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Abstract
Aims/hypothesis Genetic pleiotropy may contribute to the
clustering of obesity and metabolic conditions. We assessed
whether genetic variants that are robustly associated with
BMI and waist-to-hip ratio (WHR) also influence metabolic
and cardiovascular traits, independently of obesity-related
traits, in meta-analyses of up to 37,874 individuals from six
European population-based studies.
Methods We examined associations of 32 BMI and 14WHR
loci, individually and combined in two genetic predisposi-
tion scores (GPSs), with glycaemic traits, blood lipids and
BP, with and without adjusting for BMI and/or WHR.
Results We observed significant associations of BMI-
increasing alleles at five BMI loci with lower levels of 2 h

glucose (RBJ [also known asDNAJC27],QPTCL: effect sizes
−0.068 and −0.107 SD, respectively), HDL-cholesterol
(SLC39A8: −0.065 SD, MTCH2: −0.039 SD), and diastolic
BP (SLC39A8: −0.069 SD), and higher and lower levels of
LDL- and total cholesterol (QPTCL: 0.041 and 0.042 SDs,
respectively, FLJ35779 [also known as POC5]: −0.042 and
−0.041 SDs, respectively) (all p<2.4×10−4), independent of
BMI. The WHR-increasing alleles at two WHR loci were
significantly associated with higher proinsulin (GRB14:
0.069 SD) and lower fasting glucose levels (CPEB4: −0.049
SD), independent of BMI and WHR. A higher GPS-BMI was
associated with lower systolic BP (−0.005 SD), diastolic BP
(−0.006 SD) and 2 h glucose (−0.013 SD), while a higher
GPS-WHR was associated with lower HDL-cholesterol
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(−0.015 SD) and higher triacylglycerol levels (0.014 SD) (all
p<2.9×10−3), independent of BMI and/or WHR.
Conclusions/interpretation These pleiotropic effects of obesity-
susceptibility loci provide novel insights into mechanisms that
link obesity with metabolic abnormalities.

Keywords BMI . Genetic . Meta-analysis . Metabolic
traits . SNP . Obesity susceptibility . Pleiotropy .WHR

Abbreviations
BF% Body-fat percentage
EPIC European Prospective Investigation

into Cancer and Nutrition
GPS Genetic predisposition score
GPS-BMI Genetic predisposition score for BMI
GPS-WHR Genetic predisposition score for WHR
GWAS Genome-wide association study
HWE Hardy–Weinberg equilibrium
LD Linkage disequilibrium
MRC Medical Research Council
NSHD MRC National Survey of Health

and Development
QC Quality control
SNP Single-nucleotide polymorphism
WHR Waist-to-hip-ratio

Obesity is a key risk factor for a number of metabolic
disorders, including type 2 diabetes, dyslipidaemia and car-
diovascular disease, and has been associated with increased
mortality [1–6]. Although the exact biological mechanisms
linking obesity to these comorbidities are not fully understood,
it has been shown that increased adiposity, especially abdom-
inal fat accumulation, over time leads to a cluster of metabolic
and cardiovascular abnormalities, including elevated blood
glucose, insulin resistance, raised triacylglycerol, lower
HDL-cholesterol and high BP [7, 8]. The clustering of obesity
with clinical features of metabolic disease might, at least in
part, be explained by the presence of shared aetiological fac-
tors, such as a set of genetic factors with pleiotropic effects, i.e.
genes that affect multiple traits [9, 10]. Examining the pleio-
tropic effects of obesity-susceptibility loci may, therefore,
provide novel insights into underlying biological and molecu-
lar mechanisms that link obesity with metabolic abnormalities.

Large-scale genome-wide association studies (GWASs)
have identified a number of genetic loci that are robustly
associated with obesity phenotypes. To date, there are 32
established loci for BMI, a measure of overall obesity
[11–16], and 14 loci associated with BMI-adjusted waist-
to-hip ratio (WHR), representing the risk for increased ab-
dominal adiposity independent of overall obesity, that have
been identified in populations of European descent [17, 18].

Seven of the 14 WHR-associated loci show stronger associ-
ations in women than in men [17].

In the present study, we examined pleiotropic effects of
the currently GWAS-established obesity-susceptibility loci
on metabolic and cardiovascular traits. We systematically
assessed associations of the 32 BMI-increasing and 14
WHR-increasing alleles, individually and combined, with
glucose-related traits, blood lipids and BP. We examined
whether the variants’ associations with related traits are
likely to be mediated by their effects on obesity-related traits
by testing associations with and without adjusting for BMI
and WHR in meta-analyses of up to 37,874 individuals from
six population-based studies of European origin.

Methods

Study populations

We combined data from six studies comprising data from up
to 37,874 individuals of European origin in meta-analyses:
the European Prospective Investigation into Cancer and
Nutrition (EPIC)-Norfolk Cohort study (n=22,887) [19];
the LifeLines cohort study (n=7,846) [20]; the Fenland
study, samples 1 (n=1,402) and 2 (n=3,186) [21, 22]; the
Medical Research Council (MRC) Ely study (n=1,602) [23];
and the MRC National Survey of Health and Development
(NSHD) study (n=951) [24, 25] (electronic supplementary
material [ESM] Table 1). This sample represents non-
diabetic individuals only, i.e. those with self-reported
type 1 or 2 diabetes, individuals using blood-glucose-
lowering medication and/or individuals with fasting glu-
cose levels ≥7 mmol/l were excluded. All participants
underwent an examination for anthropometric and BP
measurements, and blood samples were taken for analy-
sis of laboratory markers (see ESM Methods and Results
for study-specific details). All participants gave their
written informed consent and all study protocols were
approved by local institutional review boards.

Genotyping

Thirty-two single-nucleotide polymorphisms (SNPs), repre-
senting the GWAS-established BMI loci [14], and 14 SNPs
for the GWAS-established WHR loci [17] (or their proxies
with r2 for linkage disequilibrium [LD]>0.7) were geno-
typed in all six studies. Genotype data were derived from
various genotyping platforms. Detailed information on se-
lected SNPs, genotyping methods and platforms, quality
control (QC) and other filters used for each study are de-
scribed in ESM Tables 2 and 3 and ESM Methods and
Results. In short, we excluded low-quality samples and
SNPs before imputation in studies with genome-wide data
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using standard QC criteria (call rate<95%, minor allele frequen-
cy [MAF]<1%, Hardy–Weinberg equilibrium [HWE]<10−4 or
HWE<10−6). The quality-controlled data were used to impute
genotypes in LifeLines and Fenland study, sample 1. All
SNPs or their proxies met QC criteria (call rate >95%,
blind duplicate concordance >97% and genotype distri-
butions in HWE, p>0.001 [Bonferroni-corrected p value
for the 46 SNPs at level a=0.05], imputation score≥0.3)
(for details see ESM Table 3 and ESMMethods and Results).
In the LifeLines study, rs11847697 (BMI-associated locus
near PRKD1) and rs6905288 (WHR-associated locus near
VEGFA) were excluded from analyses because of a low im-
putation score (i.e. <0.3).

Statistical analyses

Study-specific analysis In studies with directly genotyped
data, SNPs were coded as 0, 1 or 2 according to the number
of BMI- or WHR-increasing alleles for each SNP, defined on
the basis of the results from the most recent and largest
GWAS for BMI and WHR [14, 17]. In the studies with
imputed genotype data, genotypes were coded as dosages
with fractional values ranging between 0 and 2, correspond-
ing to the estimated number of copies of the effect allele for a
given SNP. We used linear regression to examine the associ-
ations of each SNP with BMI or WHR, body-fat percentage
(BF%), leptin, fasting glucose, 2 h glucose, fasting insulin,
proinsulin and HbA1c levels, adjusting for age in men and
women separately. Associations with blood-lipid levels were
additionally adjusted for the use of lipid-lowering medication
and associations with systolic and diastolic BP for the use of
BP-lowering medication. As WHR loci were identified after
adjusting for BMI [17, 18], we additionally adjusted associa-
tion analyses of the WHR SNPs for BMI. As distributions for
fasting insulin and proinsulin were right-skewed, we log-
transformed (natural log) values to approximate a normal
distribution prior to the analyses.

To examine whether associations between the obesity-
susceptibility loci and metabolic and cardiovascular traits
were independent of their effects on adiposity level (referred
to as ‘pleiotropic effects’ further in the text), all association
analyses were performed with and without additionally
adjusting for BMI or WHR (ESM Fig. 1), as appropriate.
All analyses were repeated after inverse normal transformation
of traits to a mean of 0 and a SD of 1 to allow comparing effect
sizes across traits. Phenotypic correlations of BMI/WHR
with metabolic traits were calculated using Pearson correla-
tion coefficients.

To assess the combined effect of the obesity-susceptibility
loci, we calculated genetic predisposition scores (GPS) for
BMI (GPS-BMI) and WHR (GPS-WHR) loci separately by
summing the number of effect alleles carried by each indi-
vidual. Individuals with missing genotypes for more than

10% of the loci (i.e. more than three BMI SNPs or more than
one WHR SNP) were excluded from the GPS analyses. As a
result, 7,023 individuals were excluded from the GPS-BMI
analyses and 3,557 individuals from the GPS-WHR analyses
(i.e. 18.5% and 9.4% of the total available sample used for a
single-SNP analysis, respectively), resulting in a total sample
of 30,790 and 34,179 for the GPS-BMI and GPS-WHR
analyses, respectively. In individuals with fewer than 10% of
the genotypes missing, the missing genotypes were substituted
with the average allele count of the respective SNP in each
individual study. In the LifeLines study, in which information
on two SNPs was missing, genotypes for rs11847697 (BMI
locus near PRKD1) and rs6905288 (WHR locus near VEGFA)
were replaced with the average allele count of the respective
SNPs in Fenland study sample 1, because of similarities in
study population and genotyping platform used.

In EPIC-Norfolk, the largest study included in our meta-
analyses, the GPS-BMI and GPS-WHR were normally dis-
tributed with a mean (±SD) of 27.6 (±3.4) BMI- and 14.1
(±2.4) WHR-increasing alleles. Distributions were similar in
the other studies.

Association analyses for the GPS were performed in men
and women combined, in the same way as the single-SNP
analyses, and were additionally adjusted for sex. Because of
the reported sexual dimorphism of WHR [17], the analysis of
the GPS-WHR association withWHR was also performed for
men and women separately. To test for sex differences, a
SNP×sex or GPS-WHR×sex interaction term was added to
the model when appropriate. Statistical analyses were
performed using SAS, version 9.2, for Windows (SAS
Institute, Cary, NC, USA).

Meta-analysis Summary statistics of individual studies
(β coefficients and standard errors) were meta-analysed
using the inverse-variance method of METAL software
(www.sph.umich.edu/csg/abecasis/Metal/) [26].

The statistical significance of the confirmatory associa-
tions between single SNPs and BMI and WHR was defined
as a nominal significance level of p<0.05. For the explor-
atory pleiotropic association, we accounted for the number
of independent tests using a Bonferroni correction. As
such, p<2.72×10−4 (α=0.05/[46 SNPs×four trait clusters])
and p<6.25×10−3 (α=0.05/[two genetic predisposition
scores×four trait clusters]) were considered statistically
significant in the single SNP and the GPS analysis, respec-
tively. The four trait clusters were defined as: (1) adiposity-
related traits (BF%, leptin levels); (2) glucose- and insulin-
related traits (fasting glucose, 2 h glucose, HbA1c, insulin
and proinsulin levels); (3) blood lipids (HDL-cholesterol,
LDL-cholesterol, total cholesterol and triacylglycerol levels);
and (4) haemodynamic traits (diastolic and systolic BP).

Forest plots of the significant associations were generated
using Stata software (version 11; StataCorp, College Station,
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TX, USA). Heterogeneity across studies was estimated using
the Q statistic for heterogeneity implemented in METAL
[26] and quantified by the I2 index.

Statistical power We used Quanto software (http://hydra.
usc.edu/gxe) to calculate the statistical power of our study
to detect effect sizes of at least the same magnitude as those
reported in the discovery studies [14, 17]. We used allele
frequencies of BMI- and WHR-related variants and effect
sizes reported in the most recent and largest GWASs for BMI
and WHR, respectively [14, 17]. For each BMI SNP, our
study had a statistical power from 35.5% to 100% to detect
effect sizes with a range from 0.06 to 0.39 kg/m2 (or larger)
at a nominal significance level of 0.05, given a sample size
ranging from 27,000 to 35,000 individuals (depending on
outcome and on individual SNP) and effect allele frequen-
cies ranging from 10% to 90% (ESM Table 4). More specif-
ically, we had 80% power to detect previously reported
associations for 20 of the 32 BMI loci. For each WHR
SNP, with effect allele frequencies ranging from 20% to
70%, our study had a statistical power ranging from 67.9%
to 100% to detect effect sizes ranging from 0.02 to 0.04
SD/allele at a nominal significance level of p=0.05 (ESM
Table 4). As such, we had 80% power to detect previ-
ously reported associations for 12 of the 14 WHR loci. In
addition, our study had sufficient power (i.e. >80%) to detect
effect sizes as low as 0.05 SD/allele for associations of
individual BMI and WHR SNPs with metabolic traits
(ESM Fig. 2).

Results

The association of the obesity-susceptibility loci
with adiposity-related traits

Associations with BMI were directionally consistent with
results from the discovery studies [11–18] for all BMI-
associated loci except the MTIF3 locus (rs4771122) (ESM
Table 5). Associations with BMI reached nominal signifi-
cance for 23 (72%) of the 32 BMI SNPs (p<0.05), which is
in close agreement with the number of loci expected based
on our power calculation. In addition, the BMI-increasing
alleles of 12 BMI SNPs were nominally significantly asso-
ciated with higher BF% and those of five BMI SNPs with
higher circulating leptin levels (ESM Table 5). Furthermore,
each additional BMI-increasing allele in the GPS-BMI was
associated with a 0.028 SD/allele (Fig. 1a) or 0.12 kg/m−2

allele−1 higher BMI, which is equivalent to a 347 g heavier
body weight in adults of 170 cm in height (p<1.1×10−61)
(ESM Table 5). The GPS-BMI was also significantly asso-
ciated with a 0.016 SD/allele higher BF% (p=1.7×10−19)

and 0.022 SD/allele higher leptin levels (p=3.3×10−4)
(Table 1). Of note, the effects sizes of the GPS-BMI were
smaller for BF% than for BMI, very likely because BMI is
only a proxy for overall adiposity that represents a composite
trait of both fat and lean mass.

Associations withWHR adjusted for BMIwere directionally
consistent with findings of the discovery study for all 14 loci
[17], and reached nominal significance for 12 loci (86%) (ESM
Table 6). The effects were significantly (pinteraction<2.4×10

−3)
larger in women than in men for five of the sevenWHR loci for
which a sexual dimorphism was observed previously [17]. We
did not confirm sex differences for theHOXC13 (rs1443512) or
RSPO3 (rs9491696) loci (effect size 0.042 in women vs 0.026
SD in men, pinteraction=0.37; effect size 0.041 SD vs 0.035 SD,
pinteraction=0.37, respectively). Yet, we did observe a stronger
association of LY86 (rs1294421) with WHR in women than
in men (effect size 0.039 SD vs 0.011 SD, pinteraction=0.05).
SNPs for threeWHR loci were significantly associated with
BF% but, interestingly, the WHR-increasing alleles for
two of these (LYPLAL1 and GRB14) were associated with
lower BF%. No association of the WHR loci with leptin was
observed. Each additional WHR-increasing allele in the
GPS-WHR was associated with a 0.019 SD or 0.002
WHR-units (p<1.8×10−35) higher WHR, with the effect
being stronger in women than in men (0.03 SD vs 0.007
SD, pinteraction=8.4×10

−17) (ESM Table 6, Fig. 2a). The
GPS-WHR was not associated with BF% or leptin levels
(Table 1).

Association with glucose- and insulin-related traits

Two of the 32 BMI loci (QPTCL and RBJ [also known as
DNAJC27]) showed evidence of association with glucose-
related traits, whereas none was associated with insulin-
related phenotypes. The BMI-increasing allele at QPTCL
(rs2287019) was associated with lower 2 h glucose levels,
irrespective of adjustment for BMI (without BMI adjustment:
−0.108 vs −0.107 SD with BMI adjustment, p<1.3×10−5).
The association of the BMI-increasing allele at RBJ
(rs713586) with lower 2 h glucose was more pronounced
after adjusting for BMI (without BMI adjustment: −0.060,
p=1.0×10−3; with BMI adjustment: −0.068 SD, p=1.1×10−4)
(Table 2, ESM Table 7). A higher GPS-BMI was associated
with higher levels of insulin and proinsulin (0.011 SD/allele
for both, p<2.3×10−3). However, these associations were
abolished after adjusting for BMI. Interestingly, a higher
GPS-BMI was associated with lower 2 h glucose after, but
not before, adjusting for BMI (−0.013 SD/allele, p=3.6×10−4)
(Table 1, Fig. 1b).

Two of the 14 WHR loci (GRB14 and CPEB4) were
associated with glycaemic traits. The WHR-increasing allele
atGRB14 (rs10195252) was associated with increased levels
of proinsulin, of which the effect size was only slightly
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attenuated after adjusting for WHR (0.076 SD and 0.069 SD,
respectively, p<1.2×10−5). Interestingly, the WHR-increasing
allele at CPEB4 (rs6861681) was associated with lower fasting
glucose, but only after adjusting for WHR (−0.049 SD,
p=2.3×10−4) (Table 3, ESM Table 8). The GPS-WHR was
not associated with glucose-related traits.

Association with lipid levels

Four of the 32 BMI loci showed a significant association
with blood lipids. Among these, the BMI-increasing alleles
of SLC39A8 (rs13107325) and MTCH2 (rs3817334) were

associated with lower HDL-cholesterol levels (−0.079 SD
and −0.046 SD), and of QPCTL (rs2287019) with higher
LDL-cholesterol and total cholesterol levels (0.042 SD and
0.043 SD) (all p<1.0×10−4). Interestingly, the BMI-increasing
allele of FLJ35779 (also known as POC5) (rs2112347) was
associated with lower levels of both LDL-cholesterol (−0.040
SD) and total cholesterol (−0.039 SD) (p<8.6×10−7) (Table 2,
ESM Table 9). All associations remained significant after
adjusting for BMI, without attenuation of effect sizes
(p<1.1×10−4). A higher GPS-BMI was associated with lower
levels of HDL-cholesterol and higher levels of triacylglycerol
(−0.015 SD and 0.14 SD, respectively, p<1.3×10−3).
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Fig. 1 The combined effects of the BMI-increasing alleles on BMI (a),
2 h glucose (b) and diastolic BP (DBP) (c) and systolic BP (SBP) (d).
The effect was calculated using linear regression in individual studies
and after the meta-analysis of β values and standard errors using the
fixed-effects inverse-variance method. The associations were adjusted
for age, sex and BMI (except for the analysis of BMI); associations with

diastolic and systolic BP were additionally adjusted for BP-lowering
medication. All diabetic patients were excluded from the analysis. As
all traits were inverse normally transformed, β values represent the
difference in outcome for each additional risk allele under an additive
model, expressed in SD units/allele. Risk alleles were defined as the
BMI-increasing alleles in the discovery study
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However, these associations were abolished after adjusting for
BMI (Table 1).

Four WHR loci were significantly associated with lipid
traits. The WHR-increasing allele at GRB14 (rs10195252)
was associated with lower HDL-cholesterol levels (−0.033
SD), and those at RSPO3 (rs9491696), VEGFA (rs6905288),
and CPEB4 (rs6861681) were associated with higher
triacylglycerol levels (0.029, 0.034, and 0.033 SD, respec-
tively p<1.1×10−4) (Table 3). All these associations were
abolished after further adjusting for WHR. Amongst the
seven WHR-associated loci that were previously reported
to have sex-specific effects (17), the WHR-increasing
allele at VEGFA was significantly associated with higher
LDL-cholesterol levels in women but not in men (0.045 SD in
women [p=1.1×10−4] and −0.018 SD in men [p=0.16],
pinteraction=3.3×10

−4) (ESM Table 10). The association was
only slightly attenuated after further adjustment for WHR
(0.040 SD in women [p=6.3×10−4] and −0.19 in men
[p=0.15]). A higher GPS-WHR was associated with lower
HDL-cholesterol levels and higher triacylglycerol levels with-
out and with further adjusting for WHR (−0.015 and 0.014
before and −0.011 and 0.008 SD/allele after the adjustment for

WHR, respectively, p<2.4×10−4) (Table 3, Fig. 2b, c).We did
not observe an association of the GPS-WHRwith either LDL-
cholesterol or total cholesterol levels.

Association with BP

Of the 32 BMI loci, only the association for the SLC39A8
locus with diastolic BP reached significance, with the
BMI-increasing allele being associated with a lower BP
(−0.058, p=2.5×10−4). The association was somewhat more
pronounced after adjusting for BMI (−0.069 SD/allele,
p=5.8×10−6) (Table 2). The GPS-BMI was not associated
with BPwithout adjusting for BMI. After adjustment for BMI,
a higher GPS-BMI was associated with lower diastolic and
systolic blood BP (−0.006 and −0.005 SD/allele or −0.063 and
−0.09 mmHg/allele, respectively, all p<1.4×10−3) (Table 1,
Fig. 1c, d, ESM Table 11).

We showed no associations between the individual WHR
loci or the GPS-WHR and BP (Tables 1 and 3, ESM Table 12).

There was low (I2<25%) to moderate (I2 from 25% to
75%) between-study heterogeneity for all above-described

Table 1 The meta-analysis of the association between the traits and genetic predisposition score for the BMI and WHR loci

Trait GPS-BMI GPS-WHR

n Unadjusted for BMI Adjusted for BMI n Unadjusted for WHR Adjusted for WHR

β value p value β value p value β value p value β value p value

Adiposity-related traits

BMI 30,790 0.028 1.1×10−61† – – – – – – –

WHR – – – – – 34,179 0.019 7.7×10−37† – –

BF% 16,089 0.016 1.7×10−19† 17,235 −0.002 0.20 – –

Leptin 2,964 0.022 3.3×10−4† 2,938 0.001 0.79 – –

Glucose- and insulin-related traits

Fasting glucose 13,976 0.003 0.19 −0.005 0.03 13,945 −0.001 0.85 −0.003 0.36

2 h glucose 5,964 −0.003 0.38 −0.013 3.6×10−4† 5,938 0.000 1.00 −0.005 0.38

HbA1c 22,152 0.003 0.11 −0.001 0.50 23,583 0.000 0.94 −0.002 0.47

Insulin 5,929 0.011 2.3×10−3† −0.006 0.05 5,899 0.011 0.02 0.004 0.34

Proinsulin 5,920 0.011 1.5×10−3† −0.003 0.37 5,891 0.009 0.05 0.003 0.56

Blood-lipid traits

HDL-cholesterol 26,612 −0.006 1.6×10−4† 0.001 0.44 29,777 −0.015 7.5×10−10† −0.011 1.3×10−4†

LDL-cholesterol 26,576 0.002 0.39 −0.002 0.27 29,742 0.003 0.17 0.001 0.69

Triacylglycerol 27,229 0.006 1.3×10−3† −0.003 0.06 30,486 0.014 6.1×10−7† 0.008 2.4×10−4†

Total cholesterol 27,234 0.001 0.64 −0.002 0.17 30,492 0.001 0.57 −0.001 0.61

DBP 28,159 0.002 0.39 −0.006 4.9×10−4† 31,560 0.005 0.03 0.002 0.29

SBP 28,159 0.001 0.47 −0.005 1.9×10−3† 31,560 0.004 0.10 0.002 0.49

β values are shown as change in SD units per BMI- or WHR-increasing allele. Summary statistics of individual studies were meta-analysed. The
analyses were adjusted for sex, age and use of medication (BP and lipids traits). The analyses for the WHR SNPs were additionally adjusted for BMI
†Significant association (Bonferroni-corrected significance level, p<6.7×10−3)

DBP, diastolic BP; SBP, systolic BP
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significant associations (for details see ESM Methods and
Results and ESM Tables 13 and 14).

Discussion

In this report, we examined whether the currently GWAS-
established obesity-susceptibility loci also influence meta-
bolic and cardiovascular traits, independent of their effect on
obesity-related traits. Our meta-analysis in up to 37,874
European individuals revealed pleiotropic effects for five
BMI-, and two WHR-associated loci and demonstrated re-
markable diversity in their association patterns with both
metabolically ‘healthy’ and ‘unhealthy’ obesity phenotypes.
Somewhat paradoxically, we further showed that a stronger
genetic susceptibility for increased BMI conferred by the 32
loci (GPS-BMI) is associated with lower 2 h glucose levels
and lower systolic and diastolic BP after adjusting for BMI.
In contrast, a genetic predisposition for increased WHR
(GPS-WHR) predisposes to lower HDL-cholesterol and
higher triacylglycerol levels, independent of effects on WHR.

We observed directionally consistent associations for a
subset of obesity loci with metabolically ‘unhealthy’ condi-
tions [7, 8], such as altered levels of insulin-related traits and
blood lipids (ESM Table 15). Adjusting the analyses for
adiposity traits abolished some of these associations, but
revealed several associations that remained significant or
stood out after adjusting for BMI or WHR, suggesting
pleiotropic effects. A subset of obesity-susceptibility loci
remained associated with metabolically ‘unhealthy’ pheno-
types, while for other loci the BMI- and WHR-increasing
alleles were associated with metabolically ‘healthy’ profiles
(Table 4).

Several of our pleiotropic associations are consistent with
previous reports. First, the associations of QPCTL with 2 h
glucose and blood lipids are in agreement with other studies
[27–31]. The QPCTL locus harbours the GIPR gene, identi-
fied in GWASs for 2 h glucose [27–29], which encodes a
protein involved in insulin secretion and beta cell function
[27–29]. The BMI-associated SNP rs2287019 in QPTCL is
in strong LD with coding variants in GIPR (r2>0.8) [14]. Of

All  (I2=22.7%, p=0.26) 
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on HDL
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Fig. 2 The combined effects of the WHR-increasing variants on WHR
(a), HDL-cholesterol (b) and triacylglycerol (c). The effect was calcu-
lated using linear regression in individual studies and after the meta-
analysis of β values and standard errors using the fixed-effects inverse-
variance method. Associations were adjusted for age, sex, BMI and
WHR (except for the analysis of WHR); associations with lipids were
additionally adjusted for blood-lipid-lowering medication. All diabetic
patients were excluded from the analysis. As all traits were inverse
normally transformed, β values represent the difference in outcome for
each additional risk allele under an additive model, expressed in SD
units/allele. Risk alleles were defined as the WHR-increasing alleles in
the discovery study
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particular interest is the pattern of association, with the BMI-
increasing allele being associated with lower 2 h glucose, as
reported previously [27, 30], which is opposite to what
would be expected based on known epidemiological corre-
lations. Yet, consistent with epidemiological correlations, the
adiposity-increasing allele was associated with higher levels
of LDL-cholesterol and total cholesterol. Second, associa-
tions between the BMI-increasing allele of rs13107325
in SLC39A8 with both metabolically ‘unhealthy’ (lower
HDL-cholesterol) and metabolically ‘healthy’ (lower dia-
stolic BP) phenotypes confirm findings from GWASs for
BP and blood lipids [32–34]. The BMI-associated variant
rs13107325 is a non-synonymous SNP located in exon 7
[34] of the SLC39A8 gene, which encodes a zinc transporter
involved in zinc transportation into the cell at the onset of
inflammation [35, 36]. As indicated recently, zinc deficiency
is also associated with lower BP [37]. Third, the associa-
tions of the WHR-increasing allele at GRB14 with metabol-
ically ‘unhealthy’ phenotypes (higher proinsulin and lower
HDL-cholesterol) have been confirmed in the most recent
meta-analyses for glycaemic traits (the Meta-Analyses of
Glucose and Insulin-related traits Consortium [MAGIC])
[30] and type 2 diabetes (the DIAbetes Genetics Replication
And Meta-analysis [DIAGRAM] consortium) [31], and in a
GWAS for HDL-cholesterol [38]. Recent analysis of expres-
sion quantitative trait locus (eQTL) data implicates GRB14 as
a potential causal gene at the locus, expressed in the liver,
skeletal muscle and adipose tissue [39].

Furthermore, some observed associations suggest novel
pleiotropic effects. For example, we detected the relationship

of rs2112347 near FLJ35779 and a more favourable lipid
profile. This variant is located approximately 400 kb from
HMGCR3, involved in lipid metabolism and shown to be
associated with total cholesterol [32]. The biological mech-
anisms by which the remaining obesity-susceptibility loci
might affect glucose (RBJ, CPEB4) and lipid metabolism
(MTCH2) are less well understood [40–42] and require fur-
ther investigation.

We show that a greater susceptibility to increased WHR,
as assessed by the GPS, is associated with a metabolically
unfavourable lipid profile, even after adjustment for adipos-
ity. In contrast, the associations of a higher GPS-BMI with
metabolically unhealthy levels of insulin- or lipid-related
traits were abolished after adjusting for BMI. Similar obser-
vations of the associations between the obesity risk alleles
and insulin resistance, mediated by BMI, were reported
previously [43, 44]. Even though trends of associations are
consistent across studies, associations of FTOwith a number
of metabolic traits in a BMI-dependent manner do not reach
our significance threshold, which accounts for multiple test-
ing, whereas previous studies used nominal levels [44]. In
contrast, a higher GPS-BMI was associated with lower levels
of 2 h glucose and BP after adjusting for BMI. These results
support recent finding of the association of the BMI-
increasing alleles collectively with increased beta cell capac-
ity [45]. Particularly intriguing is the novel ‘pleiotropic’
association of a higher GPS-BMI with decreased BP. While
60–70% of hypertension in adults may be directly attribut-
able to adiposity [4, 46], some discrepancies in the BP–
adiposity relationship have also been described. For exam-
ple, Pima Indians, who have the highest prevalence of re-
ported obesity in the world, have a low prevalence of hyper-
tension [47]. To summarise, the genetic pleiotropic associa-
tions may in part explain why some obese individuals remain
metabolically healthy despite having excessive accumula-
tion of body fat [48–53]. This phenomenon is described in
the current literature as ‘healthy obesity’ and, to date, little is
known about the factors that protect obese individuals from
metabolic disturbances [54].

Our results provide evidence for pleiotropic effects of
obesity-susceptibility loci on metabolic traits, supporting
the hypothesis on the shared nature of genetic susceptibility
loci in related complex diseases [10]. A recent analysis of the
loci identified in GWASs for common diseases and quanti-
tative traits showed pleiotropic effects for almost 17% of
analysed genes and for 4.6% of SNPs [55]. These and our
findings indicate that pleiotropy is more common in complex
diseases than previously anticipated, and suggest that many
proteins play different roles in independent biological path-
ways. Possible explanations for pleiotropic effects are that
positive genetic correlations between phenotypic traits (i.e.
affecting the traits in the same direction) occur if they
share common biological pathways, while negative genetic

Table 4 Pleiotropic associations of the individual obesity-susceptibil-
ity loci and GPSs with metabolic phenotypes

Phenotypes Metabolically
‘unhealthy’ associations

Metabolically
‘healthy’ associations

Glucose- and insulin-related traits

Fasting glucose CPEB4

2 h glucose QPTCL, RBJ,
GPS-BMI

Proinsulin GRB14

Blood-lipid traits

HDL-cholesterol SLC39A8, MTCH2,
GRB14, GPS-WHR

LDL-cholesterol QPTCL FLJ35779

Triacylglycerol GPS-WHR

Total cholesterol QPTCL FLJ35779

BP traits

DBP SLC39A8, GPS-BMI

SBP GPS-BMI

DBP, diastolic BP; SBP, systolic BP
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correlations might be ‘evolutionarily’ beneficial when a ge-
netic mutation favourable to one trait can be harmful for
another trait [56]. Interestingly, we observed both types of
genetic correlation in our study. Among the detected pleiotro-
pic effects of both single-SNP and GPS analyses, 50% of the
significant associations were directionally consistent with a
BMI- or WHR-increasing allele or a higher GPS associated
with metabolically ‘unhealthy’ phenotypes, while the other
half showed unexpected relationships with metabolically
‘healthy’ phenotypes (Table 4). In addition, these pleiotropic
association signatures extend the genetic associations of the
obesity-susceptibility loci to related metabolic traits and dis-
eases and provide a more comprehensive and integrated over-
view of the potential physiological mechanisms of the loci.
These insights may eventually help to prioritise genes for
functional follow-up and to guide physiologists in designing
their functional studies in experimental settings.

There are some limitations to our study. First, only pop-
ulations from northern European ancestry and obesity-
susceptibility loci identified in European ancestry popula-
tions were included in our analyses. Cross-ancestry analyses
will be required to investigate whether the observed pleio-
tropic associations in European ancestry populations gener-
alise to other ancestries. Furthermore, the cross-sectional
design and the exclusion of diabetic patients are further
potential limitations of our study. Future investigations in
large prospective studies can be informative in disentangling
whether the identified loci affect other metabolic traits
through either first influence obesity risk, or whether the
association is truly independent of BMI and WHR.

In conclusion, our results provide evidence that obesity-
susceptibility loci have pleiotropic effects on metabolic
traits, independent of adiposity. These findings emphasise
the importance of detailed physiological characterisation of
novel obesity-susceptibility loci to gain new insight into the
complex pathogenesis of metabolically related disorders.
Importantly, our findings highlight that the effect alleles that
predispose to obesity might also predispose to, or protect
from, other metabolic disorders.
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