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Abstract
Aims/hypothesis Reduced beta cell mass due to increased beta
cell apoptosis is a key defect in type 2 diabetes. Islet amyloid,
formed by the aggregation of human islet amyloid polypeptide
(hIAPP), contributes to beta cell death in type 2 diabetes and
in islet grafts in patients with type 1 diabetes. In this study, we
used human islets and hIAPP-expressing mouse islets with
beta cellCasp8deletion to (1) investigate the role of caspase-8
in amyloid-induced beta cell apoptosis and (2) test whether
caspase-8 inhibition protects beta cells from amyloid toxicity.
Methods Human islet cells were cultured with hIAPP alone,
or with caspase-8, Fas or amyloid inhibitors. Human islets and
wild-type or hIAPP-expressing mouse islets with or without

caspase-8 expression (generated using a Cre/loxP system)
were cultured to form amyloid. Caspase-8 and -3 activation,
Fas and FLICE inhibitory protein (FLIP) expression, islet beta
cell and amyloid area, IL-1β levels, and the beta:alpha cell
ratio were assessed.
Results hIAPP treatment induced activation of caspase-8 and
-3 in islet beta cells (via Fas upregulation), resulting in apo-
ptosis, which was markedly reduced by blocking caspase-8,
Fas or amyloid. Amyloid formation in cultured human and
hIAPP-expressing mouse islets induced caspase-8 activation,
which was associated with Fas upregulation and elevated islet
IL-1β levels. hIAPP-expressing mouse islets with Casp8 de-
letion had comparable amyloid, IL-1β and Fas levels with
those expressing hIAPP and Casp8, but markedly lower beta
cell apoptosis, higher beta:alpha cell ratio, greater beta cell
area, and enhanced beta cell function.
Conclusions/interpretation Beta cell Fas upregulation by en-
dogenously produced and exogenously applied hIAPP aggre-
gates promotes caspase-8 activation, resulting in beta cell
apoptosis. The prevention of amyloid-induced caspase-8 acti-
vation enhances beta cell survival and function in islets.
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Introduction

Reduced beta cell mass resulting from increased beta cell
apoptosis is a key defect in type 2 diabetes [1, 2]. Islet amyloid
formation in patients with type 2 diabetes contributes to pro-
gressive beta cell death [3–5]. Unlike in type 2 diabetes,
amyloid forms rapidly in cultured [6–8] and transplanted
human islets [9, 10], and this is associated with beta cell
dysfunction and death in vitro [6–8], and with islet graft
failure leading to recurrence of hyperglycaemia in animal
models of type 1 diabetes [10–12]. Moreover, amyloid depo-
sition associated with reduced beta cell mass has been report-
ed in islet grafts in patients with type 1 diabetes [13, 14]. Thus
islet amyloid, in addition to its role in the pathogenesis of type
2 diabetes, also contributes to islet graft failure in patients with
type 1 diabetes.

Islet amyloid polypeptide (amylin), the major component of
islet amyloid, is a neuroendocrine hormone that is co-localised
and co-secreted with insulin from beta cells in response to beta
cell secretagogues [15]. Three major factors contribute to
human islet amyloid polypeptide (hIAPP) aggregation in type
2 diabetes: (1) presence of an amyloidogenic sequence in the
hIAPP molecule [4]; (2) elevated beta cell production and
secretion of hIAPP due to increased insulin demand [16, 17];
and (3) impaired prohIAPP processing and/or trafficking due to
beta cell dysfunction [17–19]. Impaired clearance of secreted
hIAPP because of disrupted blood vessels in isolated islets may
also potentiate amyloid formation. Islet amyloid is typically
found extracellular, adjacent to beta cells [6–8, 13, 20, 21], but
intracellular hIAPP aggregates also form in humans and trans-
genic rodent models [9, 13, 18, 21]. Small hIAPP aggregates
appear to be the major mediators of beta cell death [3, 4, 22].

In vitro studies have suggested various mechanisms for
amyloid-induced beta cell death, including: the formation of
non-selective ion-channel-like structures [23]; interaction of
(pro)hIAPP with components of beta cell membranes (e.g.
heparan sulphate proteoglycans) [24]; inducing endoplasmic
reticulum stress [25] and oxidative stress [26]; and disruption
of the endoplasmic reticulum-associated degradation
(ERAD)/ubiquitin/proteasome system [27] and autophagy/
lysosomal pathway [28]. Although several mechanisms, at
least in vitro, are involved in hIAPP-induced beta cell apopto-
sis, some of these may share the same apoptotic signalling
pathways.

Fas-mediated apoptosis has been implicated in beta cell
death in type 2 diabetes [29, 30]. This pathway is initiated by
interaction between the cell death receptor Fas (CD95/APO-1)
and the Fas ligand (FasL/CD95L), which recruits caspase-8
(FLICE) to the death-inducing signalling complex (DISC)
through interaction with the Fas-associated death domain
adaptor protein. Cleaved (active) caspase-8 in turn activates
downstream caspases, mainly caspase-3 [31]. Moreover,
caspase-8 can indirectly activate caspase-9, the key enzyme

in the cytochrome c (mitochondrial) apoptotic pathway, by its
cleavage of BH3 interacting domain, which in turn evokes
release of cytochrome c from mitochondria [32]. The major
endogenous regulator of Fas-mediated apoptosis is the cellular
FLICE inhibitory protein (FLIP), which prevents cleavage of
procaspase-8 and subsequent apoptotic signals by its recruit-
ment and cleavage in the DISC instead of procaspase-8 [31].

Islet beta cells constitutively express FasL but do not
normally express Fas at detectable levels [7, 29]. However,
exposure to metabolic stress such as elevated glucose [29],
fatty acids [33], leptin [34] or cytokines (e.g. IL-1β) [30, 35]
induces beta cell Fas upregulation. We recently showed that
amyloid formation in human and hIAPP transgenic mouse
islets induces Fas upregulation in beta cells [7]. In this study,
we used primary beta cells and human islets to examine
whether amyloid-induced Fas upregulation in islet beta cells
can promote activation of caspase-8, the key enzyme in the
Fas-mediated apoptotic pathway. We also generated a mouse
model with beta cell specific hIAPP expression and Casp8
deletion, to test whether blockade of caspase-8 can protect
beta cells from the hIAPP aggregates formed in islets.

Methods

Human islet isolation and culture Human islets isolated from
cadaveric pancreatic donors (36–54 years old) were provided
by the Ike Barber Human Islet Transplant Laboratory
(Vancouver, BC, Canada) in accordance with approved pro-
cedures and guidelines of the Clinical Research Ethics Board
of the University of British Columbia. Hand-picked human
islets (purity >90%, dithizone staining) were cultured in
CMRL (Mediatech, Herndon, VA, USA) supplemented with
11.1 mmol/l glucose, 10% (vol./vol.) FBS, 50 U/ml penicillin,
50 μg/ml streptomycin and 50 μg/ml gentamicin. Islets were
cultured in a humidified 5% CO2/95% air incubator (37°C,
7 days) and the medium was replaced every 2 days.

Animal models Transgenic hemizygous C57BL/6 mice with
beta cell hIAPP expression (hIAPP+/−) were kindly provided
by S. Kahn (University of Washington, Seattle, WA, USA)
and maintained by cross-breeding with DBA/2J mice
(Jackson Laboratory, Bar Harbor, ME, USA). Male hIAPP+/−

mice on a high-fat diet form islet amyloid and develop
amyloid-associated diabetes in about 1 year [20], whereas
isolated islets from hIAPP+/− mice form amyloid within days
during culture with elevated glucose [7, 19, 36].Micewith beta
cell-specific Casp8 deletion (RIPcre+Casp8fl/fl) were gen-
erated from Casp8fl/fl mice [37] using the Cre/loxP
recombinase system [38] and maintained by inter-breeding
RIPcre+Casp8fl/+ mice. Homozygous mice have age-
dependent (8–12 months) defects in beta cell mass in the
presence of enhanced insulin secretion [38].

766 Diabetologia (2014) 57:765–775



To generate mice with beta cell-specific hIAPP expression
andCasp8deletion, hIAPP+/− and RIPcre+Casp8fl/fl mice were
cross-bred to produce hIAPP+/−/RIPcre+Casp8fl/+ mice, which
then were inter-bred to generate hIAPP+/RIPcre+Casp8fl/fland
hIAPP+/RIPcre+Casp8+/+ mice. The presence of the hIAPP
transgene [39], insulin-cre transgene [40] and disrupted
caspase-8 gene [37] was determined. The first generation of
these offspring (10–28 weeks) was used for studies. Animals
were fed mouse chow containing 9% (wt/wt) fat (Purina 5021;
LabDiet, Richmond, IN, USA). Animals were cared for in
accordance with the Guidelines and Principles of Laboratory
Animal Care, and the standard procedures established by the
Canadian Council on Animal Care and the University of
British Columbia’s Animal Policy and Welfare Committee.

Mouse islet isolation Mice were anaesthetised with
tribromoethanol (0.25 mg/g body weight, i.p.) and killed by
cervical dislocation. Ice-cold collagenase (1,000 U/ml, type XI;
Sigma-Aldrich, Oakville, ON, Canada) in 2 ml calcium-free
Hanks’ buffer was injected via the common bile duct.
Pancreases were removed and incubated for 14 min with addi-
tional 2ml collagenase (1,000U/ml in Hanks’ buffer) in a water
bath at 37°C, followed by gentle shaking for 2 min. Digestion
was stopped by adding ice-cold Hanks’ buffer containing

1 mmol/l CaCl2. Digested tissues were rinsed, centrifuged
(250 g, 30 s, 4°C) and resuspended in the same solution, then
filtered through a 70 μm mesh cell strainer (BD Biosciences,
Oakville, ON, Canada) into Ham’s-F10 (Invitrogen,
Burlington, ON, Canada). To allow recovery, hand-picked islets
(purity >95%) were cultured overnight in Ham’s-F10 supple-
mented with 10 mmol/l glucose, 0.5% (wt/vol.) BSA and
antibiotics as detailed for human islets, and then cultured for
7 days in Ham’s-F10 with 16.7 mmol/l glucose.

Islet dissociation, culture and treatments Human or mouse
islets were dissociated as described [41] and cultured in poly-L-
lysine-coated 8-well chamber slides in CMRL (human) or
Ham’s-F10 (mouse) with 5.5 and 10 mmol/l glucose, respec-
tively. Lyophilised hIAPP and rat islet amyloid polypeptide
(rIAPP) aliquots were prepared from synthetic peptides (1–37
aa; Bachem, Torrance, CA, USA) as before [41], dissolved fresh
in culturemedium and added to islet cells at a final concentration
of 10 μmol/l. The amyloid inhibitor Congo red (Sigma; dis-
solved in dimethyl sulfoxide), the caspase-8 inhibitor (z-LETD-
FMK; Bachem) or the Fas antagonist (Kp7-6; EMDChemicals,
Gibbstown, NJ, USA) were prepared in culture medium at final
concentrations of 25 μmol/l, 100 μmol/l and 10 mmol/l, respec-
tively, and added to cells 1 h before hIAPP treatment.
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Fig. 1 Exposure to exogenous hIAPP induces caspase-8 activation and
apoptosis in human islet beta cells, which is associated with Fas upreg-
ulation. (a) Islet cells were immunolabelled for insulin and active caspase-8
(aCasp8) following 8 or 12 h of treatment with hIAPP or rIAPP.
(b) Immunolabelling for insulin and Fas, insulin and active caspase-3
(aCasp3), or insulin and TUNEL as indicated after 12, 16 or 24 h of

hIAPP treatment, respectively. Scale bar=100 μm; inserts: (a) ×2.6;
(b) ×3.5. (c) The proportion of beta cells positive for active caspase-3
and (d) TUNEL in hIAPP-treated and non-treated cells. Quantifications
represent a minimum of ten microscopic fields each containing 100 to
150 cells. Results are expressed as means ± SEM of four independent
studies performed in triplicate; *p<0.05 by Student’s t test
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Immunolabelling of cells and islets Islet cells were fixed in
4% paraformaldehyde (wt/vol.) and permeabilised with Triton
X-100. Paraffin-embedded islet sections (4 μm) were
dewaxed, rehydrated and blocked in 2% normal goat or don-
key serum (Vector Laboratories, Burlingame, CA, USA).
Cells or islet sections (following antigen retrieval with citrate
buffer) were incubated overnight at 4°C with guinea pig anti-
insulin (1:1,000; Dako, Carpinteria, CA, USA) and each of the

following: rabbit anti-glucagon (1:750; Dako), cleaved
(active) caspase-8 or -3 (1:100; Cell Signaling, Pickering,
ON, Canada), precursor caspase-8 (1:50; Santa Cruz, Santa
Cruz, CA, USA), Fas (1:50; Santa Cruz), oligomer (A11)
(1:400; Invitrogen), IL-1β (1:100; Santa Cruz) or proliferating
cell nuclear antigen (PCNA) (1:250; Cell Signaling). They
were then washed with PBS, incubated for 1 h at room
temperature with Texas red-conjugated anti-guinea pig
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aFig. 2 Blockade of hIAPP-
mediated caspase-8 activation
markedly reduces beta cell
apoptosis induced by aggregation
of exogenously applied hIAPP.
Human islet cells were treated for
8, 12 or 24 h with hIAPP alone or
with each of the following: the
amyloid inhibitor Congo red
(CR), a caspase-8 inhibitor
(Casp8 inh) or a Fas antagonist
(Kp7-6). (a) Immunolabelling for
insulin (red), active caspase-8
(aCasp8; green) and DAPI (blue).
Scale bar=10 μm. (b) The
proportion of beta cells positive
for active caspase-8 and (c)
TUNEL. (d) Immunolabelling for
insulin and active caspase-8, with
(e) the proportion of TUNEL-
positive beta cells in
RIPcre+Casp8fl/fl and wild-type
(RIPcre+Casp8+/+) mouse islet
cells treated with hIAPP for 8 or
24 h, respectively. Scale bar=
50 μm. Quantifications represent
a minimum of ten microscopic
fields each containing 100 to 150
islet cells. Results are expressed
as means ± SEM of three
independent studies performed in
triplicate; *p<0.05 by one-way
ANOVA
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(Jackson Laboratories, West Grove, PA, USA) and Alexa 488-
conjugated anti-rabbit or anti-mouse (Molecular Probes,
Eugene, OR, USA), and counterstained with the nuclear dye
DAPI (blue; Vector Laboratories) for quantification studies or
with 7-aminoactinomycin D (red; Molecular Probes). For
insulin and A11 staining, Alexa 488-conjugated anti-guinea
pig (Molecular Probes) and Texas red-conjugated anti-rabbit
(Jackson) were used as secondary antibodies, respectively. For
TUNEL staining, after immunolabelling for insulin, islet sec-
tions (or cells) were incubated (30 min, 37°C) with TUNEL
reaction mixture (1:20; Roche Diagnostics, Laval, QC,
Canada) and for amyloid staining with 0.5% (wt/vol.)
thioflavin S solution (5 min, room temperature) (Sigma).

Islet insulin and hIAPP content and release Mouse islets (25
per condition) were pre-incubated (1 h, 37°C) in KRB buffer
containing 10 mmol/l HEPES (pH 7.4), 0.25% BSA (wt/vol.)
and 1.67 mmol/l glucose, followed by 1 h incubation in KRB
containing 1.67 mmol/l glucose (basal insulin release) and
another hour in KRB containing 16.7 mmol/l glucose

(stimulated insulin release). Islets were lysed in 100 μl of
1 mol/l acetic acid/0.1% BSA (10 min, 100°C). Insulin levels
were measured by a mouse-specific insulin ELISA kit (Alpco
Diagnostics, Salem, NH, USA). Islet hIAPP content and re-
lease were assessed by a human amylin (total) ELISA kit
(EZHAT-51K; EMD Millipore, Billerica, MA, USA). All
values were normalised to islet protein levels (Pierce/
Thermo Scientific, Rockford, IL, USA).

Results

Exposure to exogenous hIAPP induces caspase-8 activation in
human islet beta cells, which is associated with Fas upregula-
tion and precedes caspase-3 activation and apoptosis Human
islet cells were cultured in normal glucose with or without
synthetic hIAPP or non-fibrillogenic rIAPP at different time
points (4–24 h). Non-treated and rIAPP-treated islet cells had
very low numbers of beta cells positive for active caspase-8
(Fig. 1a, Electronic supplementary material [ESM] Fig. 1a).
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Treatment with hIAPP induced caspase-8 activation in islet
beta cells in a time-dependent manner. The maximum num-
ber of beta cells positive for active caspase-8 was detectable
by immunolabelling between 8 and 12 h after exposure to
hIAPP (Fig. 1a). The time point of caspase-8 activation (8–
12 h) correlated with that of Fas upregulation (8–12 h), and
preceded caspase-3 activation (16 h) and beta cell apoptosis
(24 h) in hIAPP-treated islet beta cells (Fig. 1b–d, ESM
Fig. 1b).

Blocking hIAPP-mediated caspase-8 activation by amyloid,
caspase-8 or Fas inhibitors markedly reduces the beta cell
apoptosis induced by the aggregation of exogenously applied
hIAPP To identify the mechanisms underlying amyloid-
induced caspase-8 activation, we tested the effects of the
amyloid inhibitor Congo red, the Fas antagonist and the
caspase-8 inhibitor on hIAPP-treated human islet beta cells.
The amyloid-binding dye Congo red significantly reduced the
number of active caspase-8 and apoptotic beta cells in hIAPP-
treated cells (Fig. 2a–c). Similarly, blockade of Fas (induced
by hIAPP) with a Fas antagonist and inhibition of caspase-8
both markedly lowered the number of active caspase-8-
positive and apoptotic beta cells in hIAPP-treated islet cells
(Fig. 2a–c). Basal death in untreated islet beta cells was

comparable with that in cells treated with Congo red alone,
but was slightly lower in those treated with the Fas antagonist
or caspase-8 inhibitor alone (Fig. 2c). Finally, hIAPP-induced
beta cell apoptosis was markedly lower in islet cells from
RIPcre+Casp8fl/fl mice lacking caspase-8 than in wild-type
mice that expressed caspase-8 (Fig. 2d, e).

Amyloid formation in human islets during culture induces
caspase-8 activation and beta cell death, which is associated
with Fas upregulation We examinedwhether the formation of
biosynthetic hIAPP aggregates in human islets during culture
can induce caspase-8 activation in beta cells. Isolated human
islets from six donors were cultured for 7 days in elevated
glucose to potentiate amyloid formation. Thioflavin S
(amyloid)-positive islets were not detectable in freshly isolat-
ed islets from five of six donors, but small amyloid-positive
areas were detectable in about 1% of islets from one donor
(Fig. 3a–c). Islet culture resulted in progressive amyloid for-
mation in all human islet preparations. Similarly, oligomer
(A11)-positive islets were detectable in cultured islets from
all donors (Fig. 3a, d). Importantly, amyloid formation in
cultured human islets was associatedwith caspase-8 activation
in beta cells. Furthermore, thioflavin S- or oligomer (A11)-
positive areas in islets closely correlated with active caspase-
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8-positive beta cell areas, both of which were associated with
increased beta cell apoptosis (Fig. 3a, e) and reduced islet beta
cell area (Fig. 3a, f).

The deletion of Casp8 in hIAPP-expressing mouse islet beta
cells markedly reduces apoptosis induced by the aggregation
of biosynthetic hIAPP during culture We generated a mouse
model with beta cell-specific hIAPP expression and Casp8
deletion (Fig. 4), to test whether blockade of caspase-8 acti-
vation can protect beta cells from amyloid toxicity in an
ex vivo model of human islet amyloid formation. During
7 days of culture, hIAPP-expressing mouse islets formed
amyloid, which was detectable by insulin/thioflavin S and
insulin/oligomer (A11) immunolabelling (Figs 4c, 5a).
Cultured islets from hIAPP-expressing mice with or without
Casp8 deletion had comparable levels of amyloid formation,
hIAPP content and release (Figs 4c, 5c–g).

Similarly to human islets, the aggregation of biosynthetic
hIAPP in transgenic mouse islets during culture induced acti-
vation of caspase-8 (Fig. 5a, b). A few active caspase-8-
positive beta cells were present in cultured islets from wild-

type mice expressing caspase-8, but such cells were not de-
tectable in wild-type or hIAPP-expressing islets with beta cell
Casp8 deletion (Fig. 5a). Also, a small number of active
caspase-8-positive non-beta cells were present in all geno-
types. Amyloid formation and amyloid-induced Fas upregu-
lation were associated with elevated islet IL-1β immu-
noreactivity in cultured hIAPP-expressing mouse islets
with and without Casp8 deletion (Fig. 6a, b). There was no
detectable difference between FLIP levels in islet lysates from
hIAPP-expressing and wild-type mice (Fig. 6c). Despite sim-
ilar islet IL-1β and beta cell Fas levels, hIAPP-expressing
mouse islets lacking caspase-8 had significantly lower rates
of beta cell apoptosis during culture than islets expressing
hIAPP and caspase-8 (Fig. 7a, b), resulting in higher
beta:alpha cell ratios and islet beta cell areas in those islets
(Fig. 7d, e). Finally, the beta cell proliferation rate was not
significantly different in the four genotypes (Fig. 7c).

Cultured hIAPP-expressing mouse islets with Casp8 deletion
have enhanced beta cell function compared with those express-
ing Casp8 Increased beta cell apoptosis in cultured islets from
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hIAPP-expressing mice was associated with reduced insulin
response to elevated glucose (stimulation index) and reduced
insulin content compared with wild-type littermates (Fig. 8).
The stimulation index was 32% higher in cultured islets from
hIAPP-expressingmice lacking caspase-8 than in islets express-
ing hIAPP and caspase-8, a finding that correlated with the
higher (36%) insulin content in those islets (Fig. 8). Cultured
islets from mice with Casp8 deletion and without hIAPP ex-
pression had a greater (15%) insulin response to elevated glu-
cose and higher (20%) insulin content than their wild-type
littermates. However, this increase was not as profound as the
difference observed between hIAPP-expressing mice lacking or
expressing caspase-8, suggesting that the deletion of Casp8
improves the beta cell dysfunction caused by amyloid forma-
tion in hIAPP-expressing mouse islets during culture.

Discussion

We recently showed that hIAPP aggregates induce Fas ex-
pression in islet beta cells [7], which do not normally express

Fas at detectable levels [7, 29]. In the present study, using
human islet beta cells and two ex vivo models of human islet
amyloid formation, we provide direct evidence that amyloid-
induced Fas upregulation in islet beta cells can promote acti-
vation of caspase-8, the key mediator of Fas apoptotic signal-
ling, thereby initiating apoptosis. We also show that the dele-
tion ofCasp8protects islet beta cells from the cytotoxic effects
of biosynthetic hIAPP aggregates formed in islets.

In human islet beta cells (but not alpha cells), aggregates of
exogenously applied hIAPP induced activation of caspase-8
and -3, resulting in apoptosis, a process that was prevented by
amyloid, caspase-8 or Fas inhibitors. Caspase-8 activation
preceded caspase-3 activation and apoptosis, and followed
Fas upregulation. These findings suggest that Fas upregulation
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induced by hIAPP aggregates promotes interaction be-
tween Fas and FasL on neighbouring cells (beta cells,
other islet or non-islet cells), thereby inducing caspase-8 acti-
vation. Consistent with our findings in human islet beta cells,
a previous in vitro study showed that synthetic hIAPP induces
caspase-8 activation in rodent beta cells [42]. Interestingly,
aggregates of amyloid beta peptide were also shown to induce
caspase-8 activation and apoptosis in neural cells, probably
via the Fas-mediated apoptotic pathway [43]. Moreover, ac-
tive caspase-8 and Fas-positive cells have been reported in the
brain in Alzheimer’s disease [44, 45]. Thus, it seems likely
that hIAPP aggregates in type 2 diabetes and amyloid beta
aggregates in Alzheimer’s disease share the same apoptotic
signalling pathway(s).

The formation of biosynthetic hIAPP aggregates in human
and hIAPP-expressing mouse islets during culture was asso-
ciated with caspase-8 activation in beta cells, leading to in-
creased beta cell apoptosis and reduced beta cell mass.
Interestingly, despite comparable levels of amyloid, IL-1β
and Fas in cultured hIAPP-expressing mouse islets with or
without caspase-8 expression, islets lacking caspase-8 had
markedly lower beta cell apoptosis, a higher beta:alpha cell
ratio and a greater islet beta cell area than islets expressing
caspase-8. Moreover, deletion of Casp8 in hIAPP-expressing
mouse islets enhanced beta cell function, suggesting that the
inhibition of caspase-8 can reduce the beta cell toxicity and
improve the beta cell dysfunction mediated by biosynthetic
hIAPP aggregates.

Themajority of islets with amyloid formation were positive
for IL-1β, Fas and caspase-8 immunoreactivity, whereas islets
with no detectable amyloid formation had very low levels of
all three, suggesting that amyloid may induce Fas upregula-
tion and caspase-8 activation by promoting IL-1β release in
islets. In support of this, hIAPP aggregates have been shown

to promote maturation of proIL-1β to IL-1β via activation of
the NLR family pyrin domain containing 3 (NLRP3)
inflammasome [46, 47]. In addition, we recently showed that
the inhibition of amyloid formation reduces islet IL-1β levels
and Fas upregulation [7]. The cell source(s) of IL-1β in
amyloid-positive islets could be beta cells, non-beta or non-
islet cells (e.g. macrophages). Both macrophage-positive and
macrophage-negative islet areas have been reported in hIAPP
transgenic mouse islets [46]. It seems therefore that macro-
phages are the major, but possibly not the only source of
amyloid-induced IL-1β production in islets. Taken together,
these findings suggest that amyloid formation may contribute
to islet inflammation in patients with type 2 diabetes [48].

The balance between caspase-8 and its cellular regulator
FLIP can switch Fas-mediated signalling to apoptosis or pro-
liferation [49, 50]. This raises the possibility that hIAPP
aggregates, like elevated glucose, may reduce beta cell FLIP
levels, thereby switching Fas signalling towards apoptosis.
Although we did not detect any significant difference between
FLIP protein levels in lysates from 7-day islet cultures from
hIAPP-expressing and wild-type mice, it is possible that
potential effects of hIAPP aggregates on beta cell FLIP levels
were masked in our experimental model for the following
reasons: (1) elevated glucose (used to potentiate amyloid
formation) can increase FLIP levels in wild-type and hIAPP-
expressing mouse islets; and (2) FLIP protein levels were
measured in lysates from islet cultures that contained
amyloid-positive and -negative islets.

In summary, our studies show that beta cell Fas upregula-
tion induced by hIAPP aggregates is probably mediated via
release of IL-1β from islets and promotes Fas and FasL
interaction, thereby initiating Fas-mediated apoptosis.We also
show that deletion of Casp8 protects islet beta cells from
amyloid toxicity, suggesting that caspase-8 plays a significant
role in amyloid-induced beta cell apoptosis.
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Fig. 8 Cultured hIAPP-expressingmouse islets withCasp8deletion have
enhanced beta cell function compared with those expressing caspase-8.
(a) Insulin response to glucose stimulation and (b) insulin content in islets
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