in
(b), (d) and (f) refer to a shorter study period for individuals who entered
the study in the mid-2000s
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diabetes-related marker levels were clearest for glucose and
log HOMA-IR, with highest values in the high weight gain
trajectories and lowest values in the weight maintenance and
reduction trajectory classes.

Weight trajectory ranking by metabolic markers of diabetes

Results from our simulation study into the relative ranking of
weight trajectories across baseline weight (values for diabetes-
related markers: high [1] to low [6]) are shown in ESM Fig. 1.

The flat vertical lines show the stability of ranking across
baseline weight, while the ‘wavy’ curves for glucose and
HbA1c in some age groups indicate differential association
across baseline weight categories. For women with baseline
age 18–29 years (top row), the class with the highest weight
gain trajectory (dark blue) always had the highest marker
values, and the class with the second highest weight gain
trajectory (medium blue) was often classified into the first or
second rank. Results were similar for men: a higher proportion
of the high weight gain trajectories were in the highest rank,
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Fig. 2 Predicted metabolic markers of diabetes by corresponding weight
change trajectory summaries across three age strata in women. Predicted
diabetes outcomes were generated from general linear mixed models: (a,
b) 18–29 years; (c, d) 30–39 years; (e, f) 40–66 years. Data represent the
expected outcomes with 95% CIs at three baseline weights: the sex-
specific 25th percentile (quartile Q1), average, and 75th percentile (quar-
tile Q3), where interaction between trajectory class and baseline weight
was statistically significant (c, e), and by average baseline weight where
the interaction was not statistically significant (a). Each y-axis

corresponds to the outcome noted below the figure. Results are shown
for individuals with amean baseline weight (54 kg) andmean adult height
(156 cm), living in an average community. The percentage sample in each
class is shown below the graphs. *p<0.05 for group differences in an
overall test for weight trajectories. Weight trajectory summaries show a
different colour for each weight trajectory class (b, d, f), with percentage
of sample in each class shown below parts (a), (c) and (e). Shorter lines in
(b), (d) and (f) refer to a shorter study period for individuals who entered
the study in the mid-2000s
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and a higher proportion of the low weight gain trajectories
were in the lowest rank. Across all strata, log HOMA-IR
showed the most defined separation of ranks, while HbA1c

(with the exception of men aged 18–29 years) was generally
quite mixed.

A sensitivity analysis in which we excluded 139 people
who reported taking diabetes medication or insulin, or who
reported being diagnosed with diabetes by a doctor (ESM
Figs 2 and 3), showed substantial similarity in point estimates,
albeit with slightly larger CIs.

Discussion

Our analysis of 18 year data from China suggests that meta-
bolic markers of diabetes and insulin resistance vary across
different trajectories of weight change. For the most part, these
differences were independent of baseline weight, with the
exception of glucose for some of the baseline age groups.
Levels of glucose, insulin and HOMA-IR were elevated
across all weight gain groups relative to weight maintainers,
especially in individuals with steeper weight trajectories
through adulthood. This was true even after adjusting for
initial weight, height and smoking, and accounting for the
community of residence. Our findings reveal variations in
the values of diabetes-related markers across differential pat-
terns of weight gain that are masked in an unstratified classi-
fication of weight gain. These patterns are worrying because
more rapid weight gain has recently become common in
China, and children are now entering their adult years at
higher body weights than in previous generations. Currently,
diabetes accounts for approximately 80% of deaths in low-
and middle-income countries [34], and China has experienced
a rapid increase in diabetes and other cardiometabolic diseases
[18, 35, 36].

We observed more group differences in the values of
diabetes-related markers in strata comprising younger and
older men (18–29 years and 40–66 years) than in the middle
stratum (30–39 years). An exception was HOMA-IR, which
showed group differences across all ages. For women, the two
younger strata (18–29 years and 30–39 years) had more group
differences than the older stratum (40–66 years), except for
HOMA-IR, which again showed group differences across all
ages. Marker values were lower for classes that maintained
weight, lost weight or switched from weight gain to weight
loss; however, some nonstatistically significant differences
might relate to the smaller group sizes of some trajectory
classes. Nonetheless, our findings highlight a critical need
for preventive strategies to reduce weight gain in early adult-
hood to avoid diabetes and insulin resistance risk.

Given that insulin resistance and diabetes correlate highly
with current BMI, we examined associations in models with

our derived trajectories and baseline weight (which effectively
describe an individual’s current weight contemporaneous with
diabetes-related markers) relative to the models using baseline
weight only. Our finding of different associations in these two
sets of models suggests that the shape of the trajectories over
time (i.e. weight history) is linked to differential values for
markers of diabetes and insulin resistance.

While other studies have shown that duration of obesity is
associated with the occurrence of cardiometabolic risk factors
[37–39], few have examined weight trajectories. However,
studies using latent trajectory methods across the lifespan
have shown an association between differential weight trajec-
tories and cardiometabolic risk factors or mortality [11,
40–43]. LCTA has only recently been used to identify patterns
in epidemiological data [14, 29, 30, 44, 45]. Our use of LCTA
for the flexible modelling of weight patterns in this study indi-
cates heterogeneity in weight trajectories across diabetes out-
comes. In particular, we found stronger associations with a
trajectory of higher initial weight gain that is maintained over
the entire lifespan compared with groups exhibiting a recent,
rapid increase in weight.While other studies have used principal
components analysis to characterise patterns of weight
change related to diabetes risk [6, 7], our LCTA ap-
proach provides a more detailed examination of differ-
ential weight change trajectories and diabetes-related
outcomes. In contrast to approaches that use population
averaging, our findings suggest that identifying sub-
groups with differential patterns of weight gain is useful
for classifying levels of diabetes-related markers.

There are a few limitations to our analysis. We examined
the association between weight trajectories and higher glu-
cose, HbA1c, HOMA-IR and insulin levels in 2009, but we do
not know when elevations in these diabetes markers first
developed. Our main objective was to examine the association
between 18 year weight trajectories and diabetes- and insulin-
related outcomes. The analysis strategy was therefore de-
signed to adjust for key covariates, rather than for causal
modelling of these relationships. We could not distinguish
type 1 from type 2 diabetes, although type 1 diabetes inci-
dence in China is among the lowest in the world, at an
estimated 0.1 per 100,000 per year [46]. Given our inability
to remove individuals with undiagnosed diabetes, which oc-
curs at a very high rate in China [47–49], we did not exclude
the 139 individuals who reported taking diabetes medications
or insulin, or who had been diagnosed with diabetes by a
doctor (findings are summarised in ESM Figs 1 and 2). We
examined weight trajectories to inform large-scale,
population-based preventive efforts, although we realise that
visceral and liver fat also play roles in the aetiology of diabetes
and insulin resistance. Despite our large overall study popu-
lation, our examination of differences in age and sex strata
resulted in small numbers in some trajectory classes, which
limited the power to detect significant differences in some
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groups. Although multiple comparisons are an issue when
comparing trajectory classes across sex and age strata, we
have more confidence in patterns that were repeated across
sex or age classes, even if they were not statistically signifi-
cant. Finally, our inclusion criteria resulted in the selection of a
subset of the total study sample. The study population was
younger, more urban and less likely to smoke than the total
population, and these characteristics could have influenced
patterns of weight gain and increased the values of diabetes
and insulin resistance markers.

Conclusion

Diabetes has become a major public health concern across
China. While obesity is a major risk factor for diabetes, it is
less well understood how weight gain trajectories relate to
diabetes and insulin resistance. Using latent class trajectory
models to identify distinct groups with similar underlying
patterns of longitudinal weight change, we found lower
levels of diabetes markers in classes that maintained
weight, lost weight or switched from weight gain to
weight loss. More group differences were seen in youn-
ger age groups. These findings highlight the importance
of reducing weight gain in early adulthood to reduce
diabetes risk.
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