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Abstract Autophagy is a lysosomal degradation pathway
recycling intracellular long-lived proteins and damaged or-
ganelles, thereby maintaining cellular homeostasis. In addi-
tion to inflammatory processes, autophagy has been implicat-
ed in the regulation of adipose tissue and beta cell functions. In
obesity and type 2 diabetes autophagic activity is modulated
in a tissue-dependent manner. In this review we discuss the
regulation of autophagy in adipose tissue and beta cells,
exemplifying tissue-specific dysregulation of autophagy and
its implications for the pathophysiology of obesity and type 2
diabetes. We will highlight common themes and outstanding
gaps in our understanding, which need to be addressed before
autophagy could be envisioned as a therapeutic target for the
treatment of obesity and diabetes.
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Abbreviations

AMPK AMP-activated protein kinase

ATG Autophagy gene

ER Endoplasmic reticulum

HFD High-fat diet

hIAPP Human islet amyloid polypeptide
LAMP-2  Lysosome-associated membrane protein-2

LPS Lipopolysaccharide

mTORC1 Mammalian target of rapamycin complex 1
TLR Toll-like receptor
Introduction

Autophagy, an evolutionarily conserved process, functions in
trafficking cytosolic components to the lytic compartment of
the cell for degradation [1]. Autophagy is mediated by double-
membrane vesicles, called autophagosomes, which sequester
cytosolic constituents, including whole organelles, and fuse
with lysosomes where the sequestered material is degraded
and recycled. This is tightly regulated by a family of proteins
encoded by autophagy genes (ATGs). More than 30 proteins
have been identified in yeast [2], and for most, human
orthologues exist. Autophagy proteins can be function-
ally grouped into those participating in: (1) membrane
nucleation, elongation and formation of the double-
membrane vesicle; (2) fusion with the primary lysosome to
form autophagolysosomes; and (3) acid hydrolysis to degrade
the vesicle content.

To survive scarcity of exogenous energy sources and/or
amino acids, cells activate autophagy to ensure nutrient supply
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from endogenous sources. In addition, autophagy degrades
misfolded proteins and damaged organelles, and is thus es-
sential for cellular 'housekeeping' and survival under condi-
tions of energy surplus. In line with this, autophagy is neces-
sary in cells exposed to stress, including low-grade inflamma-
tion, which develops in obesity and diabetes [3, 4]. This is
particularly relevant for metabolically active tissues such as
beta cells and adipose tissue.

Beyond its ubiquitous role in maintaining cellular homeo-
stasis, autophagy also regulates tissue-specific functions and
modulates metabolism systemically. As an example, autoph-
agy has been implicated in protein breakdown in the liver,
required for gluconeogenesis and maintenance of glucose
homeostasis while fasting [5]. A specific form of autophagy,
termed lipophagy, regulates intracellular lipid stores via
autophagosome-mediated triacylglycerol hydrolysis [6].

In addition to nutrients, hormones, most notably insulin
and glucagon, are key regulators of autophagy [7, 8];
insulin inhibits, whereas glucagon stimulates, autophagy.
Autophagy's tight regulation by both nutrient availability
and hormones, along with its roles in whole-body metab-
olism and cellular adaptation to stress, hint at its involve-
ment in the pathophysiology of common metabolic disorders,
such as obesity and type 2 diabetes. While evidence is mount-
ing for dysregulated autophagy in obesity and diabetes, it is
still not settled whether ‘primary’ alterations in autophagic
genes contribute to the development of obesity or type 2
diabetes, as has been established for certain other diseases,
including Crohn's disease [9].

Impaired autophagy may greatly affect cellular homeosta-
sis through the accumulation of damaged intracellular prod-
ucts leading to dysfunction or even cell death, potentially
contributing to diabetes pathogenesis. Conversely, low-grade
inflammation, oxidative and endoplasmic reticulum (ER)
stress, insulin resistance, and adipose tissue hypoxia, all im-
plicated in obesity and diabetes, may activate autophagy [10].
This could either serve to restore homeostasis and limit cellu-
lar dysfunction, or conversely, could contribute to pathogen-
esis, as aberrant activation of autophagy can result in exces-
sive self-digestion and cell death [11]. Thus, dysregulated
autophagy is a double-edged sword, with both activation and
inhibition potentially contributing to pathogenesis. Another
layer of complexity is the fact that autophagy is regulated in a
highly tissue- and cell-type specific manner, even in the same
organism [12]; this may serve to regulate cell-type specific
functions.

Recent reviews have summarised the literature on autoph-
agy in metabolic disorders [4, 7, 13—16]. The aim of the
present article is not to provide an exhaustive review of the
role of autophagy in these pathologies, but to highlight major
concepts and important questions, controversies and chal-
lenges related to the regulation and physiological functions
of autophagy in obesity and diabetes. We will focus on
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autophagy in adipose tissue and the beta cell, not only because
of'their central role in the pathogenesis of diabetes and obesity,
but also because of the differential, tissue-specific dysregula-
tion of autophagy observed within these tissues. We will
highlight common themes and outstanding questions that need
to be addressed before autophagy could be envisioned as a
therapeutic target for the treatment of obesity and diabetes.

Assessment of autophagy in obesity and diabetes

The assessment of autophagy is frequently based on static
quantifications of autophagosome and autolysosome num-
bers by immunofluorescence-based detection of the
autophagosome membrane-associated LC3 (LC3-II),
which appears as punctae. Alternatively, ultrastructural
morphology of autophagic vesicles is determined by elec-
tron microscopy, without dynamic functional assessment.
Dynamic assessment is nevertheless crucial, since some
autophagic components are degraded as part of the pro-
cess. Hence, methodological issues involved in determin-
ing autophagic activity can lead to paradoxical or errone-
ous conclusions. For example, an increased number of
autophagosomes may indicate either their increased forma-
tion (stimulated autophagy), or inhibition of autophagosome—
lysosome fusion and/or maturation (inhibited autophagic
flux). Thus, assessment of ‘autophagic flux’ is essential for
the correct interpretation of autophagic activity. Several as-
says have been developed to assess autophagic flux [11],
including measurement of global long-lived protein degrada-
tion using pulse—chase experiments and by measuring the
accumulation of the autophagosome marker LC3-II in the
presence of lysosomal enzyme inhibitors. Greater accu-
mulation of LC3-II in response to inhibition of lysosomal
degradation indicates that autophagic flux is enhanced.
LC3-II accumulation is analysed by western blot or by
immunofluorescence and quantification of LC3 punctae.
An additional common approach is the measurement of
the abundance of proteins that undergo lysosomal degrada-
tion, such as p62/sequestosome 1 (SQSTM1). Decreased
steady-state expression of p62/SQSTMI1 suggests increased
autophagic flux.

However, the specificity of these assays (to distinguish
autophagy from other lysosomal-related processes) is low,
and no accepted ‘gold standard’ currently exists. There-
fore, adequate assessment of autophagy still typically
requires the use of multiple approaches, as previously
described [11, 13]. In vivo assessment of autophagic flux
is difficult and is particularly challenging in humans,
hampering the advancement of our knowledge on the
autophagic process. Hence, the development of sensitive
and accurate assays to monitor autophagy in a tissue-
specific manner is greatly needed.
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The role of autophagy in adipose dysfunction
and inflammation

Autophagy is involved in several aspects of adipocyte biology
and may modulate immune cell function [17]. The following
sections will discuss the role of autophagy in adipogenesis and
immune cell biology, its metabolic regulation and its putative
impact on adipose tissue dysfunction and inflammation in
obesity and type 2 diabetes (Figs 1 and 2).

Essential role for autophagy in adipocyte development and
function Autophagy is required for lipid storage and compo-
nents of the autophagic machinery, for example ATGS and
ATG7 are required for white adipocyte cell differentiation
[18]. Mouse embryonic fibroblasts (MEFs) derived from
Atg5™" (autophagy-deficient) animals exhibit reduced adipo-
genesis [18], with an initiation of the process and triacylglyc-
erol accumulation, but failure to complete adipocyte matura-
tion. Consistently, adipogenesis was impaired in vivo when
ATGs were genetically targeted [19, 20]; white adipose tissue
depots were smaller in A7g7 '~ animals, suggestive of a defect
in adipocyte differentiation. Moreover, adipocyte-specific
knockdown of ATG7 resulted in the development of adipose
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Fig. 1 Regulation of autophagy in lean and obese adipose tissue and its
impact on adipocytes. In the lean state (a), autophagy is regulated by the
nutrient sensors mMTORC1 and AMPK, which inhibit and activate the
process, respectively. Similarly to nutrients, insulin also stimulates
mTORC1, leading to inhibition of autophagy. Autophagy promotes white
adipose tissue differentiation, whereas inhibition of autophagy induces a
‘browning’ phenotype of the adipose tissue. In obesity (b), stimulation of
autophagy may have differential effects on adipocyte function and sur-
vival. Nutrient (glucose and NEFA) overload stimulates mTORC1 and

tissue resembling brown fat, with multi-loculated adipocytes
and abundant mitochondria, indicating increased oxidative
capacity [20]. The precise mechanism(s) by which autophagy
regulates adipogenesis is unknown. An intriguing hypothesis
is that autophagosomes with membranes originating from
potentially different intracellular organelles serve to mobilise
membranes within the cell, thereby facilitating the
reorganisation of cytoplasmic components, which is thought
to be a requirement for adipogenesis [21]. In addition, autoph-
agy has been reported to increase the stability of peroxisome
proliferator-activated receptor (PPAR)y2, the master regulator
of adipocyte differentiation and adipogenesis [22].

Intriguingly, impaired adipogenesis was also observed in
animals with skeletal muscle-specific deletion of Azg7 [23].
This suggests that alterations in autophagic activity can mod-
ulate inter-organ crosstalk, a notion also supported by the
observation of impaired lipolysis when autophagy was genet-
ically disrupted in hypothalamic pro-opiomelanocortin
(POMC) neurons [24].

Altogether, functional autophagy appears to support adipo-
cyte development and differentiation. Hence, any primary/
developmental disturbance in autophagy may affect adipose
tissue mass and homeostasis.
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inhibits AMPK, thereby attenuating autophagy. By contrast, ER stress,
hypoxia and inflammation, conditions that are commonly observed in
obese adipose tissue, induce insulin resistance, leading to inhibition of
mTORCI and consequently to stimulation of autophagy. Autophagy may
improve adipocyte function by eliminating misfolded proteins and dam-
aged organelles and attenuating the proinflammatory response of obesity.
On the other hand, excessive stimulation of autophagy may enhance
adipocyte energy storage and promote ‘self-digestion” and consequently
cell death

@ Springer



1508

Diabetologia (2014) 57:1505-1516

a Adipose tissue macrophage normal

GlycolysisG

Anti-inflammatory response ;

mTORCH AMPK

Cytoplasm

Phagaphore Autolysosome @

Autophagy C)

Lysosome

Inflammatory gene expression .

Inflammasome activation .

1L-1pB granules degradation “‘

Fig. 2 Regulation of autophagy in lean and obese adipose tissue and its
impact on adipose tissue macrophages. In the lean state (a), macrophages
exhibit an anti-inflammatory phenotype. Autophagy is inhibited by
mTORCI and activated by AMPK. Stimulated autophagy curtails proin-
flammatory responses by reducing proinflammatory gene expression and
inflammasome activity, thereby inhibiting the processing and activation
of IL-13 along with enhanced degradation, hence limiting IL-1{3 avail-
ability for inflammasome-dependent processing. In obesity (b), the in-
flammatory trait of the macrophage is augmented. LPS and inflammatory

Autophagy and inflammation The interaction between au-
tophagy and the innate immune system is well established
[17]; however, the molecular mechanisms involved are still
elusive. Since clearance of many pathogens by immune cells
critically depends on autophagy, it is not surprising that toll-
like receptor (TLR) activation stimulates autophagy [25].
Obesity has been proposed as a low-grade ‘metabolic
endotoxaemia’ state [26]. Lipopolysaccharide (LPS), the most
common endotoxin, is included in the cell wall of Gram-
negative bacteria in the gut. In obesity, intestinal permeability
is increased, leading to elevated circulating endotoxin levels
[26]. Inasmuch as both adipocytes and adipose tissue inflam-
matory cells express TLR4 [27], its stimulation by circulating
LPS may activate autophagy. TLR-stimulated autophagy may
function as a negative feedback mechanism aimed at
restricting inflammation. In line with this hypothesis, deficien-
cy of the autophagic protein ATG16L1 augmented IL-1f3
processing upon TLR4 stimulation [28]. Further, autophagy
reduced the expression and subsequent secretion of specific
proinflammatory cytokines, including IL-1(3. In addition, pro-
IL-1f3 is degraded in autophagosomes, thus limiting its avail-
ability for inflammasome-dependent activation [29]. Finally,
several studies indicate that autophagy directly inhibits
inflammasome activation [30], which in turn was suggested
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cytokines activate autophagy, whereas nutrient (glucose and NEFA)
overload stimulates mTORC1 and inhibits AMPK, resulting in attenua-
tion of autophagy. Autophagy restrains the proinflammatory response by
limiting proinflammatory gene expression and inflammasome activation.
In addition, lipophagy may attenuate the inflammatory response by
promoting the availability of NEFA for oxidative metabolism, a key
metabolic pathway that drives an anti-inflammatory trait. The biogenesis
of lysosomes is increased in macrophages that populate obese adipose
tissue, which may promote lipid trafficking within the macrophages

to regulate adipose tissue inflammation [31]. Collectively,
these results imply that autophagy may restrain the innate
immune response, thus curtailing adipose tissue inflammation
and dysfunction. However, there is also evidence challenging
this notion, as stimulated IL-1(3 secretion may engage
activated autophagy and/or elements of the autophagic
machinery [32].

Metabolic regulation of adipose tissue inflammation and
autophagy Recent advances in immunology have revealed
that the intracellular metabolism of innate immune cells de-
termines their activation [33]. More specifically, enhanced
glucose utilisation through glycolysis is crucial for an ade-
quate proinflammatory immune response. Although, from an
energetic standpoint, glycolysis-mediated ATP production is
inefficient compared with oxidative phosphorylation, it pro-
motes the synthesis of various macromolecules, which in turn
may increase cytokine production [33]. Whereas activation of
glycolysis favours the proinflammatory response of an
immune cell, enhancement of oxidative phosphorylation
drives anti-inflammatory actions. Indeed, M2 alternatively
activated (anti-inflammatory) macrophages exhibit increased
reliance on oxidative phosphorylation over glycolysis for
energy production [34].
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Glycolysis and oxidative phosphorylation are regulated by
mammalian target of rapamycin complex 1 (mTORC1) and
AMP-activated protein kinase (AMPK), two major nutrient-
sensing kinases. Under conditions of energy shortage,
mTORCI is inhibited whereas AMPK is activated, thereby
inhibiting anabolic pathways and stimulating ATP-producing
processes, including mitochondrial fatty-acid oxidation.
Shifting from glycolytic metabolism to oxidative phos-
phorylation may attenuate the proinflammatory response
[33]. Indeed, both inhibition of mTORCI1 by rapamycin
[18] and activation of AMPK by S5-aminoimidazole-4-
carboxamide ribonucleotide (AICAR) [35] exert anti-
inflammatory responses.

Importantly, mTORC1 and AMPK are also key regulators
of autophagy. mTORCI1 prevents initiation of autophagy by
phosphorylating ATG13, thereby blocking its binding to
ATGI (also called ULKI in mammals) and the formation of
the ATG1-ATG13-ATG17 complex [36]. Thus, inhibition of
mTORCI1 during starvation, or pharmacologically by agents
such as rapamycin, stimulates the initiation of autophagy.
AMPK stimulates autophagy by inhibiting mTORC1 and by
phosphorylating ULK1 [37]. In macrophages (and probably
also in other immune cells) activation by AMPK-induced lipid
droplet autophagy (lipophagy) provides NEFA as substrates
for oxidative phosphorylation [1], curtailing the proinflamma-
tory state. In contrast, mMTORC1-mediated inhibition of au-
tophagy, which eventually may promote glycolysis, elicits a
proinflammatory response. Hence, variations in autophagic
activity may greatly impact on the metabolic status of immune
cells, thereby altering the inflammatory trait of the adipose
tissue.

Aberrant regulation of adipose tissue autophagy in obesity
and diabetes In adult mammals, the adipose tissue is com-
prised of multiple cell types, including adipocytes, stromal-
vascular cells, fibroblasts, adipocyte precursors and various
inflammatory cells. In obesity, adipocytes may constitute a
significantly smaller fraction of the cell types comprising
adipose tissue, and therefore studying biological processes in
isolated adipocytes is important. Ost et al were the first to
show that autophagosome content is increased in isolated
adipocytes derived from obese and diabetic humans [38].
Furthermore, an increase in the autophagic flux was demon-
strated. These findings were confirmed in whole adipose
tissue derived from the omentum or subcutaneous depot of
obese patients undergoing bariatric surgery [39-41]. Assess-
ment of autophagic flux by confocal microscopy using whole-
tissue fragments suggested that elevated autophagy was
present in both adipocytes and non-adipocytes [39].

In contrast to the findings in human adipocytes and adipose
tissue, in rodents autophagy was reduced both in vitro and in
adipose tissue of animals fed a high-fat diet (HFD) for 16
weeks [42]. These conflicting findings may be explained by

species differences or by specific experimental conditions
(e.g. different fasting periods prior to autophagy assessment).
Yet, overall, in vivo determinations of adipose autophagic flux
are required to demonstrate unequivocally whether an elevat-
ed number of autophagosomes in adipose tissue in obesity
actually corresponds to activated or inhibited autophagy.
Despite these technical obstacles, the current accepted view
is that autophagy is enhanced in obese adipose tissue, although
the underlying mechanisms are not completely understood.

Insulin is an anabolic hormone that functions as a potent
inhibitor of autophagy. Experimental data and mathematical
modelling showed that, in type 2 diabetes, expansion of the
adipose tissue leads to insulin resistance impairing insulin
activation of mTORCI [38, 43]; this may readily explain
autophagy activation observed in adipose tissue of obese
individuals, consistent with the observation of Ost et al [38].
In addition, inflammation, ER stress and hypoxia, conditions
that are commonly observed in adipose tissue during obesity,
also inhibit mTORC1 [44], thus further promoting autophagy.
However, nTORC] can be activated by glucose, amino acids
and fatty acids, which are overabundant in diabetes [44]. The
notion that autophagy is stimulated in obese adipose tissue
may suggest that the stimulatory effects of insulin resistance,
stress, inflammation and/or hypoxia prevail over the expected
inhibitory effect of mMTORC] activation by nutrient overload.
Interestingly, following bariatric surgery in obese diabetic
patients, adipose tissue autophagy decreases despite continued
ER stress. This suggests that other regulators of adipose tissue
autophagy, such as insulin resistance, may dominate the con-
trol of adipose autophagy in response to weight loss [41].

Given the high cell-type specificity in the regulation of
autophagy, future studies should aim at deciphering the level
of autophagic activation in the various cell types that comprise
the adipose tissue, including immune, endothelial and adipocyte
precursor cells.

How might altered adipose tissue autophagy affect adipose
function? Based on currently available knowledge, it is not
clear whether stimulation of autophagy in adipose tissue dur-
ing obesity is deleterious or beneficial. Associatively, activat-
ed autophagy is apparent in whole adipose tissue in obesity
when insulin resistance develops, but before cardio-metabolic
morbidity ensues [39]; however, this does not prove causality.
In mice, disruption of autophagy in adipocytes decreased
body weight and enhanced insulin sensitivity. This was ac-
companied by a decrease in adipose tissue inflammation [19].
Thus, whether this protective effect was a direct consequence
of the autophagic inhibition, or an indirect consequence of
reduced body weight gain is difficult to establish. Moreover,
in these models, adipocyte-specific interference with autoph-
agy was achieved genetically using an adipocyte promoter,
thereby affecting adipocytes from their early development
onwards. Whether modulation of autophagy in fully mature
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adipocytes, secondary to obesity, would have similar effects
remains to be established. Inhibited autophagy leads to adi-
pose tissue browning and energy dissipation; conversely, ac-
tivated autophagy might serve to functionally adapt adipo-
cytes to energy storage in response to chronic over-nutrition
(‘whitening’). Indeed, if activated autophagy leads to a de-
crease in mitochondrial mass and/or its oxidative capacity, it
would enable adipocytes to store extra calories as triacylglyc-
erol more efficiently. Finally, beyond direct regulation of
energy storage and cell survival mechanisms, excessive au-
tophagy may also constitute a cell death mechanism. Indeed,
adipocyte cell death has been implicated as a major pathogen-
ic mechanism in the development of adipose tissue inflamma-
tion during obesity [45]. Hence, activated autophagy could
potentially contribute to adipocyte cell death. Collectively, the
potential role of autophagy in regulating the inflammatory
tone (as mentioned above) awaits further experimental
elucidation.

Frequently, autophagy is viewed as an adaptive response,
so its activation in obesity may protect cells from further
metabolic stress and inflammation. As such, inhibiting au-
tophagy may be deleterious, depriving the tissue of an essen-
tial protective mechanism. Obese adipose tissue is exposed to
hypoxia and ER stress [46], which might lead to accumulation
of misfolded proteins [47] that can be partly eliminated by
autophagy. Consistent with this paradigm, inhibition of au-
tophagy led to increased ER stress and subsequently promoted
adipose tissue inflammation [40, 42].

The complex regulation of autophagy in adipose tissue and
the possible paradoxical effects of modulating autophagy in
obesity emphasises the challenge of elucidating its role in the
pathophysiology of obesity and type 2 diabetes, and how
manipulating the process might be utilised for therapeutic
purposes.

Effects of dysregulated autophagy in the hypothalamus
on obesity

The impact of dysregulated autophagy in obesity and diabetes
is further complicated by inter-organ communications that
may affect whole-body metabolism. One particularly
intriguing example is the hypothalamus, which functions
as a hub that integrates metabolic and hormonal cues to
regulate food intake and energy expenditure, thereby
modulating lipid metabolism and glucose homeostasis
[48, 49]. Obesity might induce hypothalamic dysfunction
by stimulating inflammation through the inhibitor of kf3
(IKKf3)/nuclear factor-xB (NF-k[3) pathway leading to hypo-
thalamic resistance to insulin and the satiety hormone, leptin
[50]. Intriguingly, intra-cerebroventricular injection of TNFo
has been shown to impair insulin secretion [51]. Hence,

@ Springer

hypothalamic dysfunction may play a role in the pathophysiology
of obesity and diabetes.

Interestingly, hypothalamic inhibition of autophagy using
ATG7 siRNA-mediated knockdown resulted in increased en-
ergy consumption and reduced energy expenditure, leading to
impaired adipose lipolysis, exacerbation of obesity and
whole-body insulin resistance in response to HFD feeding
[24, 52].

Moreover, impaired hypothalamic autophagy has been ob-
served during HFD-induced obesity [52]. Similarly to the
situation with adipose tissue, impaired hypothalamic autoph-
agy may elicit a local inflammatory response probably leading
to hypothalamic dysfunction. Altogether, defective autophagy
might cause hypothalamic inflammation and dysfunction,
leading to obesity, systemic insulin resistance and probably
beta cell dysfunction. This intriguing hypothesis awaits fur-
ther experimental confirmation.

Autophagy in beta cell physiology and diabetes

In obesity, the beta cell adapts to insulin resistance by increas-
ing insulin production and secretion [53]. The life-long stim-
ulus for the beta cell to secrete large amounts of insulin for
maintaining euglycaemia is associated with an increased
protein-folding burden in the ER. This may lead to accumu-
lation of misfolded proteins, most importantly proinsulin,
resulting in ER stress [54, 55]. This, together with oxidative
stress elicited by excessive mitochondrial generation of reac-
tive oxygen species, leads to beta cell dysfunction [56, 57].
The latter is the driving force for progression from obesity to
diabetes. Moreover, beta cell dysfunction is the main cause for
deterioration of glycaemic control in diabetes over time. Type
2 diabetes is accompanied by elevated NEFA, hyperglycaemia
and inflammation. Each of these factors increases cellular
stress, thus generating a feed-forward vicious cycle that im-
pinges on beta cell function, and may induce apoptosis and
probably beta cell dedifferentiation [58].

Autophagy may protect the stressed beta cell by eliminat-
ing damaged organelles (mitochondria [mitophagy] and ER
[reticulophagy] [59, 60]) and/or misfolded proteins, notably
proinsulin. Accumulating data support this notion and suggest
that lysosomal degradation pathways, including autophagy
and crinophagy, are important for beta cell homeostasis both
in physiology and in diabetes (Fig. 3).

Physiological roles of crinophagy and autophagy Pioneering
studies by Orci et al showed that insulin granules are regulated
by lysosomal degradation through crinophagy and autophagy
[61]. In crinophagy, the secretory granule membrane fuses
with the membrane of a large vacuolar, lysosomal compart-
ment to generate a crinophagic body, within which the insulin
granule content is degraded. Insulin granules may also reach
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Fig. 3 The role(s) of autophagy in beta cell physiology and dysfunction
in diabetes. Beta cells are prone to the inter-related oxidative and ER
stresses, even in the normoglycaemic state (a). Autophagy may prevent
cellular stress by eliminating misfolded proteins, including proinsulin,
and probably dysfunctional organelles. For example, through mitophagy
damaged mitochondria are efficiently removed and thereby oxidative
stress is restrained. In addition, the autophagic machinery and other
lysososomal degradation pathways decrease the insulin granule pool
and may restrain insulin secretion by lysosomal lipid degradation

lysosomes via autophagosomes that engulf cytosolic compo-
nents containing secretory granules (macroautophagy), or via
lysosomal engulfment and swallowing of a single granule
(microautophagy). Insulin is relatively resistant to degradation
in the acidic environment of the lysosome; its degradation is
much slower than that of C-peptide or proinsulin [61, 62].
This underlies the assumption that insulin degradation plays a
minor role in the regulation of insulin homeostasis and beta
cell function [62]. On the other hand, crinophagic activity and
insulin degradation are modulated by glucose [63], suggesting
that this process is dynamic and tightly regulated: at low
glucose, insulin degradation in the beta cell increases, whereas
stimulation of insulin secretion at high glucose is associated
with inhibition of its degradation [63, 64]. The biological
rationale for insulin granule degradation at low glucose re-
mains unclear: increased insulin content through accumula-
tion of unsecreted granules is not expected to cause
hypoglycaemia, since exocytosis is inhibited under these con-
ditions; in addition, in response to glucose stimulation only a
minute fraction of the total insulin granule pool is released. It
is therefore possible that elimination of ‘old’ granules, while
energetically costly, serves to increase the intracellular amino
acid pool.
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(lipophagy). The metabolic milieu of obesity and diabetes may have
differential effects on autophagic activity in the beta cell (b).
Hyperglycaemia, elevated NEFA and probably hIAPP may inhibit au-
tophagy either by stimulating mTORC1 (glucose and NEFA) or by
inhibiting lysosomal acidification (NEFA and hIAPP). In contrast, ER
stress may stimulate autophagy, which in turn improves the beta cell
adaptation to stress. The regulation of beta cell autophagy in diabetes and
its impact on beta cell function and survival is controversial (see
text for details)

In addition to the putative role of autophagy in insulin
granule degradation, stimulation of autophagy in the post-
absorptive state may maintain cellular homeostasis by elimi-
nating dysfunctional organelles. As an example, in beta cells
mitochondria undergo rapid cycles of fusion and fission; the
latter is associated with generation of depolarised mitochon-
dria that are then eliminated by autophagy [65]. Stimulating
autophagy during fasting may prevent oxidative injury by
enhancing the clearance of damaged and/or depolarised mito-
chondria, which have accumulated during ‘hyperactive’
(postprandial) periods. This is largely reminiscent of the pro-
posed role of augmented mitophagy during fasting or in
response to glucagon in the liver [66].

Intriguingly, inhibition of insulin secretion either by phar-
macological means (diazoxide) [67] or by interfering with the
insulin granule secretory machinery (Rab3a knockout mice
[68] or mammalian uncoordinated [Munc]-18-1 depletion
[69]) all stimulate insulin degradation via autophagy-related
processes, thereby maintaining a stable intracellular insulin
content. These findings suggest a close interaction between
insulin secretion and autophagy/crinophagy.

Newly synthesised insulin granules are preferentially se-
creted in response to glucose stimulation [70], whereas old
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insulin granules are more likely to be degraded by crinophagy;
hence, it was postulated that insulin granule degradation is a
relatively long-term homeostatic mechanism for maintaining
constant insulin stores [71]. Why maintaining a constant store
of newly formed insulin granules should be important for
optimal beta cell function is not clear, since the insulin content
is always several orders of magnitude greater than the amount
secreted. It is likely that autophagy functions as a quality
control process by eliminating aged secretory granules, and
is probably required for the maintenance of beta cell homeo-
stasis. Recently, it was suggested that lysosomal lipid degra-
dation (lipophagy) negatively regulates glucose-stimulated
insulin secretion by depletion of substrate for non-lysosomal
neutral lipases that regulate insulin secretion [72]. Thus,
autophagy—lysosomal degradation may affect both insulin
content and secretion.

There are still important questions that need to be ad-
dressed regarding the role of autophagy in insulin secretion
and degradation: how does the beta cell sense insulin content
or insulin granule number and age? How do glucose and
insulin regulate insulin granule degradation? What governs
and coordinates insulin degradation? Recent reports showed
that SNAP receptor (SNARE) proteins play an important
role in the regulation of autophagy [73]. SNARE proteins
are involved both in insulin granule exocytosis and
autophagosome and/or lysosome trafficking. It is possible
that inhibition of insulin secretion, for example in fasting,
may increase the availability of such proteins, thereby
promoting autophagy.

Effects of inhibited autophagy on beta cell function and
adaptation to obesity Interfering with autophagy functionally
disrupts beta cell function: beta cell specific A7g7 knockout
mice exhibited glucose intolerance without developing full-
blown diabetes [74, 75]. This resulted from insulin deficiency
and impairment of beta cell function, evident by decreased
glucose-stimulated Ca”>" influx and ATP production,
paralleled by reduced basal and stimulated insulin secretion.
Polyubiquitinated protein aggregates accumulate in the cyto-
sol of autophagy-deficient beta cells [74, 75]. Electron mi-
croscopy shows vacuolar degeneration of the beta cells, along
with swelling of mitochondria and cisternal expansion of the
ER, indicating that impaired autophagy induces cellular stress.
Beta cell apoptosis was increased and proliferation reduced,
resulting in decreased beta cell mass.

Surprisingly, the expression of genes involved in cellular
protection against ER stress, including anti-oxidants and un-
folded protein response (UPR) genes, were all reduced in
autophagy-deficient beta cells [76]. This rendered
autophagy-impaired beta cells hyper-susceptible to apoptosis
in response to ER stress. Furthermore, autophagy deficiency
prevented the compensatory increase in beta cell mass in
response to HFD and in ob/ob mice, resulting in further
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deterioration of glucose tolerance [75, 76]. These studies
convincingly show that basal autophagy is not only indispens-
able for maintaining beta cell mass and function, but is also
required for beta cell compensation to obesity-induced insulin
resistance. Thus, impairment of autophagy in beta cells may
contribute to progression from obesity to diabetes.

Is beta cell autophagy impaired in diabetes? Reminiscent of
the situation in adipose tissue, an increased number of
autophagosomes and autophagolysosomes was observed in
the beta cells of different models of type 2 diabetes, including
ob/ob and db/db mice [75, 76] and Akita mice [10]. In Zucker
diabetic fatty rats and in insulinoma cells, hyperglycaemia and
oxidative stress led to the accumulation of polyubiquitinated
protein aggregates that were degraded by autophagy [77].
Importantly, beta cells of human type 2 diabetic patients
showed a massive overload of autophagic vacuoles that asso-
ciated with beta cell death, without nuclear condensation,
which was referred to as autophagy-associated cell death
[78]. However, these morphological changes do not imply
that beta cell death resulted from ‘hyperactive’ autophagy.
Autophagic cell death should be defined on the basis of strict
criteria, including demonstrating that autophagy is increased
and that its inhibition decreases cell death. This was not
systematically assessed, thus preventing any definitive con-
clusion on whether autophagy was inhibited or activated in
different diabetes models and in human type 2 diabetes, and,
consequently, whether there is any impact on beta cell func-
tion and survival. In Akita mice, a model of proinsulin
misfolding-induced diabetes, autophagic flux was moderately
increased in islets and in an Akita beta cell line [10]; this was
demonstrated using multiple assays, but it is unclear whether
these findings can be extrapolated to other models of diabetes.
It is worth noting that autophagy-mediated cell death is a rare
phenomenon, and its mere existence has been questioned [79].
Further studies are required to clarify the meaning of altered
autophagy in diabetic beta cells.

Interestingly, HHEX/IDE was identified as a type 2 diabe-
tes risk locus linked to impaired beta cell function. The /de
gene encodes a multifunctional protein implicated in protea-
some activity and protein degradation [80]. Beta cells of Ide
knockout mice exhibited decreased glucose-stimulated insulin
secretion, together with reduced microtubule content and au-
tophagic flux [80]. This may further support the presence of a
link between autophagy and beta cell dysfunction in human
type 2 diabetes.

How the diabetic environment (e.g. hyperglycaemia, ele-
vated NEFA and human islet amyloid polypeptide [hIAPP],
and inflammation) affects autophagy and its impact on beta
cell function also remains controversial. Several studies have
shown that NEFA inhibit the expression of lysosome enzymes
[78], lysosomal acidification and autophagic flux [81]. Simi-
larly, the amyloidogenic peptide hIAPP has been found to
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inhibit autophagy [82]. This might lead to accumulation of
toxic hIAPP oligomers that exacerbate beta cell dysfunction
and apoptosis. On the other hand, others have shown that both
hyperglycaemia and elevated NEFA stimulate, rather than
inhibit, autophagy [83—85]. Moreover, a recent report sug-
gested that, in beta cells, stimulation of autophagy by NEFA
induces a proinflammatory response through NLRP3 [85]. In
addition, cytokines such as IL-13 may be secreted via an
unconventional pathway involving autophagy, which may
promote inflammation [32]. Autophagic stimulation of in-
flammation in beta cells (if reproducible) is in marked contrast
with the common notion in adipose tissue, in which autophagy
is proposed to attenuate the inflammatory response (see the
section Autophagy and inflammation above). Such opposing
effects of autophagy on inflammation may be explained by
tissue specificity of the autophagy—inflammation crosstalk.
The apparent paradoxical findings in relation to autophagic
activity in diabetes could result from methodological differ-
ences in monitoring autophagy, as discussed above. As an
example, Danon disease (OMIM: 300257) results from
lysosome-associated membrane protein-2 (LAMP-2) defi-
ciency, which disrupts the maturation of autophagosomes
and their fusion with lysosomes, hence impairing autophagy
[86]. This results in autophagic vacuole accumulation in var-
ious tissues, including liver, pancreas, muscle and heart [87],
resembling the findings in human diabetic islets [78]. Without
monitoring the autophagic flux, these findings could be erro-
neously interpreted as stimulation of autophagy. Notably,
LAMP-2 expression was decreased in human diabetic islets
and in response to treatment with NEFA, along with decreased
expression of the lysosome enzymes cathepsin B and cathep-
sin D [78], suggesting that autophagic flux might be impaired.
Yet, beyond the technicalities and interpretation of experimen-
tal results, it appears that opposing forces governing autoph-
agy operate in beta cells in diabetes, similarly to adipose
tissue, potentially leading to inconsistent modulation of au-
tophagy depending on the metabolic and biological environ-
ment of the cell. As an example, hyperglycaemia stimulates
mTORCI in beta cells [88, 89], which is expected to inhibit
autophagy. By contrast, ER stress due to inflammation and
accumulation of misfolded proinsulin may stimulate autoph-
agy [90]. Thus, the degree of beta cell autophagy may vary
depending on the intricate interactions between nutrient and
stress signalling, which differentially influence the activity of
mTORCI1 and probably other regulators of autophagy.

Is stimulation of autophagy in the diabetic beta cells benefi-
cial or deleterious? The shortage of genetic and pharmaco-
logical tools to stimulate autophagy specifically in beta cells
hampers the efforts to address this important question. The
impact on beta cell function and survival of using rapamycin
to stimulate autophagy has been studied in several models of
beta cell stress and diabetes.

In the Akita model of diabetes, mice carry a mutation in
one proinsulin allele, leading to the translation of an irrepara-
bly misfolded hormone. This mutant proinsulin is trapped in
the ER, where it generates ER stress and marked reduction of
insulin secretion, resulting in diabetes [91, 92]. Similar muta-
tions were found in a rare form of human congenital diabetes,
MIDY (mutant /NS gene-induced diabetes of youth syn-
drome) [93]. Intriguingly, in Akita islets autophagy was not
reduced; still, stimulation of autophagy by the mTORCI
inhibitors rapamycin or Torinl (an mTOR kinase inhibitor)
alleviated stress and prevented beta cell apoptosis, while inhi-
bition of autophagy severely augmented cellular stress. The
physiological relevance of these findings was demonstrated
when treatment of diabetic Akita mice with rapamycin im-
proved diabetes and increased pancreatic insulin content and
secretion [10]. Similarly, rapamycin alleviated stress in an
autophagy-dependent manner in insulin-secretion deficient
beta cells derived from fetal mice [94] and in beta cells
exposed to lipotoxicity [81]. It is noteworthy that this apparent
protection induced by rapamycin is contrary to the common
view of this drug as being diabetogenic [88, 95, 96].
These findings may suggest that stimulating autophagy
by rapamycin is protective to beta cells only under certain
stressful conditions, such as proinsulin misfolding.

Another diabetes model is the pancreatic and duodenal
homeobox (Pdx)-1 deficient mouse, which exhibits reduced
beta cell mass and insulin secretion. In these mice, beta cell
autophagy is increased [97]. Interestingly, and in contrast to
Akita mice, inhibition of autophagy by crossing the mice with
Beclinl haplo-insufficient mice improved beta cell function
and increased beta cell mass after 1 week on HFD. However,
this protective effect by autophagy inhibition was transient,
and was no longer apparent after 7 weeks. Whether short-term
inhibition of autophagy may improve beta cell function in
other models of diabetes or is unique to this model remains
to be elucidated.

Future development of pharmacological and genetic means
to allow specific stimulation of autophagy is essential for
testing the impact of modulating autophagy on diabetes de-
velopment and progression and for clarifying the conditions
under which stimulation or inhibition of autophagy would
improve beta cell function and, therefore, might be beneficial.

Modulation of autophagy in adipose tissue and the beta
cell: prospects for a new therapeutic target for diabetes?

Could modulation of autophagy in adipose tissue and beta
cells become a therapeutic approach in type 2 diabetes? The
complex regulation of autophagy in obesity and diabetes
emphasises the need for additional knowledge before the
targeting of autophagy could be considered as a therapeutic
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strategy. Given its apparent roles in normal physiology, it
would appear that modulating autophagy could be used to
treat patients with altered autophagic activity as part of their
disease process, seeking to normalise, rather than to ‘artifi-
cially’ manipulate autophagy. Such an approach would seem
to be both effective and safe. Unfortunately, biomarkers for
in vivo monitoring of autophagic activity are currently not
available, thus preventing identification of diabetic patients
suffering from altered autophagic activity. In addition,
targeted therapy to specific cells or tissues would be of great
value, as modulation of autophagy may have differential
effects depending on the specific cell type affected.

As discussed above, considerable evidence suggests that
autophagy alleviates stress and attenuates inflammation in
adipose tissue and probably also in beta cells; thus, stimulating
autophagy seems an attractive approach to improve tissue
adaptation to the inflammatory stress of obesity and diabetes.
Common glucose-lowering medications, including metformin
and thiazolidinediones, stimulate autophagy and prevent
NEFA toxicity to beta cells [78, 98]. Consistent with stimu-
lated autophagy, thiazolidinediones promote adiposity,
attenuate adipose tissue inflammation and enhance insu-
lin action in type 2 diabetes [99]; however, it is unknown
whether these effects are mediated via these drugs' ability
to stimulate autophagy.

On the other hand, several clinical trials suggest beneficial
metabolic effects for anti-malaria agents that prevent acidifi-
cation of lysosome-related compartments [100]. This would
suggest that inhibition of autophagy or other lysosomal func-
tions may turn out to be beneficial, probably due to inhibition
of hepatic insulin degradation [101] or, as more recently
proposed, by inhibiting lysosome-dependent lipolysis in adi-
pose tissue macrophages [11].

In summary, additional studies are required to clarify the
regulation of autophagy in diabetes and its impact on glucose
homeostasis, stress and inflammation in different tissues.
There is an urgent need for new tools to assess autophagic
activity in vivo and for compounds that would specifically
modulate autophagy. The recent development of a Beclinl-
based autophagy-inducing peptide [102] may be impor-
tant to advance our knowledge on the autophagic pro-
cess in vivo. These studies will allow the identification
of diabetic patients who may benefit from treatment
with autophagy-modulating compounds, and will pro-
vide crucial information on when and how autophagy
should be modulated as part of the treatment of patients
with diabetes and/or obesity.
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