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Abstract
Aims/hypothesis Transcriptional networks in beta cells are
modulated by extracellular signals such as glucose, thereby
ensuring beta cell adaptation to systemic insulin demands.
Ageing is a main risk factor for type 2 diabetes and has been
associated with perturbed expression of genes essential for
beta cell function. We aimed to uncover glucose-dependent
gene modules in mouse pancreatic islets and investigate
how this regulation is affected by ageing.
Methods Global gene expression was assessed in pancreatic
islets from young and aged wild-type and Cdkn2a
(Ink4a/Arf)-deficient mice exposed to different glucose con-
centrations. Gene modules were identified by gene ontology
and gene set enrichment analysis.
Results Gene expression profiling revealed that variations in
glucose levels have a widespread and highly dynamic im-
pact on the islet transcriptome. Stimulatory glucose levels
induced the expression of highly beta cell-selective genes
and repressed the expression of ubiquitous genes involved

in stress and antiproliferative responses, and in organelle
biogenesis. Interestingly, a module comprising cell cycle
genes was significantly induced between non-stimulatory
and stimulatory glucose concentrations. Unexpectedly, glu-
cose regulation of gene expression was broadly maintained
in islets from old mice. However, glucose induction of
mitotic genes was selectively lost in aged islets and was
not even restored in the absence of the cell cycle inhibitors
p16INK4a and p19ARF, which have been implicated in the
restricted proliferative capacity of beta cells with advanced
age.
Conclusions/interpretation Glucose-dependent transcrip-
tional networks in islets are globally conserved during age-
ing, with the exception of the ability of stimulatory glucose
levels to induce a cell cycle gene module.

Keywords Ageing . Beta cell .Cdkn2a . Cell cycle . Gene
modules . Gene regulation . Glucose . p16INK4a . p19ARF .

Pancreatic islet . Transcriptional networks

Abbreviations
BMI-1 Bmi1 polycomb ring finger oncogene
EZH2 Enhancer of zeste homolog 2 (Drosophila)
FDR False detection rate
G3 3 mmol/l glucose
G5 5.5 mmol/l glucose
G11 11 mmol/l glucose
G16 16 mmol/l glucose
GSEA Gene Set Enrichment Analysis
NRF1 Nuclear respiratory factor 1

Introduction

In recent years, knowledge of the tightly regulated transcrip-
tional networks that control pancreatic beta cell fate and
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specialised functions has increased [1, 2]. The identity of
beta cells is defined during pancreatic development by epi-
genetic mechanisms that ensure the appropriate activation
and repression of genes in beta cells [3–5]. Nevertheless, the
beta cell transcriptome is highly dynamic and influenced by
environmental and metabolic signals that allow beta cells to
adapt to systemic insulin demands [1, 2, 6].

Glucose and nutrient metabolism is central for stimulus–
secretion coupling in beta cells. Besides its role as an insulin
secretagogue, glucose mediates long-term adaptive responses
in beta cells, including cell proliferation, survival and function
[6–9]. Beta cell mass is tightly regulated and beta cell growth
matches changes in systemic insulin demand, which increases
during common physiological and pathological states such as
insulin resistance, obesity and pregnancy [10, 11]. It has long
been known that glucose: (1) is a potent beta cell mitogen in
mouse, rat and humans [7, 8, 12, 13]; and (2) plays a dominant
role in beta cell compensation of insulin resistance [10].
Glucose stimulates insulin secretion and proliferation in beta
cells through signals derived from glycolytic metabolism,
which allows homeostatic control of beta cell mass by meta-
bolic demand [14]. Beta cell stimulation by glucose is also
known to suppress apoptosis, whichmay also contribute to the
glucose-induced increase in beta cell mass [9].

Despite these observations, the signalling and molecular
networks linking glucose to beta cell mass and function
remain unresolved. Glucose stimulates several pathways in
beta cells, including insulin secretion. Via an autocrine loop,
insulin may in turn mediate the effects of glucose on beta
cell function, growth and survival [15, 16]. Global genomic
studies have shown that glucose metabolism provides major
signals for beta cell gene regulation, which may be instru-
mental for the long-term effects of glucose [6, 17–22].

Ageing is a major risk factor for the development of type
2 diabetes [23], but neither the underlying mechanisms
behind the increased susceptibility to diabetes in the elderly,
nor the contribution of beta cells to this process are clearly
understood. Several studies in pancreatic islets have uncov-
ered age-dependent changes in the expression of genes and
proteins, including key transcription factors for beta cell
function (e.g. HNF-4α and PDX-1) and the Fas ligand
[24–27]. Moreover, basal and adaptive beta cell prolifera-
tion and regeneration are severely restricted with advanced
age [11, 24, 28–31]. This has been associated in human and
mouse beta cells with a progressive increase in expression of
the cell cycle inhibitors p16INK4a and p19ARF, both encoded
by Cdkn2a [11, 29, 32, 33].

Despite this body of evidence showing age-related tran-
scriptional and functional changes in beta cells, it is not
known how regulation of the beta cell transcriptome by a
central stimulus for beta cells such as glucose is globally
affected during ageing. Here, we aimed to uncover the main
gene modules that are regulated by glucose in pancreatic

islets from young and old mice. We show that in islets
glucose regulates a wide range of genes affecting a variety
of functional categories, with regulation occurring in a dose-
dependent manner. This response was broadly maintained
during ageing, with the exception of the ability of glucose to
induce a cell cycle gene module in aged islets.

Methods

Biological samples and experimental design Mouse pancre-
atic islets were isolated from wild-type and Cdkn2a−/− [34]
C57Bl/6J male mice by collagenase digestion and a
Histopaque gradient (Sigma-Aldrich, St Louis, MO, USA)
[35]. Islets were allowed to recover overnight at 37°C and 5%
CO2 in RPMI containing 11 mmol/l glucose, supplemented
with 10% FCS (vol./vol.) and penicillin/streptomycin. Islets
were then cultured for 2 days at different glucose concentra-
tions, unless otherwise indicated. Primary cultures of mouse
cortical neurons and astrocytes were obtained as described
previously [36]. Protocols were approved by the Animal
Ethics Committee of the University of Barcelona and the
Principles of Laboratory Animal Care were followed.

Gene expression analysis Total RNA was extracted using
TRIzol (Invitrogen, Carlsbad, CA, USA) and reverse-
transcribed using SuperScript (Invitrogen). Quantitative
PCR of at least three different biological replicates was
performed using SYBR Green (Invitrogen) or Taqman as-
says (Applied Biosystems, Foster City, CA, USA) in a
7900HT Fast Real-Time PCR system (Applied Biosystems).
Primer sequences are listed in electronic supplementary
material (ESM) Table 1. Expression levels were normalised
to the expression of Hprt1.

Global gene expression profiling mRNA from cultured and
freshly isolated pancreatic islets from 5-week-old and 13-
month-old mice, and from mouse cortical neurons and as-
trocytes, was amplified through two cycles of cDNA syn-
thesis. Labelled cRNA from biological duplicates was
hybridised to Mouse Genome 430 2.0 arrays (Affymetrix,
Santa Clara, CA, USA). Expression data were
normalised with a robust multi-array average (RMA). The
LIMMA software package available from Bioconductor
(www.bioconductor.org) was used for statistical analysis to
identify differences in gene expression using a multiple test-
adjusted p value (false detection rate [FDR]) of p<0.05, as
previously described [37]. Data have been deposited in Gene
Expression Omnibus (www.ncbi.nlm.nih.gov/geo), accession
numbers GSE42591 and GSE42607.

Determination of tissue-specificity factor A tissue-
specificity factor for a given gene in each tissue was
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calculated as the log2-ratio between the expression level of
that gene in a particular tissue and the median of its expres-
sion levels across a panel of tissues. The gene expression
profiles used for this analysis were generated in this study or
have been published elsewhere [4, 37, 38]. To generate
gene cluster representations, expression levels of each
gene were normalised across all the tissues analysed and
then clustered on the basis of their similarity according to
the Euclidian distance using Cluster3.0 (http://bonsai.
hgc.jp/∼mdehoon/software/cluster/software). Clusters
were represented using Java TreeView1.1.6r2 (http://
jtreeview.sourceforge.net).

Functional category analysis The DAVID Functional An-
notation Tool (http://david.abcc.ncifcrf.gov, accessed 1 Au-
gust 2012) and Gitools (www.gitools.org, accessed 1
August 2012) [39] were used to identify enriched functional
categories in differentially expressed genes. Gene Set En-
richment Analysis (GSEA) software (www.broad.mit.edu/
GSEA accessed 1 June 2012) [40, 41] was used to deter-
mine the enrichment of gene sets across the expression data
generated.

Immunofluorescence and morphometric analysis Immuno-
fluorescence in paraffin-embedded pancreases from at
least three different mice was performed as described
elsewhere [35], using guinea pig anti-insulin (1:2,500)
and mouse anti-glucagon (1:1,000) (Dako, Glostrup,
Denmark), and Cy2- and Cy3-labelled secondary anti-
bodies (1:200; Jackson ImmunoResearch, Newmarket, UK).
Hoechst 33258 (Sigma-Aldrich) was used as a nuclear marker.
Each pancreas was analysed at three different levels. Images
were taken with an epifluorescence microscope (DMR HC;
Leica Microsystems, Wetzlar, Germany) and analysed using
Image J software (NIH, Bethesda, MD, USA). Ki67-
positive beta cells were determined in intact islets using
mouse anti-Ki67 (1:20; BD Biosciences, Franklin Lakes,
NJ, USA), guinea pig anti-insulin (1:500; Dako) and
DAPI (1:1,000; Santa Cruz Biotechnology, Santa Cruz,
CA, USA) (ESM Fig. 1). Approximately 50 islets from three
different biological samples were analysed for each age and
condition.

Western blot Protein lysates from three different biological
samples were immunoblotted with mouse anti-cyclin D1
(1:2,000; Cell Signaling, Beverly, MA, USA), mouse anti-
cyclin D2 (1:200; Abcam, Cambridge, UK) and rabbit anti-
actin (1:1,000; Sigma-Aldrich) antibodies.

Statistical analysis Data are expressed as mean±SEM
and statistical significance was determined by Student’s
t test. A value of p<0.05 was considered statistically
significant.

Results

Glucose regulation of the mouse islet transcriptome Several
genome-wide analyses have studied the effects of glucose
on beta cell lines, rat beta cells and rat pancreatic islets [6,
17–22], but a systematic analysis of the regulation of the
mouse islet transcriptome at different glucose concentra-
tions was still missing. To decipher the transcriptional re-
sponse to glucose in mouse pancreatic islets, we profiled
mRNA from islets isolated from 5-week-old mice and cul-
tured for 2 days at two non-stimulatory glucose concentra-
tions (3 mmol/l glucose [G3] and 5.5 mmol/l glucose [G5])
and two stimulatory concentrations (11 mmol/l glucose
[G11] and 16 mmol/l glucose [G16]). As rodent islets are
usually maintained ex vivo at stimulatory glucose concen-
trations, which result in better survival outcomes [9, 22], the
expression levels at G11 were taken as reference values.
Using a 5% FDR, we found 201 downregulated genes (54
downregulated by more than twofold) and 383 upregulated
genes (78 upregulated by more than twofold) in islets cul-
tured at G5 (Fig. 1a,b, ESM Table 2). A much more wide-
spread perturbation of gene expression was observed at G3,
with 2,140 genes downregulated (310 by more than two-
fold) and 2,981 upregulated (566 by more than twofold);
these numbers represent 9.9% and 13.8% of all islet genes,
respectively. Conversely, there were no significant differ-
ences between G11 and G16, even though the number of
genes differentially expressed in G5 vs G16 was higher than
in G5 vs G11. Expression levels of the mesenchymal marker
vimentin did not differ between the different glucose con-
centrations (ESM Fig. 2), thus excluding the possibility that
the global transcriptional changes are due to changes in islet
levels of mesenchymal cells such as fibroblasts.

Remarkably, in freshly isolated islets from mice with free
access to food, the expression of most glucose-dependent
genes matched that found in islets cultured at stimulatory
glucose levels (Fig. 1a). Thus, less than 11% and 2% of
genes downregulated and upregulated, respectively, at G3
and G5 (compared with G11) showed similar expression
levels in freshly isolated islets (Fig. 1b). This is exemplified
by: (1) the glucose-induced genes Mafa and Pclo (Piccolo)
(Fig. 1c,d), which are involved in regulation of the insulin
gene and other key genes for beta cells [42], as well as in
insulin secretion [43], respectively; and (2) other markers of
beta cell differentiation (ESM Fig. 2). Confirming previous
studies in rat pancreatic islets and beta cell lines [20, 22], we
found that the expression of several stress genes, including
Ddit3 (Chop) and Trib3 (Fig. 1e,f), was highly increased at
G3 and G5, thus illustrating how stimulatory glucose con-
centrations repress the expression of such genes in islets.
Remarkably, a missense polymorphism in human TRIB3
that results in greater protein stability has been linked to
increased risk of type 2 diabetes and to impaired insulin
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exocytosis and beta cell proliferation [44]. Other stress
genes such as Nupr1 (p8), Nrip2, Areg and Hspa1b followed
a similar regulatory pattern, as did a GSEA-identified set of
genes regulated by C/EBP homologous protein (CHOP),
which includes Trib3, Stbd1, Odz4 (also known as Tenm4),
Tcea1, Ptrh2 and Chka (ESM Table 2). Taken together, these
results indicate that glucose-triggered metabolic and signal-
ling pathways play a central role in regulating the beta cell
transcriptome.

To explore the kinetics of the glucose-regulated transcrip-
tional programme, we next profiled the islet transcriptome
after short periods of incubation at different glucose con-
centrations. The expression of about 95% of genes differen-
tially expressed at G3 after a 2-day incubation period was
significantly affected after just 10 h of incubation at the
same concentration (Fig. 2a–e). Moreover, the expression
of 34% and 27% of the genes upregulated and down-
regulated at G3, respectively, was partially or totally re-
stored to normal levels after 4 h of incubation at
stimulatory glucose (G11) (Fig. 2a–e. ESM Table 3). These
results point to a highly dynamic regulation of gene expres-
sion by glucose in mouse islets.

Glucose induces beta cell-selective and neuronal
programmes in islets We next assessed to what extent
glucose-dependent genes are ubiquitous or in contrast ex-
hibit a selective tissue expression pattern. To this end, we
compared the expression profiles of a panel of different
tissues and cell types, and a tissue-specificity score was
calculated for a given gene in each tissue. This analysis

revealed that glucose-induced genes are highly expressed
in islets compared with other tissues (Fig. 3a). Remarkably,
glucose-induced genes exhibited similar expression levels in
islets and FACS-sorted beta cells. Conversely, genes
upregulated at low glucose were expressed ubiquitously
(Fig. 3b), pointing to the induction of common signalling
and transcriptional networks triggered by stress conditions.

Although many glucose-induced genes were found to be
unique or highly specific to islets and beta cells (Fig. 3a,c),
the expression of about 30% of such genes was shared with
brain regions and neurons, but not with astrocytes (Fig. 3c).
Examples include genes encoding piccolo, neurotrophic
tyrosine kinase, receptor, type 2 (the receptor for the
neurotrophin BDNF) and the prohormone VGF, which has
been shown to enhance beta cell survival and function [45]
(Figs 1c and 3d,e). Collectively, these results indicate that
glucose stimulation is required to maintain the expression of
beta cell-specific genes as well as genes shared with
neurons.

Non-stimulatory glucose concentrations activate gene
modules related to organelle biogenesis A major aim of
this study was to dissect the glucose-dependent transcrip-
tional programme into gene modules. Ontology analysis of
genes upregulated at G3 and G5 revealed the enrichment of
categories such as ribosomes, mitochondria and unfolded
protein binding (Fig. 4a). This is clearly illustrated by
GSEA, which uncovered a strong enrichment of genes re-
lated to ribosomes, mitochondrial ribosomes and oxidative
phosphorylation (Fig. 4b). We next inspected the proximal
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Fig. 1 Glucose is a potent regulator of the islet transcriptome. (a) Heat
maps depicting changes in gene expression (log2-transformed) in islets
from 5-week-old mice cultured for 2 days at G3, G5 and G16, as well
as in freshly isolated islets (F), relative to the expression in islets
cultured at G11. The data are sorted in the G3 column by decreasing
fold change absolute values. (b) Venn diagrams showing the overlap of
genes in which expression differed more than twofold in islets cultured
as above (a). (c) Quantitative RT-PCR determination of mRNA levels
of Pclo, (d) Mafa, (e) Ddit3 and (f) Trib3 in islets cultured at the

indicated glucose concentrations and in freshly isolated islets (F). The
results show that, for glucose-induced (Pclo, Mafa) and glucose-re-
pressed (Ddit3 [Chop], Trib3) genes, expression in islets cultured at
stimulatory conditions (G11, G16) and in freshly isolated islets is more
similar than in islets cultured at lower glucose concentrations (G3, G5).
Data were normalised against Hprt1 and are shown relative to levels at
G11, which were set arbitrarily to 1 (n=3 per group). Error bars
indicate SEM; *p<0.05
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promoters of glucose-regulated genes in order to detect the
enrichment of transcription factor binding sites that could

point to the mechanisms involved in the response to low
glucose. Analysis of the promoters of genes upregulated at
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Fig. 3 Glucose induces the expression of beta cell-selective genes and
neuronal genes in pancreatic islets. Tissue-selectivity scores for glu-
cose-induced (a) and glucose-repressed (b) genes in a given tissue
according to their expression across a panel of tissues and cell types
(see Methods). All genes whose expression levels in pancreatic islets
changed more than twofold between G5 and G11 were included in the
analysis. Values are plotted in boxplots, where the bottom and top of
the box represent the 25th and 75th percentile. The inside line indicates
the median and the ends of the whiskers, the 10th and 90th percentiles.
A one-way ANOVA using Tukey's multiple comparison test was
performed for comparison of different tissues and cell types,
*p<0.05. Red boxplots denote values for freshly isolated islets (IF)
and FACS-sorted beta cells (BC). C, brain cortex; H, hypothalamus; N,
neurons; AS, astrocytes; L, liver; AD, adipose tissue; K, kidney; LN,
lung; M, muscle; S, spleen; SC, embryonic stem cells. (c) Expression
profiling data sets across a panel of tissues and cell types for a module

of glucose-induced genes (G11 vs G5). Log2-transformed probe signal
values are shown relative to the average signal level of each probe set
across all samples. Red and blue represent higher-than-average and
lower-than-average signal levels, respectively. The results show that
glucose-induced genes are highly selective for islets and beta cells. The
black bar highlights a cluster of genes that are expressed in islets and
neuronal tissues. The expression profiling data sets used in this analy-
sis were from mouse freshly isolated (IF) and cultured (IC) islets and
tissues as above (a,b). (d) Quantitative RT-PCR determination of islet
mRNA levels of representative neuronal genes Ntrk2 (neurotrophic
tyrosine kinase, receptor, type 2) and (e) Vgf (VGF nerve growth factor
inducible), both of which are induced by glucose. Islets were cultured
at the indicated glucose concentrations or freshly isolated (F). Data
were normalised against Hprt1 and are shown relative to levels at G11,
which were set arbitrarily to 1 (n=3 per group). Error bars indicate
SEM; *p<0.05
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G3 showed that the binding sites for nuclear respiratory
factor 1 (NRF1), which have a central role in the regulation
of mitochondrial biogenesis, were enriched (ESM Table 4).
Myelocytomatosis oncogene (Myc) has been shown to act
together with NRF1 to activate mitochondrial genes and
regulating mitochondrial biogenesis [46, 47], establishing
a direct link between these two transcription factors. Ac-
cordingly, both Nrf1 and Myc were induced at G3 and G5 in
the same concentration-dependent manner as the mitochon-
drial genes (Fig. 4c,d), further supporting a coordinated
action of both transcription factors on the induction of such
genes at non-stimulatory glucose concentrations.

Glucose regulates a cell cycle gene module in pancreatic
islets Ontology analysis revealed that the categories
enriched among genes downregulated at G3 were related
to lipid biosynthesis, the endoplasmic reticulum, the Golgi
apparatus and vesicles. Notably, a cell cycle gene module
was enriched among genes downregulated at G3 and G5
(Fig. 4a). This category was also enriched in genes
upregulated at G3, due to the induction of genes encoding
growth suppressors such as Ccng1 (cyclin G1).

The majority of glucose-induced cell cycle genes are
involved in late stages of the cell cycle, namely the progres-
sion from G2 to M and the mitotic phase, which have been
shown to be transcriptionally regulated during the cell cycle
[48] (Fig. 5a–d). Consistently, the percentage of Ki67-
positive beta cells was threefold higher in islets cultured at
G11 than in those cultured at G3 (see below). Moreover,
glucose also induced the expression of genes involved in the
G1 phase, such as Ccnd1 and Ccnd2 (Fig. 5e,f), although
only cyclin D2 protein levels were increased by glucose (see
below). Importantly, the maximal induction of cell cycle
genes was found between G5 and G11. This suggests that
mild, but sustained increases in glucose concentrations with-
in this range of concentrations, as occurs in the early stages
of diabetes, may induce a proliferative response in beta
cells.

Glucose induction of mitotic genes is selectively lost in aged
islets Given that ageing has been related to transcriptional
and functional changes in beta cells, we next evaluated how
the transcriptional response to glucose is affected in aged
islets. Interestingly, islets from young and old mice
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exhibited a similar insulin secretion response to glucose
(ESM Fig. 3), indicating that aged beta cells can sense
glucose and secrete insulin in close correlation to glucose
levels. We next sought to determine how ageing affects the
ability of glucose to modulate gene expression. Thus, we
analysed the transcriptional profiles of old islets (13-month-
old mice) cultured under different glucose concentrations.
Strikingly, glucose-regulated genes and gene modules were
broadly maintained in old islets (Fig. 6a, ESM Fig. 4). More-
over, glucose regulation exhibited the same concentration-
dependent pattern, as shown for representative glucose-
induced and glucose-repressed genes (Fig. 6b,c).

Despite this highly conserved transcriptional response to
glucose during ageing, the gene modules related to cell
cycle and mitosis were not enriched among genes
downregulated at G3 and G5 (ESM Fig. 4). Indeed, these
were the only glucose-regulated categories that behaved
differently in young and old islets. This selective lack of
response to glucose was observed for all genes involved in
the latter stages of the cell cycle (Fig. 6d–j). Importantly, the
levels of these genes at non-stimulatory glucose concentra-
tions also progressively declined with age. Similar results
were obtained when analysing nuclear protein expression of
the proliferation marker Ki67 (Fig. 6k, ESM Fig. 1). In
striking contrast, Ccnd1 and Ccnd2 maintained high levels
of expression in old islets and were still able to be stimulated
by glucose (Fig. 6d,i,j). As found in young islets, glucose

induced a threefold increase in protein levels of Cyclin D2
(Fig. 6l). Moreover, genes comprised in the cell cycle gene
module, but exhibiting growth inhibitory functions were
similarly induced at G3 (ESM Fig. 4). Taken together, these
findings show that although glucose sensing and glucose-
induced transcriptional networks are very similar in young
and old islets, the induction of mitotic genes is selectively
lost in aged islets.

Interestingly, a detailed inspection of the gene modules
associated in a strain- and age-dependent manner with
obesity-induced diabetes susceptibility [49] revealed that
the mitotic genes induced by glucose only in young islets
were in a cell cycle gene module linked to diabetes suscep-
tibility. Consistent with our results, Ccnd1 and Ccnd2 were
not included in such a diabetes-associated gene module.

Glucose induction of mitotic genes is not restored in aged
Cdkn2a−/− islets Cdkn2a encodes two cell cycle inhibitors,
p16INK4a and p19ARF, whose expression increases with age
in human and mouse islets, and has been suggested to be
involved in the reduced proliferative capacity of old beta
cells [29, 32, 33]. We thus sought to determine whether the
induction of mitotic genes by glucose may be restored in old
beta cells in the absence of these inhibitors. To this purpose,
the expression of cell cycle genes was analysed in islets
from 6-month-old Cdkn2a−/− mice exposed to different glu-
cose concentrations. Although p16 has been previously
shown to be highly expressed in almost all beta cells in 6-
month-old mice [11] and previous studies have reported
increased Ki67-positive beta cells in Cdkn2a−/− mice [29],
control and Cdkn2a−/− mice exhibited a similar islet mor-
phology, total beta cell area and number of islets (Fig. 7a–c).
Strikingly, glucose-dependent mitotic genes were not in-
duced by stimulatory glucose concentrations in 6-month-
old Cdkn2a−/− islets (Fig. 7d–i). These results indicate that
the absence of the cell cycle inhibitors, p16 and p19, is not
sufficient to restore the induction of mitotic genes by a
mitogenic stimulus such as glucose in aged beta cells.

Discussion

Glucose is a fundamental signal in the regulation of gene
expression of pancreatic islet beta cells [6, 17–22]. Here we
dissected the mouse islet transcriptional response to glucose
into gene modules and analysed how this response is affect-
ed during ageing. Gene ontology analysis revealed that gene
modules related to cell cycle and mitosis were significantly
enriched among genes induced by glucose in young islets.
Remarkably, the maximal induction of this module occurs
between G5 and G11. Thus, glucose can induce the cell
cycle gene module within the range of concentrations that
are found in prediabetic settings, in which basal blood
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glucose levels are slightly increased. In parallel, and as
previously described [6, 20, 22], glucose also represses
genes that have deleterious and antiproliferative effects on
beta cells, such as Ddit3 (Chop) and Trib3, with repression
occurring in a similar dose-dependent manner. Our findings
thus support the notion that (1) the induction of a cell cycle
gene module and (2) the repression of genes that are dele-
terious for beta cells may contribute to the glucose-mediated
increase in beta cell mass, enabling adaptation to increased
systemic insulin demands.

Ageing has been associated with type 2 diabetes and beta
cell dysfunction. Gene-specific and genome-wide analyses
have uncovered changes in the expression of key genes for
beta cells during ageing [24–27]. Unexpectedly, our gene
expression profiling of islets cultured at different glucose
concentrations revealed that the transcriptional response to
glucose is highly similar in young and old islets. However,
the ability of glucose to induce a mitotic gene module was
selectively lost in aged islets. Studies performed in mice
from obesity-induced diabetes-resistant and diabetes-

susceptible strains revealed an age-dependent link between
a cell cycle regulatory module in islets and diabetes suscep-
tibility [49]. Strikingly, the mitotic genes that are induced by
glucose in young, but not aged islets are included in such a
module. This, together with the fact that glucose has been
shown to play a major role in beta cell compensation in
insulin resistance [10], suggests that the inability of glucose
to activate mitotic genes in aged beta cells may be central to
the onset of diabetes in a setting of insulin resistance.

The other gene modules regulated by glucose were
maintained during ageing, as well as the glucose-induced
insulin secretory response. Thus, stimulatory glucose con-
centrations activated islet- and beta cell-selective genes, as
well as a cluster of genes shared with neurons, and repressed
ubiquitous genes involved in stress responses, nutrient sens-
ing and organelle biogenesis, a mechanism occurring in a
similar way in young and old islets. These findings show
that glucose signalling overall ensures an appropriate tran-
scriptional programme in mouse pancreatic islets during
ageing; they also highlight the fact that the inability of
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glucose to induce mitotic genes in close correlation to glu-
cose levels is the main defect observed in the transcriptional
response to glucose in aged islets.

The proliferative capacity of beta cells has been shown to
decline with age, although there is some disagreement about
the extent of this process. Thus, it has recently been reported
that a significant compensatory proliferation of beta cells is
retained in old mice after partial ablation of beta cells or
administration of a glucokinase activator [50]. In contrast, a
complete loss of the mitogenic response of beta cells in
response to a glucagon-like peptide-1 analogue or a high-
fat diet, or after streptozotocin administration, has been
described in old islets [11]. Our findings show that the
mitogenic response to stimulatory glucose concentrations
is also lost in aged islets. The fact that the overall glucose
response is not perturbed rules out the possibility that this
loss is due to global defects in glucose signalling. Indeed,
old islets retain the same glucose regulation of cyclin D1
and D2, which are mainly involved in the G1 phase of
the cell cycle. This could be in part required for cyclin
D-controlled functions other than regulation of the cell cycle
to take place [51]. Remarkably, glucose repressed to a
similar extent and in a dose-dependent manner the expres-
sion of genes with antiproliferative and apoptotic effects in
young and old beta cells, such as Trib3 and Ddit3 (Chop).
Thus, abrogation of the induction by glucose of the cell
cycle gene module cannot be attributed to defective glucose
repression of such genes.

Age-dependent increased levels of the cell cycle inhibi-
tors p16INK4a and p19ARF, which are both encoded by
Cdkn2a, have been related to the decreased capacity of
human and mouse beta cells to proliferate and regenerate
with advanced age [29, 32, 33]. This age-dependent induc-
tion of Cdkn2a is correlated to a progressive decrease of the
epigenetic regulators enhancer of zeste homologue 2
(Drosophila) (EZH2) and Bmi1 polycomb ring finger onco-
gene (BMI-1), which maintain repressive epigenetic marks
at the Cdkn2a promoter [32, 33]. Accordingly, beta cells
lacking EZH2 and BMI-1 showed a significant increase in
p16INK4a and reduced beta cell proliferation [32, 33]. Inter-
estingly, in EZH2-deficient beta cells, there was no change
in mRNA levels of other cell cycle inhibitors [33],
suggesting that EZH2 has a specific effect on the Cdkn2a
locus. Moreover, islet-specific expression of p16INK4a, but
not of other cyclin-dependent kinase inhibitors increases
markedly with ageing [29]. Despite all this evidence
pointing to a critical role of Cdkn2a in restricting beta cell
proliferation, the induction of mitotic genes by glucose was
not restored in islets from aged Cdkn2a−/− mice. These
unexpected results indicate that, in addition to a potential
role for Cdkn2a, other mechanisms play a pivotal role in the
reduced proliferative capacity of old beta cells in response to
mitogenic cues such as stimulatory glucose concentrations.

In line with our findings, it has recently been shown that
increased gene dosage of Ink/Arf does not alter islet number
and beta cell area during physiological ageing in mice [52],
somehow contradicting a previous study in Cdkn2a−/− mice
that reported increased Ki67-positive beta cells and en-
hanced islet proliferation after streptozotocin-induced beta
cell ablation [29]. This discrepancy between data from a
severe model of beta cell ablation and data from glucose
stimulation may reflect differences between the effects of
acute damage and a physiological stimulus.

In conclusion, we have uncovered a cell cycle gene
module whose glucose induction in mouse islets is progres-
sively abrogated during ageing. In contrast, the global
glucose-dependent transcriptional response to glucose is
broadly maintained in old islets, indicating that the signalling
and transcriptional networks regulated by glucose are globally
conserved during ageing. Further research is warranted to
decipher the mechanisms of the age-dependent selective loss
of the induction of mitotic genes by glucose, and thus to
possibly identify targets for promoting beta cell adaptive
proliferative responses during the early stages of diabetes in
old organisms.
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