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Abstract Regeneration of mature cells that produce functional
insulin represents a major focus and a challenge of current
diabetes research aimed at restoring beta cell mass in patients
with most forms of diabetes, as well as in ageing. The capacity
to adapt to diverse physiological states during life and the
consequent ability to cope with increased metabolic demands
in the normal regulation of glucose homeostasis is a distinctive
feature of the endocrine pancreas in mammals. Both beta and
alpha cells, and presumably other islet cells, are dynamically
regulated via nutrient, neural and/or hormonal activation of
growth factor signalling and the post-transcriptional modifica-
tion of a variety of genes or via the microbiome to continually
maintain a balance between regeneration (e.g. proliferation,
neogenesis) and apoptosis. Here we review key regulators that
determine islet cell mass at different ages in mammals. Under-
standing the chronobiology and the dynamics and age-
dependent processes that regulate the relationship between the
different cell types in the overall maintenance of an opti-
mally functional islet cell mass could provide important
insights into planning therapeutic approaches to counter
and/or prevent the development of diabetes.
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Abbreviations
Alpha-IRKO Alpha cell-specific knockout of insulin

receptors
CDK Cyclin-dependent kinase
ER Endoplasmic reticulum
FOX Forkhead box protein
GIP Gastric inhibitory polypeptide
GLP-1 Glucagon-like peptide 1
GR Glucagon receptor
IAPP Islet amyloid polypeptide
IdU Iododeoxyuridine
IGF-1 Insulin-like growth factor 1
IRE1 Inositol-requiring enzyme 1
PDX1 Pancreatic and duodenal homeobox 1
XBP1 X box binding protein 1

Introduction

Approximately one million islets are distributed throughout the
pancreas of a healthy adult human, and the combined mass of
the islets is ∼2 g, which constitutes between 1% and 2% of the
mass of the pancreas [1]. The islets, also termed ‘endocrine
micro-organs’, comprise alpha, beta, delta, epsilon and pancre-
atic polypeptide hormone-producing cells. Among these, the
beta cells are necessary for insulin production and the mainte-
nance of glucose homeostasis. Current therapeutic approaches
for both type 1 and type 2 diabetes are primarily focused on
enhancing insulin secretion and/or insulin supplementation.
Among the strategies that are continually evolving to preserve
and/or replenish the functional beta cell mass, differentiation of
embryonic and adult induced pluripotent stem cells in vitro [2]
is appealing but is currently faced with limited efficiency in
generating mature glucose-responsive beta cells. Other ap-
proaches include enhancing in vivo regeneration, either by
improving resistance against destructive signals and apoptotic
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pathways or by careful and selective proliferation of existing
beta cells, and differentiation and de-differentiation processes
have recently been suggested to revive beta cells [3]. In favour
of the former, several factors have been described as protecting
beta cells in animal models, such as hepatocyte growth factor,
gastric inhibitory polypeptide (GIP), insulin-like growth factor
1 (IGF-1), and prolactin. In terms of evidence for the latter,
glucagon-like peptide 1 (GLP-1), liver-derived factors [4] and
betatrophin (also termed angiopoietin-like 8, RIFL or lipasin)
[5] have been reported to increase beta cell proliferation. While
expansion of existing beta cells in vivo has mostly been ex-
plored in rodents [6, 7], limited data from obese or insulin-
resistant humans also indicate a potential for islet mass expan-
sion. Nevertheless, it continues to be a challenge to translate
current approaches used to expand beta cell mass in rodents to
human islet cells even in vitro [8]. Possible explanations for the
resistance of human islet cells to proliferation include loss of
expression of a key transcription factor(s) and increased ex-
pression of cell cycle inhibitors during senescence. It is notable
that a renewed interest in the mechanisms that underlie defects
in glucagon secretion in both type 1 and type 2 diabetes [9, 10]
has prompted research into understanding the regulation of
alpha cell mass and function [11]. Indeed, several reports
suggest that appropriate in vitro and in vivo factors/signals
can promote the transdifferentiation of alpha cells into beta
cells. The notion that alpha cells represent an in vivo source
of new beta cells, is supported by (1) data from Collombat et al
[12], who demonstrated inmice that ectopic expression ofPax4
converts progenitor cells into insulin-producing beta-like cells;
and (2) lineage-tracing evidence by Thorel and colleagues [13]
for beta cell regeneration from glucagon-producing alpha cells
in a transgenic mouse model of diphtheria-toxin-induced acute
selective near-total beta cell ablation. Other cell types that have
been suggested as sources of beta cells in rodents include ductal
or acinar cells, intra-islet precursor cells and replication of pre-
existing beta cells [14]. Studies in rodents clearly indicate that
beta cell mass exhibits a remarkable plasticity to adapt, begin-
ning in embryogenesis and continuing over a lifetime, largely
in response to altered insulin demand [15]. In this review
we will focus on the chronobiology of islet cell plasticity,
particularly in the context of growth factor regulation of
proliferation and cell death.

Prenatal and neonatal period

In rodents, the endocrine cell population undergoes a dramatic
expansion beginning at embryonic day 14.5 followed by
remodelling, during which there is regulated alteration in
apoptosis and neogenesis and a progressive decrease in beta
cell replication [16].

Insights into the normal development of the pancreas have
emerged from observations made from late gestation

throughout the neonatal period in a non-human primate model
(see text box: ‘Age-dependent changes in islet morphology in
non-human primates’). Pancreases from fetal/newborn ba-
boons reveal that the islet architecture becomes more organised
as gestational age advances. Thus, in early life, the total per
cent of endocrine cell area, expressed as a percentage of total
pancreas area, is greater than in adults, with no prevalence of
any endocrine cell type. However, endocrine cells, as well as
cells with mixed endocrine–exocrine lineage, were also detect-
ed in exocrine ductal and acinar cells in fetuses [17].

The Notch pathway has been considered a major regulator
during pancreas development in both humans and rodents
[18]; cells in which the pathway is activated maintain their
proliferative capacity, while those that do not express
neurogenin 3 exit the cell cycle and differentiate into endo-
crine cells. Consistently, a mouse model with impaired Notch
signalling exhibits increased endocrine cell differentiation at
the expense of the pancreatic progenitor population [19]. In
humans, a high rate of proliferation characterises late embryo-
genesis [20] and begins to decline postnatally [16, 21]. Spe-
cifically, proliferation of insulin-expressing cells occurs at
relatively high rates during early development and decreases
to low levels by 24 weeks [22, 23]. Analysing human pancre-
atic samples using Ki67+ insulin-expressing cells, Gregg et al
[21] detected a high level of beta cell proliferation in neonates
and in children of up to about 2 years of age that has been
considered responsible for doubling human beta cells by
5 years of age to establish an organism’s beta cell mass.

Studies in genetic mouse models indicate the different
regulators determine embryonic vs postnatal beta cell prolif-
eration [24]. For example, D and E cyclin–cyclin-dependent
kinase (CDK) complexes regulated by CDK inhibitors, in-
cluding p27kip1 and p16cip1, play a critical role in progression
of the cell cycle fromG1 to S phase in the postnatal period [7].
Mouse models cyclin D2 or CDK4 knockout or overexpres-
sion of p27kip1 exhibit relatively normal islet structure, com-
position and mass in the neonatal stages, but manifest adult-
onset diabetic phenotypes, suggesting that cell cycle regula-
tors contribute to adaptation of islet function in the post-
neonatal stage. Forkhead box protein (FOX)M1 has been
investigated using a pancreas-specific knockout mouse.While
whole pancreas deletion of FOXM1, a key cell cycle regulator
of both G1/S progression and G2/M transition, does not affect
embryonic pancreas development, it leads to impaired post-
natal beta cell mass expansion via reduced proliferation. These
studies suggest that cell cycle regulators are unlikely to be
critical for endocrine progenitors and/or beta cell proliferation
during embryogenesis, and that the mechanisms necessary for
embryonic beta cell replication are likely to differ from those
in adults [25].

In addition to regulating insulin secretion, the alpha cell
hormone, glucagon, has been suggested to affect the develop-
ment of beta cells [26] and regulate islet microcirculation [27].
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Altered alpha cell function in mice, secondary to alpha cell-
specific knockout of insulin receptors (alpha-IRKO), has been
reported to either directly or indirectly influence beta cell
proliferation in the mutants [28]. Lack of glucagon itself is
reported to induce alpha cell hyperplasia [29]. Mice with
disruption of prohormone convertase 2, which is essential
for processing proglucagon into the mature hormone, gluca-
gon, display increased proliferation of proglucagon cells in the
perinatal period and a dramatic postnatal alpha cell hyperpla-
sia and mild hypoglycaemia [30]. Notably, mice with alpha
cell-specific mutated menin exhibit an increased frequency of
glucagonomas, insulinomas and mixed islet tumours, arising
from cells expressing the proglucagon gene; pointing tomenin
as an in vivo regulator of alpha cell plasticity, growth and

transdifferentiation [31]. Glucagon-expressing cells can in-
deed transdifferentiate into insulin-expressing cells upon
menin inactivation, suggesting that alpha cells are more plastic
than previously appreciated. However, Wilcox et al [32] re-
ported that ablation of the Arx gene in neonatal alpha cells
results in loss of glucagon expression and conversion of this
cell population to adopt an insulin-producing beta cell fate.
The transcription factor encoded by the Arx gene, which is
expressed in a subset of endocrine progenitors and restricted
to alpha cells [33, 12], is involved in the specification and
maintenance of alpha cell fate.

It is logical that adequate nutrition during embryogenesis is
necessary to ensure appropriate development of beta cell
mass. Nutritional insults that occur during early life may result

Age-dependent changes in islet morphology in non-human primates

Age Changes in islet architecture

Fetal period • Islet architecture: insulin-positive cells surrounded by glucagon-positive cells
• Margin between the endocrine and the exocrine tissue not always clearly defined
• Islet architecture becomes organised as gestational age advances
• A subpopulation of cells shows both endocrine and acinar phenotype
• 2% of fetal cells have both glucagon immunoreactive alpha-type secretory granules and trypsin-positive
zymogen granules in the cytoplasm

• 1% of fetal cells contain both insulin-immunoreactive beta-type secretory granules and trypsin-positive
zymogen granules in the cytoplasm

• Co-localisation of glucagon and pancreatic polypeptide has been noted in islets of the vervet monkey
(Chlorocebus pygerythrus)

Newborn • Islet architecture: glucagon-positive cells show peripheral localisation; insulin-positive cells are mainly in the
islet core

• Increased pancreas weight (greater than twofold) at 5 days after birth in baboons
• Increased percentage of beta, alpha, and delta area: 15-, 5- and 94-fold higher, respectively, than in adult baboons

Adulthood • Islet architecture: glucagon-positive cells show prevalent peripheral localisation, while insulin-positive cells
are mainly detected in the islet core

• Modest overweight- and obesity-induced effects on relative beta cell volume
• Being overweight induces an increase in alpha cell mass, which increases with the duration and severity of
being overweight

• IL-6 and TNF-α soluble receptors are positively correlated with body weight, suggesting that the induction
of an abnormal activation of IL-6 and TNF-α signalling systems is associated with increased alpha cell mass in
baboons. Evidence of islet amyloidosis in diabetic macaques, vervet monkeys and baboons,
while type 2 diabetic monkeys show variable insulin staining, depending on the stage of disease development

• No change in alpha cell mass in diabetic vervet monkeys
• In adult non-human primates a decrement in fractional beta cell area of <50% or more leads to loss of
glycaemic control

• The islets of streptozotocin-induced diabetic rhesus monkeys (Macaca mulatta) have decreased numbers
of beta cells and a relative increase in the proportion of alpha and delta cells

Old age • Islet amyloidosis plays a role in beta cell death in the Celebes crested macaque (Macaca nigra) and rhesus
monkeys

• Progressive islet amyloidosis is associated not only with increased beta cell apoptosis (reduced relative beta
cell volume), but also with increased alpha
cell replication and hypertrophy (increased relative alpha cell volume) in baboons
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in decreased beta cell mass and function that persist in adult-
hood to promote increased risk of glucose intolerance and
type 2 diabetes [34]. Maternal restricted energy intake during
parturition and the consequent increased levels of glucocorti-
coids [35] have been reported to decrease fetal beta cell mass
as a result of reduced differentiation and decreased beta cell
expression of the key transcription factors pancreatic and
duodenal homeobox 1 (PDX1), paired box protein 4 (PAX4)
and NK6 homeobox 1 (NKX6.1). A maternal diet low in
protein content causes intrauterine growth retardation, and
the newborn rodents exhibit underdeveloped beta cell mass
owing to reduced proliferation and increased apoptosis asso-
ciated with reduced levels of growth factors [36]. Protein
restriction during pregnancy has also been associated with
impaired beta cell replacement after streptozotocin treatment
[37]. Maternal malnutrition can also alter the development of
tissue vasculogenesis in the offspring, which may limit beta
cell plasticity by disrupting the inductive signals from the
microvasculature and an altered presence of endothelial pro-
genitors [34]. Offspring of pregnant rats fed a low-protein diet
during gestation exhibit a reduced capillary density in the
islets [38]. In summary, nutritional insults can directly impact
beta cell plasticity by effects on progenitors and the function
of mature beta cells, and may also have indirect effects
resulting in impaired trophic signalling between the vascular
endothelium and beta cells [39].

Puberty and adolescence

The incidence of both type 1 and type 2 diabetes has increased
over the past decade, and the increase in the latter has been
attributed to obesity, insulin resistance and deficient beta cell
function [40]. A pubertal increase in insulin resistance and an
inability to mount an adequate beta cell insulin response
results in hyperglycaemia. Intensive glycaemic regulation
may allow for beta cell recovery in children [41] and is
suggestive of plasticity of islets during this developmental
stage.

Hormonal changes related to puberty, along with race and
genetic factors, has been recognised as a non-modifiable risk
factor underlying the increased incidence of type 2 diabetes
among adolescents [42, 43]. The transient insulin resistance of
puberty [44] that is associatedwith a compensatory increase in
insulin secretion [45] might accelerate progression of beta cell
failure because of the additional stress on insulin-producing
cells during crucial periods of growth and development,
but the mechanism(s) contributing to the resistance has
not been clearly determined. The hypothesis that re-
duced insulin sensitivity is driven by transient changes
in growth hormone levels during puberty [46] is attrac-
tive, since growth hormone and IGF-1 levels are tran-
siently higher in mid-puberty and mirror the changes in

insulin sensitivity [47]. In addition, growth hormone-
deficient children exhibit increased insulin sensitivity
[48], and growth hormone is known to significantly
affect beta cells [49]. Difficulty in designing approaches
to easily and accurately measure beta cell mass in vivo has
precluded a clear understanding of the precise changes that
occur in the endocrine pancreas during the transition from
childhood through to adulthood. Available data are derived
from autopsy studies, including those by Butler and
colleagues [50, 51], who measured pancreas volumes
for 46 individuals aged from 2 weeks to 21 years using
abdominal computerised tomography. These data indi-
cate that beta cell mass expands by several fold from
birth to adulthood, with the largest increment occurring prior
to 2 years of age [21, 52]. This increase in islet mass is
secondary to a greater number of beta cells per islet
and increased islet size rather than an increase in the
number of islets or alterations in apoptosis during the pancre-
atic remodelling phase. Thus, early childhood has been iden-
tified as the period with the most rapid expansion of beta cell
numbers, while the rate of growth and the replication of
existing beta cells decline from youth through to adulthood.
A study using histological approaches reported beta cell
neogenesis and a regenerative response in children and
adolescents with type 1 diabetes [53]. In the same study,
proliferation was detected in the remnant beta cell mass in
those with new-onset type 1 diabetes but not in those with type
2 diabetes (Fig. 1).

Adulthood

The presence of a functional islet mass that is optimal for the
different stages of the lifespan of an organismdepends onmultiple
regulatory processes. Under normal circumstances, islet mass is
relatively stable,with the cells undergoing a slow renewal because
of low levels of proliferation and apoptosis. Diverse regulatory
factors include hormones, metabolites and growth factors which
have all been proposed to modulate islet cell mass by direct or
indirect effects. For example, growth factors including IGF-1 and
IGF-2, insulin, platelet-derived growth factor (PDGF), epidermal
growth factor (EGF) and others [54] exert a direct stimulatory
effect on beta cell replication in vivo or in vitro [55].

Cell cycle regulation As discussed in the ‘Prenatal and neonatal
period’ section, several genetic mouse models of cell cycle
dysregulation manifest an adult-onset diabetes phenotype,
characterised by decreased beta cell mass via reduced prolifera-
tion. This suggests that mature beta cells are sensitive to pertur-
bations in cell cycle control, and this is probably due to differ-
ential involvement of cell cycle regulators compared with most
other cell types as exemplified by models lacking CDK6 [56]
and/or redundant expression of cyclin D2 [57, 58]. Furthermore,
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overexpression of the inhibitor p27kip1 [59] in beta cells impairs
proliferation, resulting in reduced beta cell mass. In contrast,
global deletion of p27kip1 enhances beta cell proliferation, as
also observed in genetic mouse models of insulin resistance (e.g.
IRS2 KO, db/db) [59]. Beta cell hyperplasia is also observed in
humans with a focal loss of heterozygosity of p57kip2, who suffer
from hyperinsulinism of infancy [60].

Considering that mice with pancreas-specific knockout of
FOXM1 leads to impaired alpha and beta cell proliferation
and impaired beta cell mass regeneration after partial pancre-
atectomy, it is possible that FOXM1 is required for beta cell
proliferation and hyperplasia of pre-existing beta cells follow-
ing injury [61]. Recent studies point to FOXM1 being in-
volved in the adaptive response of the beta cells to alterations
in nutrients [62]. Thus, FOXM1 is critical for maintaining beta

cell mass during adulthood by coordinating cell cycle pro-
gression. Another regulator of cell cycle genes is menin [63];
beta cell-specific deletion of menin leads to beta cell hyper-
plasia and insulinomas owing to increased proliferation sec-
ondary to reduced levels of p18 and p27kip1 [64].

Al-Hasani et al [65] recently reported that upon Pax4
misexpression, adult alpha cells are converted into insulin-
producing cells, independent of their age, mutation state or
microenvironment. They also report a duct cell to beta-like
cell regeneration pathway that could be repeatedly activated
by streptozotocin injury in an age-dependent manner. The
newly formed beta cells are functional and able to repopulate
and increase the size of islets (see text box: ‘Contributors to
maintenance of islet cell mass in adult rodents’).

Insulin/IGF-1 and glucagon signalling Genetically engineered
knockout and transgenic mouse models and knockdown ap-
proaches targeting one or more proteins in the insulin/IGF-1
signalling pathway, including the insulin and IGF-1 receptors
[66, 67], IRS-1 and IRS-2 [68, 69], Akt [70], phosphoinositide
3-kinase (PI3-kinase) [71] or FOXO1 [72], point to their
significant roles in the regulation of islet biology. Several
groups, including ours, have reported on the significance of
insulin/IGF-1 signalling in the regulation of both beta and

alpha cells [66, 28]. A role for insulin signalling in the
regulation of alpha cell function and mass is evident from
analyses of alpha-IRKO mice [28]. Interestingly, the mutant
mice exhibited hyperglucagonaemia, glucose intolerance and
an age-dependent progressive increase in beta cell area, while
alpha cell area was unchanged leading to a decrease in
relative alpha cell area [70]. The reduced relative alpha cell
area in older alpha-IRKO mice may be secondary to attenu-
ation of insulin signalling-mediated anti-apoptosis leading to
increased alpha cell death. In humans, an increase in alpha
cell relative area has been reported in insulin-resistant patients

Contributors to maintenance of islet cell mass in adult rodents
Regulators Beta cell Alpha cell

Cell cycle regulation ↑ in CDK6 KO, redundant expression of cyclin
D2, and global deletion of p27kip1

↓ in overexpression of p27kip1, pancreas-specific knockout
mice for FOXM1, deletion of MEN1 Neogenesis from
alpha cells and ducts in Pax4 misexpression

↓ in pancreas-specific knockout mice
for FOXM1

Insulin/IGF-1 and
glucagon signalling

↑ in alpha-IRKO
↓ in beta-IRKO, Akt1 KO, IRS1 and
IRS2 KO, IGF-1 KO

↑ in GRGR KO and alpha-IRKO/GR
KO, GRHep KO

↓ with ageing in alpha-IRKO,
pancreas-specific IRS2 KO

Nutrients and gene
expression modulation

↑ by high-fat diet, high-protein diet, infusion of
glucose in rats

↓ after chronic hyperglycaemia and glucotoxicity

↑ by high-fat diet and high-protein
diet

↓ in IL-6 KO mice

Placental hormones
and gut hormones

↑ in PRLR KO mice
↑ in GIPR KO (islet size)
= GLP1R KO mice, but reduced number of large islets
and enhanced susceptibility to beta cell apoptosis

= GLP1R KO mice, but show altered
islet architecture with centrally
located alpha cells

microRNAs ↑ miR-132, miR-184 and miR-338-3p in insulin
resistance and obesity

↓ miR- 21, miR- 34a, miR- 199a-5p, miR-199a-3p, miR-
203, miR-210 and miR-383 during
compensation failure to insulin resistance

–
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[73] and in patients with type 2 diabetes [74] or type 1
diabetes [75]; however, the mechanism(s) underlying this
apparent increase in alpha cell mass remains unclear.

Disruptions in glucagon signalling induced in animal
models by decreasing glucagon receptor (GR) expression
[29, 76] or modulating proteins in the receptor signalling
pathway [77] determine alpha cell hyperplasia. Studies on
these disruptions suggest that, similar to the observations on
beta cell hyperplasia in insulin resistance, an increase in alpha
cell proliferation and hormone production occurs in states of
glucagon resistance. In addition, the contribution of
hyperinsulinaemia to alpha cell hyperplasia is supported by
observations that IRS2 KO mice exhibit reduced alpha cell
mass and glucagon secretion [69], while in vitro insulin treat-
ment of alpha TC1 cells leads to increased alpha cell prolifer-
ation by triggering mTOR [78].

Among alpha cell regulators, recent findings suggest that a
circulating factor, which is likely to be generated following
disruption of hepatic GR signalling, can increase alpha cell
proliferation independent of direct pancreatic input [79]. Thus,
despite preservation of islet GR signalling, GRHep−/− mice
develop hyperglucagonaemia and alpha cell hyperplasia.
Identification of novel factors regulating alpha cell prolifera-
tion and mass may facilitate the generation and expansion of
alpha cells for transdifferentiation into beta cells and the
treatment of diabetes.

Studies in adult baboons indicated an obesity-induced
increase in alpha cell mass that was significantly greater

than the increase in beta cell mass, leading to an im-
balance in the beta:alpha ratio. The authors suggest that
an abnormal activation of IL-6 and TNF-α signalling
systems is associated with the increased alpha cell mass
[80] (see text box: ‘Contributors to maintenance of islet
cell mass in adult rodents’).

Nutrients and microRNAs In addition to being an essential
nutrient as a primary energy source in the body, glucose has an
effect on islet cell population dynamics. For example, in rats,
glucose infusion increases beta cell numbers by 50% [81],
with neogenesis of precursor cells being a dominant contrib-
utor to the increased mass [82]. Furthermore, glucose pro-
motes beta cell survival by suppressing a constitutive apopto-
tic programme in vivo [83], and there is evidence that chronic
changes in beta cell glucose metabolism induced by genetic or
pharmacological manipulation of glucokinase can regulate
beta cell mass regeneration in vivo [84]. Paradoxically, chron-
ic hyperglycaemia promotes glucotoxicity which, in turn,
exacerbates diabetes by increasing apoptosis [85]. Although
it is now several decades since the concept of glucose toxicity
[86] was first introduced, the precise cut-off point at which
glucose levels transition from being useful and supportive of
proliferation to assisting in the apoptosis and destruction of
beta cells has still not been defined.

Excessive nutrient intake, such as high-protein [87] or
high-fat diets [88], has also been described as modulating beta
and alpha cell morphology. Increased levels of IL-6 in type 2

Significant remodeling of endocrine pancreas involves beta cell
proliferation, neogenesis and apoptosis [16]. Highest rate of beta cell
proliferation [21, 22]

Increased insulin secretion, which is, in part, due to transient insulin resistance [44, 45]
Doubling of beta cell mass by 5 years of age [22]
Several-fold increase in beta cell mass from birth to adulthood [50, 51]
Increase in beta cells per islet and in islet size [51, 52]
Evidence of beta cell neogenesis and a regenerative response in diabetes [53]

Mature beta cells are sensitive to perturbations in cell cycle control [60]
Pro-survival effects of lactogen hormones on beta cells [99, 100] but not alpha cells [102]
Cytoprotective effect of GLP-1 on beta cells [104]
GIP stimulates glucagon secretion [113], while GLP-1 inhibits secretion [112]
Increase in beta cell mass reported in obesity [119]
Reduction in beta cell mass and relative increase in alpha cell mass in diabetes [74]

Decline in beta cell function; decline in beta cell replication
Beta cell mass remains relatively constant in healthy humans [121]
No major alterations in beta cell size [120]
Beta cell apoptosis is low and remains constant throughout life [21]
In diabetes: Mitochondrial dysfunction, oxidative stress, ER stress
and accumulation of intermediate-sized amyloid particles [127]

Neonatal age

Puberty
Adolescence

Adulthood

Old age

Fig. 1 Schematic illustration of age-dependent changes and regulators of
islet cell morphology and function in humans. Because we do not have
access to images of human islets, representative images of rodent islets at

different ages are shown here. Insulin (red), Ki67 (green), DAPI (blue)
immunoreactivity are shown in each picture. Arrow indicates Ki67+ beta
cell. Magnification ×200
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diabetes coupled with high expression of IL-6 receptors on
alpha cells suggest that this cytokine could contribute to the
increased alpha cell mass observed in diabetes [88]. This
notion is supported by fasting hypoglucagonaemia and an
inability of mice lacking IL-6 to increase their alpha cell mass.

miRNAs are powerful regulators of growth, differentiation
and organ function and act by modulating gene expression at
the post-transcriptional level [89]. The expression of several
miRNAs is affected by prolonged exposure to elevated con-
centrations of glucose, NEFA and proinflammatory cytokines
[90]. Moreover, alterations in the expression of several islet
miRNAs have been reported in different models of diabetes
[91, 92]. As recently proposed by Nesca et al [93], obesity and
insulin resistance trigger changes in the levels of miR-132,
miR-184 and miR-338-3p, which promote beta cell mass
compensation. However, the authors also suggest that com-
pensation failure further modifies the expression of additional
miRNAs (e.g. miR-21, miR-34a, miR-199a-5p, miR-199a-3p,
miR-203, miR-210, miR-383), with consequent negative
effects on beta cell biology. Recently, miR-184 has been
reported to be reduced in islets from type 2 diabetes patients.
Poy and colleagues report that the reduced miR-184 promotes
expression of Ago2 to form the microRNA-induced silencing
complex in the regulation of beta cell proliferation [94].
Additional research is necessary to carefully dissect the
interactions and hierarchy of miRNAs in the regulation of
compensatory beta cell proliferation.

Among other miRNAs, miRNA-7a [95] has been reported
to limit adult beta cell proliferation by inhibiting mammalian
target of rapamycin (mTOR) signalling.Mice lackingmiR-375
exhibit reduced beta cell mass as a result of impaired prolifer-
ation, hyperglucagonaemia and increased alpha cell numbers
suggesting regulation of both beta and alpha cells [96]. Genetic
deletion of miR-375 in ob/ob mice profoundly diminished the
proliferative capacity of the endocrine pancreas and resulted in
a severely diabetic state, indicating a role for the miRNA in
beta cell compensation [97].

Placental and gut hormones During pregnancy, placental
hormones, particularly placental lactogen, are responsible for
alterations in beta cell mass. These hormones stimulate beta
cell proliferation in isolated islets, and beta cell mass is re-
duced by up to 42% in receptor-deficient mice [98]. It has
recently been demonstrated that the pro-survival effects of
lactogens are mediated by protection against apoptotic
pathways controlled by members of the BCL2 gene fam-
ily in human beta cells [99] and against glucolipotoxicity-
induced cell death via Janus kinase 2 (JAK2)/signal trans-
ducer and activator of transcription 5 (STAT5) signalling
[100]. While in vitro studies have demonstrated that hu-
man somatomammotropin stimulates glucagon release
[101], in vivo studies in both rats and humans suggest
that pregnancy does not affect alpha cell function [102]

and that alpha cells might not be involved in the increased
insulin demand in response to insulin resistance during
normal human pregnancy [103].

Gastrointestinal hormones have long been recognised as
regulating islet mass. GLP-1, GIP, cholecystokinin and gastrin
are all secreted in response to nutrient intake and act to
regulate digestion, insulin secretion, satiety and beta cell mass.
GLP-1 promotes beta cell proliferation, islet neogenesis and
beta cell survival in vivo [104], while GIP promotes beta cell
survival in vivo but only promotes beta cell proliferation
in vitro [105]. Cholecystokinin regulates beta cell apoptosis
and mitogenesis in vivo in rats [106], and gastrin stimulates
islet neogenesis [107]. The mechanism(s) adopted by GLP-1
and GIP to modulate cell proliferation and function implicates
multiple signalling pathways. The pathways characterised
include those acting via the G-protein-coupled receptors that
lead to activation of cAMP, protein kinase A (PKA) and the
cAMP response element-binding protein (CREB) cascade to
directly regulate genes involved in proliferation and apoptosis,
and other pathways determining phosphorylation of Akt and
mitogen-activated protein kinases [108]. The ghrelin gene-
derived peptides and exendin-4 exert cyto-protective effects
in human pancreatic islet endothelial cells. These anti-
apoptotic effects involve the phosphoinositide 3-kinase
[PI3K]/Akt, extracellular signal-regulated kinase1/2
(ERK1/2) and cAMP/PKA pathways [109]. Although ageing
is characterised by a low level of beta cell proliferation,
mice treated with exendin-4 at different ages show low
glucose levels, suggesting a potential beneficial effect in
ageing [110].

The C-terminal VGF peptide, TLQP-21, potentiates
glucose-stimulated insulin secretion in isolated rat islets and
reduces glycaemic excursion in Wistar rats following a glu-
cose challenge. Chronic administration of TLQP-21 to Zucker
diabetic fatty rats delays the onset of overt diabetes by pre-
serving islet cell mass [111] and acts in a manner similar to
exendin-4 by blocking beta cell apoptosis.

GLP-1 and GIP exert opposing actions on glucagon secre-
tion. Thus, GLP-1 receptor agonists and dipeptidyl peptidase
4 (DPP4) inhibitors inhibit glucagon secretion [112], while
GIP has been shown to increase glucagon secretion in humans
under hyperglycaemic conditions [113].

As extensively reviewed by Drucker [114], the precise
effects of GLP-1 on alpha cell mass are still unclear. The
recent report of alpha cell hyperplasia in pancreases from
diabetic patients treated with GLP-1 receptor agonists and
DPP4 inhibitors without evidence for alpha cell proliferation
are difficult to interpret [115]. The latter study [115] has been a
matter of considerable debate since the data indicate the
opposite of several preclinical studies in rodents and non-
human primates, wherein the use of different drugs and
experimental models did not lead to detectable alpha cell
hyperplasia, and in fact showed reduced numbers of alpha
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cells [116, 117]. Thus it is unclear how GLP-1 ‘directly’
regulates alpha cell hyperplasia independent of evidence
of proliferation. In this context, it is notable that GR disruption
increases alpha cell mass [79] by increased proliferation inde-
pendent of GLP-1 receptor signalling [118].

Old age

The endocrine compartment of the pancreas is relatively well
maintained with advancing age [119], and studies indicate that
beta cell mass remains relatively constant from age 20 to
100 years in healthy humans, with no major alterations in cell
size and apoptosis, suggesting that the cells are likely to be
long lived [120].

The Harlan and Tisdale groups used two intriguing tech-
niques to study human beta cell turnover in vivo: (1)
iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU) stain-
ing in pancreases from autopsies performed on patients who,
under clinical protocols, were administered the thymidine
analogue; and (2) the technique of carbon-14 dating of DNA
extracted from beta cells isolated from recently deceased
donors. The two groups suggested that human beta cell turn-
over is limited to the first three decades of life, since no
replication (incorporation of IdU) of islet beta cells was
detectable in the participants over 30 years of age [121].

Age-dependent alterations in cell cycle protein expression
in islet cells include an increase in p16cip1 levels [122] and a
reduction in centromere protein A (CENPA) [120], a protein
required for chromosomal segregation in mitosis.

Among other factors, alterations in the rates of apoptosis
and amyloid deposition and an imbalance between activation
and inactivation of cell cycle proteins have all been topics of
debate with regard to their contribution to the pathogenesis of
type 2 diabetes. When evaluating islet plasticity it is important
to consider the rate of cell death. A systematic analysis of
autopsied pancreases from humans at different ages suggested
that beta cell apoptosis is low and remains constant throughout
life [21]. However, the apoptotic rate has been reported to be
increased in obese and diabetic individuals compared with the
rate in lean and non-diabetic groups [123]. In contrast, a study
by Reers et al showed that a decline in beta cell replication
with age was not associated with a change in the frequency of
apoptosis [124]. The increase in the apoptotic rate has been
explained, in part, by the accumulation of amyloid plaques
[125], aggregates of islet amyloid polypeptide (IAPP, a hor-
mone co-secreted with insulin), which are increased in islets
of diabetic and obese non-diabetic individuals. Since rodent
IAPP does not aggregate because it has a different structure to
the human hormone, investigators have examined the effects
of IAPP accumulation in islets in transgenic mice expressing
human IAPP. Overexpression of human IAPP has been re-
ported to cause early hyperglycaemia followed by

accumulation of amylin plaques in the islets in ageing mice
[126]. Janson et al [127] reported that intermediate-sized
amyloid particles in human islets promote membrane damage
and subsequent cell death (Fig. 2).

Similar to humans, islet amyloidosis was observed in a
large number of baboons with normal fasting plasma glucose
levels and in those with impaired fasting glucose or type 2
diabetes. Ageing was positively correlated with the severity of
islet amyloidosis, and increased amyloidosis was associated
with an increased rate of alpha cell replication and beta cell
apoptosis [128].

Studies in murine models suggest that mature beta cells
are sensitive to cell cycle perturbations. Specifically, the
products of the Ink4a/Arf (Cdkn2a) locus, p16cip1 and
p19, the expression of which increases with age [129],
have been associated with reduced beta cell proliferation
[130]. In this context it is notable that genome-wide
association studies in humans link the CDKN2A locus to
type 2 diabetes susceptibility [131–134], providing
physiological relevance.

Epigenetic regulation of the CDKN2A locus determines a
series of histone modifications to control beta cell prolifera-
tion during ageing. In particular, ageing de-represses this
locus, leading to increased levels of cell cycle inhibitors
(p16cip1 and p19), decreased B-lymphoma Moloney murine
leukaemia virus insertion region-1 (BMI1) banding [135] and
decreased levels of enhancer of zeste homologue 2 (EZH2)
[136], a histone methyltransferase and member of the
polycomb group of proteins.

Other stressors that influence the biology of the ageing beta
cell, a major secretory cell include endoplasmic reticulum
(ER) and oxidative stress. As an adaptive response to ER
stress, pancreatic beta cells express high levels of the trans-
ducers inositol-requiring enzyme 1 (IRE1), PKR-like ER
kinase (PERK) and activating transcription factor-6 (ATF6),
which balance the protein synthesis and ER folding capacity
of the cells. Despite an increase in unfolded protein response
(UPR) signalling, which allows proinsulin synthesis by in-
creasing the ER folding capacity after acute exposure to
hyperglycaemia [137], chronic ER stress leads to a decrease
in insulin synthesis and activation of the apoptotic cell death
programme [138]. NEFA have been recognised as key con-
tributors that can trigger the apoptotic programme, in part
mediated by the ER stress response, and this highlights the
significance of obesity and nutrients in the context of lipotoxic
effects on beta cells [139].

Among other ER stress-related proteins, the spliced form of
X box binding protein 1 (XBP1s), a protein involved in IRE1
activation, has been reported to regulate both alpha and beta
cell function. Mice with alpha cell-specific disruption of
XBP1 expression (alpha-XBP1KO) [140] exhibit altered glu-
cagon secretion as a result of increased ER stress that is not
directly associated with alpha cell mass or growth.
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Surprisingly, prolonged XBP1 overproduction in rat islet
cells impaired glucose-stimulated insulin secretion, BAX
(BCL2-associated X protein) translocation, cytochrome c
release and activation of caspase 3 and beta cell apoptosis
[141]. However, sustained production of XBP1 inhibits beta
cell function and eventually triggers the mitochondrial path-
way of apoptosis, probably secondary to inhibition of PDX1
and musculoaponeurotic fibrosarcoma oncogene homologue
A (MAFA) expression [141]. In summary, ER stress and its
related proteins seem to affect beta cell mass by inducing
apoptotic death, while alpha cell mass remains relatively
normal.

Mitochondrial dysfunction and, consequently, increas-
ing oxidative stress with age are responsible for reduced
beta cell function and survival [142]. Several growth
factor pathways including insulin have been reported
to modulate mitochondrial function and regulation of
oxidative stress leading to beta cell apoptosis. The presence
of a complex between the pro-apoptotic protein Bcl-2-
associated death promoter (BAD) and glucokinase in mouse
and human beta cell mitochondria may play a role in this
process and contribute to defects in mitochondrial function
[143].

It is important to note that a majority of studies
exploring the capacity of endogenous renewal have been
performed in young rodents and cannot be directly
translated to an equivalent age in humans. For example,
partial pancreatectomy in rodents promotes beta cell
regeneration and increased insulin content [144]. In contrast,
in one report, adult humans who underwent partial pancrea-
tectomy did not exhibit evidence for increased regeneration
[145] but exhibited long-term recovery of beta cell function
[146].

In addition, the dramatic age-dependent decline of pancre-
atic beta cell replication in response to diverse insults (high-fat
diet, streptozotocin administration or short-term treatment
with the GLP-1 analogue exendin-4) has been correlated by
Tschen et al [110] with an increase in Bmi1 levels, a polycomb
group protein that regulates the Ink4a locus and modulates the
ability of the beta cell mass to expand. Interestingly, a system-
ic factor has been considered responsible for increasing the
proliferation rate of old pancreatic beta cells when parabiosed
to young mice [147]. Whether this factor is similar to the
circulating factor in insulin-resistant states [4] has not been
fully explored.

Future directions

New therapies are urgently required to restrain beta cell death
and promote beta cell function and regenerate healthy func-
tional beta cells in diabetic patients. To date, several growth
factors and transcription factors have been highlighted for
their ability to increase beta cell mass and proliferation based
on elegant genetically engineered transgenic and knockout
approaches in rodents. However, the poor translation of the
beta cell proliferative effects of potential factors and small
molecules observed in young rodent to humans underscores
the poor state of knowledge of signalling pathways in human
beta cells [8, 148, 149] and urgently calls for a major scientific
effort in this area. Investigating the modifications that occur
during the ageing process provides a unique opportunity to
identify possible targets to prevent and slow the progression of
diabetes, and to maintain higher rates of proliferation and
regeneration of insulin-producing cells in pathophysiological
conditions. Current studies suggest that potential induction of
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replication of adult beta cells, neogenesis from progenitor
cells and duct cells, transdifferentiation from alpha to beta
cells and de-differentiation of beta cells are plausible mecha-
nisms that could be harnessed to engineer a therapeutic in-
crease in insulin-producing cells in humans. It will be exciting
to see whether one or more of the aforementioned mecha-
nisms, or perhaps a new discovery, holds the key to safely and
specifically enhancing functional beta cell mass to treat
diabetes.
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