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Abstract
Aims/hypothesis Lysophosphatidic acid (LPA) is a lipid me-
diator produced by adipocytes that acts via specific G-
protein-coupled receptors; its synthesis is modulated in obe-
sity. We previously reported that reducing adipocyte LPA
production in high-fat diet (HFD)-fed obese mice is associ-
ated with improved glucose tolerance, suggesting a negative
impact of LPA on glucose homeostasis. Here, our aim was
to test this hypothesis.
Methods First, glucose tolerance and plasma insulin were
assessed after acute (30 min) injection of LPA (50 mg/kg) or
of the LPA1/LPA3 receptor antagonist Ki16425 (5 mgkg−1

day−1, i.p.) in non-obese mice fed a normal diet (ND) and in
obese/prediabetic (defined as glucose-intolerant) HFD mice.
Glucose and insulin tolerance, pancreas morphology,

glycogen storage, glucose oxidation and glucose transport
were then studied after chronic treatment (3 weeks) of HFD
mice with Ki16425.
Results In ND and HFD mice, LPA acutely impaired
glucose tolerance by inhibiting glucose-induced insulin
secretion. These effects were blocked by pre-injection
of Ki16425 (5 mg/kg, i.p.). Inhibition of glucose-
induced insulin secretion by LPA also occurred in iso-
lated mouse islets. Plasma LPA was higher in HFD
mice than in ND mice and Ki16425 transiently im-
proved glucose tolerance. The beneficial effect of
Ki16425 became permanent after chronic treatment
and was associated with increased pancreatic islet mass
and higher fasting insulinaemia. Chronic treatment with
Ki16425 also improved insulin tolerance and increased
liver glycogen storage and basal glucose use in skeletal
muscle.
Conclusions/interpretation Exogenous and endogenous
LPA exerts a deleterious effect on glucose disposal
through a reduction of plasma insulin; pharmacological
blockade of LPA receptors improves glucose homeostasis in
obese/prediabetic mice.
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MCP Monocyte chemotactic protein
ND Normal diet
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Introduction

Excessive accumulation of adipose tissue in obesity is
frequently associated with metabolic defects (postpran-
dial hyperglycaemia, dyslipidaemia, insulin resistance)
that may lead to type 2 diabetes and cardiovascular
diseases (hypertension, atherosclerosis, nephropathies)
[1, 2]. In parallel with its lipid storage capacity, the
adipose tissue produces various bioactive molecules
(adipokines, reactive phospholipids, glycerol, NEFA).
The export of these molecules from adipose tissue is
often altered in obese individuals and some of them
(TNF-α, resistin, monocyte chemotactic protein-1 [MCP-1])
exert deleterious effects on glucose metabolism and insulin
sensitivity [3].

Lysophosphatidic acid (LPA) is a phospholipid mediator
that regulates several cellular responses (proliferation, mi-
gration, differentiation) via specific G-protein-coupled re-
ceptors (LPA1R to LPA6R) [4]. LPA is synthesised via the
hydrolysis of lysophosphatidylcholine by a secreted
lysophospholipase D (autotaxin [ATX]) [5, 6]. The available
pharmacological tools targeting ATX/LPA signalling are
still scarce [7–9]. Ki16425 [10] is a mixed LPA receptor
antagonist that exhibits close and preferential affinity for the
LPA1R and LPA3R subtypes (250 and 360 nmol/l, respec-
tively) [8, 10] and its in vivo antagonist efficiency has been
documented [11–13].

White adipose tissue secretes ATX and LPA in the extra-
cellular milieu [12, 14–16]. The expression of ATX is in-
creased in the adipose tissue of obese insulin-resistant
individuals and mice [16–18]. Plasma levels of LPA are
increased in high-fat diet (HFD) obese mice as the result
of an increased expression of ATX in adipocytes [19].
Invalidation of ATX in adipocytes (FATX-KO mice) reduces
plasma LPA and enhances fat mass in HFD-fed mice [19], in
agreement with the anti-adipogenic effect of LPA [20].

Whereas the growth factor-like properties of LPA have
been studied extensively, a few and primarily in vitro studies
have reported that LPA also regulates glucose metabolism
[21–23]. Interestingly, in vivo deletion of ATX in adipocytes
(FATX-KO mice) is associated with a better glucose toler-
ance [19], suggesting a negative effect of LPA on glucose
homeostasis. If this hypothesis is correct, LPA receptors
could represent valuable pharmacological targets for the
treatment of impaired glucose homeostasis associated with
obesity.

Our objective was to study the influence of LPA on
glucose and insulin homeostasis. We found that administra-
tion of LPA to mice impairs glucose disposal via a reduction
of plasma insulin levels, and that chronic pharmacological
blockade of the LPA receptors restores normal glucose
homeostasis in HFD obese/prediabetic (defined as glucose
intolerant) mice.

Methods

Mice C57Bl6/J male mice were housed conventionally
under a constant temperature (20–22°C) and humidity
(50–60%) with a 12/12 h light/dark cycle (lights on at
07:00 hours) and free access to food and water. Mice were
handled in accordance with the principles and guidelines
established by the National Institute of Medical Research
(Inserm) and in conformity with the ‘Principles of laborato-
ry animal care’ (NIH publication no. 85–23, revised 1985
http://grants1.nih.gov/grants/olaw/references/phspol.htm).
The local animal facility committee at Inserm approved our
protocols.

Diet Themice were first fed a normal diet (ND; energy content
16% protein, 81% carbohydrate and 3% fat [SAFE, Augy,
France]) until the age of 10 weeks. Mice were then fed either
an ND or an HFD (energy content 20% protein, 35% carbohy-
drate and 45% fat [Research Diets-Brogaarden (Lynge, Den-
mark)]) for 9 weeks. At that step, HFD mice were considered
obese and prediabetic. They had a higher body weight (35.6±
1.0 vs 29.9±0.6 g; p<0.01) and a higher body-fat mass (24.6±
2.0 vs 5.6±1.1% of total body weight; p<0.001) when com-
pared with ND mice. Moreover, HFD mice displayed a deteri-
oration in glucose tolerance (35% increase in AUC when
compared with ND mice) (Control, Fig. 1d, e vs i, j) associated
with a slight increase in fasting glycaemia (Control, Fig. 1b vs
g) but no change in fasting insulinaemia (Control, Fig. 1c vs h).

Treatment Ki16425 Cayman Chemicals-Interchim
(Montluçon, France) was diluted at a concentration of
1 mg/ml in PBS supplemented with 10% DMSO. LPA
(oleoyl lysophosphatidic acid; Avanti Polar, Alabaster, AL,
USA) was diluted at 15 mg/ml in PBS supplemented with
1% fatty-acid-free BSA. Ki16425 (5 mg/kg), LPA
(50 mg/kg) and vehicle (control) were administered by i.p.
injection. Treatments with Ki16425 and LPA started 9 weeks
after beginning the feeding protocol. The dose of LPA
injected was adapted from previous reports [24, 25]. The
concentration of Ki16425 used had previously been demon-
strated to block LPA receptors in vivo [26]. Acute treat-
ments consisted of injecting a single dose of LPA or
Ki16425 30 min before conducting glucose or insulin toler-
ance tests. Acute treatments were performed on ND and
HFD mice after 9 weeks of diet. Chronic treatment consisted
of a daily injection of Ki16425 for 3 weeks. HFD was
maintained during chronic treatment. Chronic treatment
was followed by glucose or insulin tolerance tests, which
were conducted 24 h after the last injection of Ki16425.
After glucose or insulin tolerance tests, treatment with
Ki16425 was continued for few days before the mice were
killed after an overnight fasting. Plasma and organs were
collected for further analysis.
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Glucose and insulin tolerance tests Mice were fasted for 7 h
before i.p. injection of glucose (1 g/kg) or insulin
(0.75 U/kg). Blood from the tail vein was sampled before
glucose load and every 15 min over 120 min to monitor
glucose concentration. Plasma was collected 15 min before
and after glucose injection to quantify insulin concentration.
Glucose and insulin tolerance tests were conducted on sep-
arate groups of mice to limit the stress on the mice.

Body-fat-mass composition Fat and lean masses were deter-
mined by placing mice in a clear plastic holder, without
anaesthesia or sedation, and inserting into the EchoMRI-3-
in-1 system (Echo Medical Systems, Houston, TX, USA).
The measure was performed 1 day before acute treatments

with LPA and Ki16425, and after chronic treatment with
Ki16425.

Blood analysis Blood glucose was quantified using a glucose
meter (Accu-Chek; Roche Diagnostic, Grenoble, France).
Plasma insulin was quantified using a mouse insulin ELISA
kit (Mercodia, Uppsala, Sweden). Plasma NEFA were mea-
sured using the enzymatic colorimetric Wako NEFA kit (Wako
Chemicals, Neuss, Germany). Plasma triacylglycerols were
measured using the enzymatic colorimetric PAP 150 Kit
(BioMerieux, Marcy l’Etoile, France). Plasma leptin and
adiponectin were determined using Quantkine Immunoassays
(R&D Systems, Minneapolis, MN, USA). Plasma LPA was
measured using a radioenzymatic assay as previously
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Fig. 1 Acute regulation of glucose tolerance by LPA and Ki16425 in
ND and HFD mice. (a) Plasma LPA concentration in ND and HFD
mice after 9 weeks of diet. (b–k) 7 h fasted ND (b–f) and HFD (g–k)
mice received a single injection of LPA or vehicle (Cont) with or
without a pre-injection of Ki16425 (Ki) administered 10 min before
the LPA or vehicle. White squares, vehicle; black circles, LPA; black
squares, Ki16425; white circles, LPA + Ki16425. After 30 min a

glucose tolerance test was conducted. Blood glucose (b, g) and plasma
insulin (c, h) concentrations measured before glucose load. (d, i) Blood
glucose concentration during the glucose tolerance test, expressed as
per cent of concentration at time 0, and corresponding AUC (e, j). (f, k)
Fold change in plasma insulin from 15 min before to 15 min after
glucose load. Values are means ± SEM of four to six mice per group.
*p<0.05, **p<0.01 and ***p<0.001, comparing indicated values
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described [19, 27]. Briefly, lipids were extracted from condi-
tioned media or plasma with an equal volume of 1-butanol and
evaporated. Extracted lipids were converted into [14C]phos-
phatidic acid with recombinant LPA acyl-transferase in the
presence of [14C]oleoyl-CoA. The products of the reaction
were extracted, separated by one-dimensional thin-layer chro-
matography and autoradiographed.

Organ triacylglycerol content Skeletal muscle and liver were
homogenised and triacylglycerols were extracted from 500 μl
homogenate using 2.5 ml chloroform/methanol (2:1 vol./vol.)
and 1.2 ml KCl/HCl 2 mol/l was added. The organic phase
was evaporated and solubilised in isopropyl alcohol,
and triacylglycerols were quantified using an enzymatic
colorimetric PAP 150 Kit (BioMerieux).

Organ glycogen content Skeletal muscle or liver was
digested in NaOH (1 mol/l) and digestion was stopped with
HCl (1 mol/l). Digestate was diluted in sodium acetate (1:4
vol./vol.) unsupplemented or supplemented with
amyloglucosidase (500 U/ml) (Sigma-Aldrich, St Quentin
Fallavier, France) and incubated at 55°C for 1 h to transform
glycogen into glucose. Released glucose was quantified
using an RTU kit (BioMerieux).

Glucose oxidation in ex vivo muscle Glucose oxidation was
measured as previously described [28] with minor modifica-
tions. Red bundles from gastrocnemus muscle were incubated
in modified Krebs–Henseleit (KH) buffer containing 0.2%
fatty-acid-free BSA, 5 mmol/l glucose and 5,550 Bq/ml [14C]
glucose (PerkinElmer, Woodbridge, ON, Canada) for 60 min
at 37°C in a sealed glass vial. At the end of the incubation,
muscles were removed and homogenised in 800 μl lysis buffer
to determine protein quantity. Oxidation was determined by
acidifying the incubation buffer with 1 ml of H2SO4 1 mol/l,
and the 14CO2 was trapped by benzethonium hydroxide
(Sigma-Aldrich) placed in a 0.5 ml microtube in the sealed
glass vial. After 180 min, the microtube was removed and
placed in a scintillation vial and radioactivity was counted
(Cytoscint; MP Biomedicals, Illkirch, France).

Glucose transport in ex vivo muscle Glucose transport was
measured as previously described [29]. Soleus muscles were
isolated and preincubated for 10 min in KH buffer, pH 7.4,
containing BSA (2 mg/ml), 2 mmol/l sodium pyruvate and
20 mmol/l HEPES. Muscles were then incubated for 45 min
in the absence or the presence of insulin (100 nmol/l). For
glucose transport, muscles were transferred into another vial
containing KH medium supplemented with insulin, D-2-
deoxyglucose (0.1 mmol/l) and 2-deoxy-D-[3H]glucose
(14,800 Bq/ml) for 10 min. Muscles were then washed for
1 h in ice-cold PBS and dissolved in 1 mol/l NaOH for a
period of 1 h. 2-Deoxy-D-[3H]glucose 6-phosphate and

2-deoxy-D-[3H]glucose were differentially precipitated by
the use of zinc sulfate (0.3 mol/l), barium hydroxide
(0.3 mol/l) and perchloric acid solutions (6%). Radioactivity
of each precipitate was quantified in a liquid scintillation fluid.

Insulin secretion from isolated islets Insulin secretion from
isolated islets was analysed as previously described [30].
Briefly, islets were isolated from mouse pancreas by collage-
nase digestion and separated from exocrine tissue by
Histopaque gradient. Handpicked islets were placed at 37°C
in RPMI medium containing 11 mmol/l glucose for overnight
recovery and then distributed in 24-well plates (ten islets per
well) for a starvation period of 2 h in RPMI containing
3 mmol/l glucose. Islets were then transferred into Krebs
Ringer Bicarbonate HEPES buffer (KRBH) containing
3 mmol/l glucose and 0.07% BSA for a preincubation period
of 45 min and then incubated for 1 h in KRBH medium
supplemented with 0.5% BSA containing 3, 8 or 16 mmol/l
glucose or 35 mmol/l KCl in the absence or presence of LPA
(0.1, 1 and 5 μmol/l). Notice that incubation with KCl allows
the measurement of insulin secretion due to complete
depolarisation of the islets. The insulin released in incubation
buffers was quantified using an AlphaLISA Human Insulin
Research Immunoassay Kit (PerkinElmer) and human stan-
dards at the Imaging and Cell Biology Core Facility of the
Centre de Recherche duCHUM. Total islet insulin content was
measured after acid–ethanol (1.5% HCl, 75% ethanol)
extraction.

Histological analysis of pancreas Immediately after dissec-
tion, a piece of pancreas was fixed for 24 h in formalin 4%,
then maintained at 4°C in 70% ethanol until paraffin em-
bedding and sectioned into sections, 5 μm thick. Sections
were stained with haematoxylin and eosin. An image of the
entire slice was performed with NanoZoomer Digital Pa-
thology Image (Hamamatsu [v1.2], Hamamatsu City, Japan)
and then analysed with NDP scan 2.5.80 from Hamamatsu
to count islet number and the number of cells per islet, and
to measure islet area and the total analysed sample area.

mRNA quantification Total RNAs were extracted from tis-
sues and cells using the RNeasy mini kit (Qiagen, Hilden,
Germany). Total RNA (500 ng) was reverse transcribed for
60 min at 37°C using Superscript II reverse transcriptase
(Invitrogen, St Aubin, France) in the presence of random
hexamers. A minus reverse transcriptase (RT) reaction was
performed in parallel to ensure the absence of genomic DNA
contamination. Real-time PCR was performed on 12.5 ng
cDNA and 100–900 nmol/l specific oligonucleotide primers
in a final volume of 20 μl using the Mesa blue QPCR Master
Mix for Sybr (Eurogentec, Angers, France). Fluorescence was
monitored and analysed in a StepOnePlus Real-Time PCR
system instrument (Applied Biosystems, St Aubin, France).

Diabetologia (2013) 56:1394–1402 1397



18S RNAwas used to normalise gene expression according to
the following formula 2(Ct18S−Ctgene) where Ct corresponds to
the number of cycles needed to generate a fluorescent signal
above a predefined threshold. Oligonucleotide primers were
designed using the Primer Express software (Applied
Biosystems). The sequence of the oligonucleotide primers is
listed in electronic supplementary material [ESM] Table 1.

Statistics Data are presented as means ± SEM. Bilateral
Student’s t tests were used to compare two groups of data.
A two-way ANOVA was applied to detect interaction
between treatment and time. Differences were considered
significant at p<0.05.

Results

LPA acutely impairs glucose disposal through inhibition of
glucose-induced insulin secretion After 9 weeks of diet,
HFD mice were obese and prediabetic (see Methods).
HFD mice also showed a significantly higher (1.9-fold)
plasma LPA concentration than ND fed mice (Fig. 1a). This
was in agreement with our previous report [19]. To investi-
gate the possible involvement of LPA in the glucose intol-
erance of HFD mice, glucose tolerance tests were performed
30 min after a single injection of LPA. In both ND and HFD
mice, LPA did not modify basal glycaemia (Cont vs LPA,
Fig. 1b vs g) and insulinaemia (Cont vs LPA Fig. 1c vs h)
measured before glucose load. This indicated that LPA had
no direct impact on these variables. Nevertheless, LPA
potently impaired glucose tolerance when compared with
control (Cont vs LPA, Fig. 1d, e and i, j). Pre-injection of
Ki16425, 10 min before LPA, completely blocked the del-
eterious effect of LPA on glucose tolerance (LPA vs LPA +
Ki, Fig. 1d, e and i, j). These data revealed that exogenous
LPA exerts a deleterious effect on glucose tolerance through
an LPA-receptor-dependent mechanism.

Interestingly, whereas injection of Ki16425 alone did not
significantly influence glucose tolerance in ND mice (Cont
vs Ki, Fig. 1d, e), it significantly improved glucose toler-
ance in HFD mice (Cont vs Ki, Fig. 1i, j). This specific
beneficial effect of Ki16425 was compared with the higher
concentration of plasma LPA in HFD mice than in ND mice
(Fig. 1a). These data strongly suggested that enhanced en-
dogenous production of LPA in HFD mice participates in
their impaired glucose tolerance.

In an attempt to understand the mechanisms responsible
for LPA-mediated impairment of glucose tolerance, plasma
insulin was measured during the glucose tolerance test. In
both ND and HFD mice, LPA significantly attenuated the
induction of insulinaemia generated by the glucose bolus
(Cont vs LPA Fig. 1f, k). LPA-mediated inhibition of plasma
insulin was completely blocked by pre-injection of Ki16425

(LPA vs LPA + Ki, Fig. 1f, k). In parallel, insulin tolerance
was not significantly altered after injection of LPA or Ki16425
(ESM Fig. 1), suggesting no impact on insulin sensitivity.
These data demonstrated that LPA-induced impairment of
glucose tolerance resulted from inhibition of glucose-induced
insulin secretion rather than alteration of insulin sensitivity. In
vitro, LPA dose-dependently inhibited glucose-induced insulin
secretion by isolated mouse islets (ESM Fig. 2). In contrast,
LPA had no influence on basal insulin secretion or on
depolarisation-induced insulin secretion by KCl (ESM Fig. 2).
A direct impact of LPA on the islets could thus be responsible
for its inhibitory influence on glucose-induced insulinaemia.

Chronic treatment with Ki16425 improves glucose tolerance
in HFD mice We then investigated whether the beneficial
effect of Ki16425 on glucose homeostasis in HFD mice could
persist over time. In contrast to the observations made after
30 min, at 24 h after a single injection of Ki16425 glucose
tolerance was no more improved when compared with control
(ESM Fig. 3). This showed that the beneficial effect of a single
injection of Ki16425 on glucose tolerance was transient.

We then examined the effect of chronic treatment with
Ki16425 (3 weeks of daily injections). Such treatment had
no significant influence on body weight, fat mass or adipose
tissue weight (Table 1). Ki16425 treatment had no influence
on basal glycaemia preceding the glucose tolerance test
(Fig. 2a) but a slight increase in basal insulinaemia was
noticed (although the difference did not reach significance)
(Fig. 2b). Interestingly, glucose tolerance tests revealed that
Ki16425-treatment significantly improved glucose tolerance
when compared with control (Fig. 2c, d). This was associated
with no significant change in glucose-induced increase in
plasma insulin (Fig. 2e). After overnight fasting, Ki16425-
treated mice showed no significant change in glycaemia
(Fig. 2f) but insulinaemia was significantly higher than in
control mice (Fig. 2g). These results showed that chronic
treatment with Ki16425 persistently improved the glucose
tolerance of HFD mice. This beneficial effect of Ki16425
had no consequence on fasting glycaemia but was surprisingly
associated with an increase in fasting insulinaemia, suggesting
a possible impact on pancreas function.

To test this hypothesis, the pancreas was examined. His-
tological analysis of the pancreas from Ki16425-treated
mice revealed a significantly higher number of islets when
compared with control mice (Fig. 3a; representative scan is
shown in ESM Fig. 4). In contrast, the size of the islets
(Fig. 3b) and the number of cells per islet (Fig. 3c) remained
unchanged. Moreover, no change in the expression of genes
involved in beta cell function (insulin, Pdx1, Gck and Glut2
[also known as Slc2a2]) was observed (Fig. 3d). These
results showed that chronic treatment of HFD mice with
Ki16425 increased the total number of islet cells suggesting
that a compensatory behaviour of the endocrine pancreas
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might be responsible for Ki16425-mediated increase in
fasting insulinaemia.

Chronic treatment with Ki16425 improves insulin tolerance
in HFD mice and increases liver glycogen content To
investigate the influence of Ki16425 on glucose homeostasis,
insulin tolerance tests were performed in HFD mice. Chronic
treatment with Ki16425 led to a significant improvement in
insulin tolerance when compared with control vehicle (Fig. 4a,
b). The decline in blood glucose concentration between 0 and
60 min following insulin injection was faster in Ki16425-
treated mice than in vehicle-treated control mice suggesting a
better insulin sensitivity. Interestingly, control glycaemia
increased again after 60 min, reflecting endogenous
glucose production, whereas in Ki16425-treated mice
glycaemia stayed at a low level (Fig. 4a). These obser-
vations suggest that Ki16425 has an impact on liver
glucose metabolism.

To test this hypothesis, livers were examined. Ki16425-
treated mice showed no change in liver weight (Table 1) or

triacylglycerol content (Table 1). In contrast, Ki16425-
treated mice displayed a significant increase in liver glyco-
gen content when compared with vehicle-treated control
mice; this was observed in overnight fasted mice as well
as after 18 h re-feeding (Fig. 4c). Glycogen content results
from a balance between synthesis and degradation. Livers
from Ki16425-treated mice displayed higher gene expres-
sion of Gck (involved in glucose uptake) and lower expres-
sion of G6pase (also known as G6pc) and Pepck (also
known as Pck1, involved in glucose production) when com-
pared with control mice (Fig. 4d). A trend towards a reduced
expression of Gyk (involved in neoglucogenesis) was also
observed but did not reach significance (p=0.08) (Fig. 4d).
Although we are aware of the limitations in the functional
conclusions that can be drawn from mRNA measurements,
these results suggested that Ki16425-mediated increase in
liver glycogen content might result from a reduction in
glucose release and an increase in glucose uptake in liver.
These changes might explain, at least in part, Ki16425-
mediated improvement of insulin tolerance and could also
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Fig. 2 Chronic treatment with Ki16425 improves glucose tolerance in
HFD mice. After 9 weeks of diet, HFD mice received daily injections
of Ki16425 (Ki) or vehicle (Cont) for 3 weeks. Mice were fasted for 7 h
before conducting a glucose tolerance test. Blood glucose (a) and
plasma insulin (b) concentrations measured before glucose load. (c)
Blood glucose concentration during glucose tolerance tests, expressed

as per cent of concentration at time 0, and corresponding AUC (d).
White squares, vehicle; black squares, Ki16425. (e) Fold change in
plasma insulin from 15 min before to 15 min after glucose load. Blood
glucose (f) and plasma insulin (g) concentrations after overnight
fasting. Values are means ± SEM of six to 12 mice per group.
NS, p=0.072; *p<0.05, comparing indicated values

Table 1 Effect of chronic
treatment with Ki16425 on
HFD-fed mice

Data are means ± SEM

Variable Control (n=6) Ki16425 (n=6)

Body weight (g) 34.3±2.3 32.4±1.4

Body fat mass (% of total body weight) 34.1±0.5 37.4±1.1

Body lean mass (% of total body weight) 56.6±0.7 57.7±0.9

Subcutaneous adipose tissue (mg) 969±27 1,269±258

Perigonadal adipose tissue (mg) 1,711±198 1,583±292

Pancreas (mg) 249±32 202±17

Liver (mg) 1,136±78 1,051±97

Gastrocnemius muscle (mg) 341±17 359±19

Soleus muscle (mg) 20±1 19±2

Fasted liver triacylglycerols (mg/[g protein]) 1.51±0.28 2.07±0.34

Fasted muscle triacylglycerols (mg/[g protein]) 7.55±0.67 7.92±1.80

Fasted muscle glycogen (mg/[g protein]) 14.7±3.5 14.3±2.5
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contribute to Ki16425-mediated improvement in glucose
tolerance.

Chronic treatment with Ki16425 increases glucose use in
skeletal muscle Since skeletal muscles play a crucial role in
glucose homeostasis, they were also examined after chronic
treatment with Ki16425. Neither their weight nor their gly-
cogen and triacylglycerol contents were modified (Table 1).
Nevertheless, soleus muscle gene expression analysis

showed a significant increase in Glut1 (also known as
Slc2a1) and Hk2, but not Glut4 (also known as Slc2a4)
mRNAs (Fig. 5a). Although we are aware of the limitations
in the functional conclusions that can be drawn from mRNA
measurements, these results suggested a change in glucose
transport. In ex vivo muscles, a slight increase in 2-deoxy-
D-[3H]glucose transport was indeed observed, but the dif-
ference did not reach significance (Fig. 5b). Nevertheless, a
significant increase in 14CO2 production from [14C]glucose
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Fig. 3 Chronic treatment with Ki16425 increases islet cell number in
HFD mice. HFD mice were treated as described in the legend for
Fig. 2, and pancreas was analysed after overnight fasting. Islet number
(a), islet surface (b) and number of cells per islet (c) were determined

by histomorphology. Representative scans are shown in ESM Fig. 3.
(d) Gene expression in whole pancreas from HFD mice; white bars,
vehicle; black bars, Ki16425. Values are means ± SEM of six to 12
mice per group. *p<0.05, comparing indicated values
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Fig. 4 Chronic treatment with Ki16425 improves insulin tolerance and
increases liver glycogen content in HFD mice. HFD mice were treated as
described in the legend for Fig. 2, and insulin tolerance tests were
conducted after 7 h fasting. (a) Blood glucose concentration during glu-
cose tolerance tests, expressed as per cent of concentration at time 0, and
corresponding AUC (b). White squares, vehicle; black squares, Ki16425.
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Fig. 5 Influence of mid-term chronic treatment with Ki16425 on
glucose metabolism in skeletal muscle of HFD mice. HFD mice were
treated as described in the legend to Fig. 2 before quantifying gene
expression (a) and measuring 2-deoxy[3H]glucose transport (b) and
[14C]glucose oxidation (c) in ex vivo muscle; white bars, vehicle; black
bars, Ki16425. Values are means ± SEM of six to 12 mice per group.
*p<0.05, comparing indicated values
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in ex vivo muscle was observed in Ki16425-treated mice
when compared with vehicle-treated control mice (Fig. 5c).
Although one should remain cautious about extrapolating ex
vivo observations to the in vivo situation, our results never-
theless suggested that chronic treatment of HFD-fed mice
with Ki16425 could enhance glucose oxidation in muscle
and this might contribute, at least in part, to Ki16425-
mediated improvement in glucose tolerance.

Discussion

The objective of this work was to study the involvement of
LPA in glucose intolerance associated with obesity. We pre-
viously reported that transgenic-mediated reduction of LPA
synthesis was associated with improved glucose tolerance in
HFD-fed mice [19], suggesting that LPA has a negative im-
pact on glucose homeostasis. Here we strengthened this hy-
pothesis by showing the deleterious effect of LPA on glucose
tolerance through inhibition of insulin secretion and we dem-
onstrated that chronic pharmacological blockade of LPA re-
ceptors with Ki16425 can reverse the deterioration in glucose
homeostasis in HFD obese prediabetic mice.

We first showed that acute injection of LPA leads to a
strong impairment of glucose tolerance. This observation
clearly demonstrates a direct negative influence of LPA on
glucose tolerance. This effect is mediated by LPA receptors
since the antagonist Ki16425 blocks it. The deleterious
effect of LPA was associated with inhibition of glucose-
induced insulin secretion with no change in insulin toler-
ance. These observations strongly suggest that the acute
deleterious impact of LPA on glucose tolerance is mediated
by inhibition of insulin secretion rather than by an alteration
of insulin sensitivity. Moreover, in vitro experiments show
that LPA dose-dependently inhibited glucose-induced insu-
lin secretion, directly on isolated islets. This is not in agree-
ment with the findings of Metz et al [31] who reported that
glucose-induced insulin secretion was not influenced by
LPA in isolated rat islets. Whereas species differences in
islet sensitivity to LPA could explain this discrepancy, the
way LPA is presented to the islets should also be taken into
account. Whereas in our work, LPAwas brought to islets in
solution in an albumin-containing buffer, Metz et al used an
albumin-free vehicle [31]. The latter is not favourable to
LPA solubility or its presentation to receptors [32].

Our data also show that inhibition of glucose tolerance is not
limited to exogenous LPA and can be extended to endogenous
LPA. LPA plasma concentration is higher in HFD mice than in
ND mice, and we found that Ki16425 improves glucose toler-
ance by itself in HFD mice but not in ND mice. Having
demonstrated the deleterious effect of exogenous LPA on glu-
cose tolerance, the most likely explanation is that
overproduction of endogenous LPA in HFDmice exerts a tonic

inhibitory effect on glucose tolerance that can be alleviated by
blocking LPA receptors. Such a conclusion is close to that
drawn from our previous report [19] showing that deletion of
the LPA-synthesising enzyme autotaxin in adipose tissue was
associated with an improvement in glucose tolerance in HFD
mice but not in NDmice. Therefore, blocking LPA synthesis or
LPA receptors leads to the same metabolic alterations. In-
creased LPA synthesis in HFD obese mice very likely partici-
pates in the deterioration of their glucose tolerance. LPA can
therefore be considered to play an important part in the onset of
obesity-associated impairment of glucose homeostasis. Thus,
autotaxin and LPA receptors represent possible valuable targets
for the treatment of metabolic disorders associated with obesity.

We also found that chronic treatment of HFD mice with
Ki16425 improved insulin tolerance, increased liver glycogen
storage and increased the capacity of muscle to oxidise glucose.
These changes are obvious signs of a better disposal of glucose
in peripheral organs and are very likely responsible for
Ki16425-induced improvement of glucose tolerance. Neverthe-
less, chronic treatment with Ki16425 also increases fasting
insulin. This was initially intriguing to us since increased
insulinaemia is usually associated with insulin resistance. It is
well established that HFD obesity leads, after a compensatory
phase, to progressive beta cell degeneration responsible, at least
in part, for the deregulation of insulin production associated
with obesity [33]. Histological analysis of the pancreas revealed
that the number of pancreatic islets cells was higher in Ki1625-
treated mice than in vehicle-treated control mice. Assuming
that more than 95% of the cells present in islets are beta cells, it
can be concluded that the effect of Ki16425 on the number of
beta cells could explain, at least in part, the observed increased
in fasting insulin. The influence of Ki16425 on plasma insulin
might therefore be interpreted as a protective action against
HFD-mediated alteration of beta cells. Nevertheless, we no-
ticed no change in proinsulin mRNA expression, so a possible
impact of Ki16425 on the secreting activity of beta cells cannot
be excluded. Increased insulin production is recognised as a
compensatory mechanism intended to maintain glycaemia
when peripheral insulin sensitivity is altered. One can thus
propose that the influence of Ki16425 on insulinaemia contrib-
utes to Ki16425-mediated improvement in glucose disposal. A
possible mechanism could be that increased insulinaemia has
an impact on the expression of genes positively involved in
glucose homeostasis. This hypothesis is supported by our re-
sults showing that Ki16425 treatment affected the expression of
several insulin-sensitive genes such asGck,G6pase and Pepck.

In conclusion, this work presents strong evidence for the
role of LPA as a deleterious lipid mediator involved in the
deterioration of glucose homeostasis associated with obesity.
Moreover, the demonstration of the beneficial effects of the
antagonist Ki16425 indicates that LPA receptors might repre-
sent potential interesting pharmacological targets to prevent
and/or treat the metabolic defects associated with obesity.
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