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Abstract
Aims/hypothesis Proinflammatory and proapoptotic cyto-
kines such as TNF-α are upregulated in human obesity.
We evaluated the association between ghrelin isoforms (ac-
ylated and desacyl ghrelin) and TNF-α in obesity and
obesity-associated type 2 diabetes, as well as the potential
role of ghrelin in the control of apoptosis and autophagy in
human adipocytes.
Methods Plasma concentrations of the ghrelin isoforms and
TNF-α were measured in 194 participants. Ghrelin and
ghrelin O-acyltransferase (GOAT) levels were analysed by
western-blot, immunohistochemistry and real-time PCR in

53 biopsies of human omental adipose tissue. We also
determined the effect of acylated and desacyl ghrelin (10
to 1,000 pmol/l) on TNF-α-induced apoptosis and
autophagy-related molecules in omental adipocytes.
Results Circulating concentrations of acylated ghrelin and
TNF-α were increased, whereas desacyl ghrelin levels were
decreased in obesity-associated type 2 diabetes. Ghrelin and
GOAT were produced in omental and subcutaneous adipose
tissue. Visceral adipose tissue from obese patients with type
2 diabetes showed higher levels of GOAT, increased adipo-
cyte apoptosis and increased expression of the autophagy-
related genes ATG5, BECN1 and ATG7. In differentiating
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human omental adipocytes, incubation with acylated and
desacyl ghrelin reduced TNF-α-induced activation of
caspase-8 and caspase-3, and cell death. In addition, acylat-
ed ghrelin reduced the basal expression of the autophagy-
related genes ATG5 and ATG7, while desacyl ghrelin
inhibited the TNF-α-induced increase of ATG5, BECN1
and ATG7 expression.
Conclusions/interpretation Apoptosis and autophagy are
upregulated in human visceral adipose tissue of patients
with type 2 diabetes. Acylated and desacyl ghrelin reduce
TNF-α-induced apoptosis and autophagy in human visceral
adipocytes.

Keywords Apoptosis . Autophagy . Ghrelin . Obesity .

Tumour necrosis factor α . Type 2 diabetes . Visceral
adipocytes

Abbreviations
ATG Autophagy-related genes
AU Arbitrary units
ER Endoplasmic reticulum
GHS-R Growth hormone secretagogue receptor
GOAT Ghrelin O-acyltransferase
MBOAT Membrane-bound O-acyltransferases
SVFC Stromovascular fraction cells

Introduction

Ghrelin, a 28 amino-acid peptide with an n-octanoyl group
at the serine 3 residue, is the endogenous ligand of the
growth hormone secretagogue receptor (GHS-R) [1, 2].
Ghrelin is synthesised predominantly in X/A cells of the
oxyntic glands in the mucosa layer of the gastric fundus and
secreted to the bloodstream in two major forms: acylated
(∼5% of total ghrelin) and desacyl ghrelin (the form lacking
n-octanoylation and representing ∼95% of total ghrelin) [1,
3, 4]. The porcupine-like enzyme ghrelin O-acyltransferase
(GOAT) catalyses the octanoylation of ghrelin in the endo-
plasmic reticulum (ER) [3, 4] and belongs to the family of
membrane-bound O-acyltransferases (MBOAT) [5]. The ex-
pression sites of Mboat4, the gene encoding GOAT, in
rodents include stomach, intestine, colon and testis, while
in humans MBOAT4 is mainly expressed in stomach, intes-
tine and pancreas [3–5]. Acylated and desacyl ghrelin in-
crease adiposity and body weight through central and
peripheral mechanisms [6]. On the one hand, ghrelin
increases food intake by activating hypothalamic neuropep-
tide Y/agouti-related peptide neurons, which produce GHS-
R type 1a, via the modulation of fatty acid metabolism [7].
On the other hand, adipose tissue is also an important target
for the adipogenic actions of ghrelin in rodents and humans
[8, 9]. Thus ghrelin (GHRL) gene expression increases

during adipogenesis with preproghrelin knockdown reduc-
ing insulin-mediated adipogenesis in 3T3-L1 adipocytes [9].
Moreover, acylated and desacyl ghrelin directly stimulate
the production of several fat storage-related proteins, includ-
ing acetyl-CoA carboxylase, fatty acid synthase, lipoprotein
lipase and perilipin, in human visceral adipocytes, thereby
stimulating intracytoplasmic lipid accumulation [8, 10].

The excessive expansion of adipose tissue during the
onset of obesity results in the activation of death receptors
and mitochondrial pathways, leading to the activation of
effector caspases and adipocyte apoptosis [11, 12]. Other
types of cell death, namely autophagy, have been recently
shown to be altered in adipose tissue in obesity [13].
Autophagy is a dynamic self-degrading process, character-
ised by sequestering of cytosolic organelles and proteins in
double-membrane vesicles, which are known as autophago-
somes and translocate to lysosomes for fusion and content
degradation [14]. The proteins encoded by autophagy-
related genes (ATG) are required for the formation of auto-
phagic vesicles. Given the anti-apoptotic action of ghrelin in
several cell systems, including murine 3T3-L1 adipocytes
[15–17], it seems plausible that ghrelin operates as a surviv-
al factor that prevents obesity-associated apoptosis and
autophagy in human adipocytes. We therefore sought to:
(1) characterise the production and regulation of the ghre-
lin–GOAT system in human adipose tissue; and (2) analyse
the effect of acylated and desacyl ghrelin on basal and TNF-
α-induced apoptosis, and on autophagy in human visceral
adipocytes.

Methods

Patient selection and study design The study of acylated
and desacyl ghrelin plasma levels was performed in a pop-
ulation of 194 participants (111 men, 83 women). BMI was
calculated as weight in kilograms divided by the square of
height in meters. Obesity was defined as a BMI of ≥30 kg/
m2 and normal weight as a BMI of <25 kg/m2. Obese
patients were sub-classified into three groups (normoglycae-
mia, impaired glucose tolerance or type 2 diabetes) follow-
ing the criteria of the Expert Committee on the Diagnosis
and Classification of Diabetes [18]. Participants with type 2
diabetes were not on insulin therapy or medication likely to
influence endogenous insulin levels. It should be stressed
that the type 2 diabetic patients included in our obese group
did not have a long history of diabetes (less than 2 to 3 years,
or even de novo diagnosis on the basis of their anamnesis
and biochemical determinations). The clinical characteris-
tics of the participants are shown in Table 1.

In addition, the presence of ghrelin and GOAT, and the
effect of the ghrelin isoforms were assessed in paired omen-
tal and subcutaneous adipose tissue samples from 53
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patients undergoing either laparoscopic Roux-en-Y gastric
bypass (n043) or Nissen fundoplication (n010) at the
Clínica Universidad de Navarra. The clinical characteristics
of this cohort were essentially similar to those of the cohort
in which circulating ghrelin isoforms were studied (Elec-
tronic supplementary material [ESM] Table 1). All reported
investigations were carried out in accordance with the prin-
ciples of the Declaration of Helsinki as revised in 2008. The
experimental design was approved from an ethical and
scientific standpoint by the Research Ethics Committee of
the Clínica Universidad de Navarra, which is responsible for
research (028/2009); informed consent was obtained from
all volunteers. For more details see ESM.

Analytical procedures Biochemical and hormonal assays per-
formed in the study were done as previously described [8, 10].
Insulin resistance and sensitivity were calculated using the
HOMA and QUICKI indices, respectively [19, 20]. Acylated
and desacyl ghrelin were determined by commercially available
ELISA kits (Linco Research, St Charles, MO, USA) following
the manufacturer’s guidelines, as described earlier [8, 10].

TNF-α was measured with a high-sensitivity ELISA (R&D
Systems, Minneapolis, MN, USA). For more details see ESM.

RNA extraction and real-time PCR RNA isolation and pu-
rification were performed as described earlier [8, 21]. Tran-
script levels for ghrelin (GHRL), GOAT (MBOAT4) and the
ATGs ATG5, BECN1 and ATG7 were quantified by real-
time PCR (7300 Real-Time PCR System; Applied Biosys-
tems, Foster City, CA, USA). Primers and probes (ESM
Table 2) were designed using Primer Express 2.0 (Applied
Biosystems). For more details see ESM.

Western blot studies Blots were incubated overnight at 4°C
with anti-ghrelin (Alpha Diagnostic, San Antonio, TX,
USA), anti-GOAT (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), anti-caspase-3 (Cell Signaling Technology, Dan-
vers, MA, USA), anti-cleaved caspase-3 (Cell Signaling),
anti-caspase-8 (Cell Signaling) and anti-cleaved caspase-
8 (Cell Signaling) antibodies (diluted 1:1,000 in blocking
solution), or with anti-β-actin (Sigma, St Louis, MO, USA)
antibody (diluted 1:5,000 in blocking solution). The

Table 1 Clinical characteristics
of the participants included in
the study

Differences between groups
were analysed by one-way
ANOVA followed by Scheffé’s
test or χ2 test, where appropriate
ap<0.05 vs lean normoglycae-
mic participants; bp<0.05 vs
obese normoglycaemic patients

NG, normoglycaemia; IGT, im-
paired glucose tolerance; T2D,
type 2 diabetes; AST, aspartate
aminotransferase; ALT, alanine
aminotransferase; γ-GT, γ-
glutamyltransferase; CRP, high-
sensitivity C-reactive protein

Characteristic Lean NG Obese NG Obese IGT Obese T2D p value

n 55 66 37 36 –

Sex 0.166

Men 25 41 21 24

Women 30 25 16 12

Age (years) 56±2 55±1 59±1 59±2 0.154

Height (m) 1.68±0.01 1.67±0.01 1.66±0.01 1.66±0.01 0.556

Weight (kg) 66±2 92±3a 90±3a 93±3a <0.00001

BMI (kg/m2) 23.1±0.3 32.5±0.5a 33.5±0.8a 33.4±0.6a <0.00001

Waist circumference (cm) 82.1±1.5 106.9±1.7a 106.9±1.8a 109.2±1.9a <0.00001

Glucose (mmol/l) 5.1±0.1 5.2±0.1 6.1±0.1a,b 7.3±0.2a,b <0.00001

Insulin (pmol/l) 25.7±2.8 52.1±3.5a 72.2±6.2a 100.0±11.8a,b <0.00001

HOMA 0.9±0.1 1.7±0.1a 2.7±0.2a 4.9±0.4a 0.017

QUICKI 0.42±0.02 0.37±0.02 0.34±0.01a,b 0.31±0.01a,b 0.012

NEFA (mmol/l) 0.5±0.1 0.7±0.1 0.7±0.1 0.9±0.2 0.121

Triacylglycerols (mmol/l) 0.8±0.1 1.2±0.1a 1.3±0.2a 1.4±0.1a <0.00001

Total cholesterol (mmol/l) 5.2±0.2 5.7±0.2 5.4±0.2 4.7±0.1 0.106

LDL-cholesterol (mmol/l) 3.1±0.1 3.6±0.2 3.4±0.2 2.7±0.2 0.071

HDL-cholesterol (mmol/l) 1.8±0.1 1.4±0.1a 1.4±0.1a 1.3±0.1a 0.0001

AST (IU/l) 13±1 17±1a 14±1a 17±2a 0.007

ALT (IU/l) 13±1 19±3a 19±2a 33±6a,b 0.0001

Alkaline phosphatase (IU/l) 81±4 101±3 84±5 90±11 0.067

γ-GT (IU/l) 13±1 27±6 25±4a 53±14a 0.0001

CRP (mg/l) 1.2±0.1 5.7±1.0 4.6±1.2a 5.0±1.1a 0.008

Uric acid (μmol/l) 309±24 380±24a 351±12a 369±18a 0.0001

Leptin (ng/ml) 7.3±0.5 25.9±2.8a 21.3±1.7a 20.0±1.9a 0.0001

TNF-α (pg/ml) 2.3±0.5 2.2±0.3 2.6±0.4 4.0±0.8a,b 0.041
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antigen–antibody complexes were visualised using horse-
radish peroxidase-conjugated anti-rabbit or anti-mouse IgG
antibodies (1:5,000), and an enhanced chemiluminescence
detection system (ECL Plus; Amersham Biosciences, Little
Chalfont, Buckinghamshire, UK). For more details see ESM.

Immunohistochemistry of ghrelin and GOAT Immunohisto-
chemical detection of ghrelin and GOAT was carried out
as described before [8]. Sections were incubated over-
night at 4°C with rabbit polyclonal anti-ghrelin (Alpha
Diagnostic) or rabbit polyclonal anti-GOAT (Santa Cruz
Biotechnology) antibodies diluted 1:50 in TRIS-buffer
saline. After three washes with TRIS-buffer saline,
slides were incubated for 1 h at room temperature with
horseradish peroxidase-conjugated anti-rabbit/mouse
(Dako, Glostrup, Denmark). The peroxidase reaction
was visualised with a 3,3′-diaminobenzidine (Amersham
Biosciences)/H2O2 solution (0.5 mg/ml 3,3′-diaminoben-
zidine, 0.03% H2O2 diluted in 50 mmol/l TRIS–HCl,
pH 7.36) as chromogen and with Harris haematoxylin
solution (Sigma) as counterstaining. For more details
see ESM.

Confocal immunofluorescence microscopy of ghrelin and
GOAT Differentiated human adipocytes grown on glass
coverslips were fixed with 4% paraformaldehyde (wt/vol)
(15 min, room temperature), incubated with PBS containing
0.1% saponin (wt/vol) and 1% BSA (wt/vol) (1 h, room
temperature), and exposed overnight and at 4°C to rabbit
polyclonal anti-ghrelin (Alpha Diagnostic) or anti-GOAT
(Santa Cruz) antibodies diluted 1:50 (ghrelin) or 1:250
(GOAT) in PBS containing 0.1% saponin (wt/vol). There-
after, cells were washed with PBS and incubated at room
temperature for 2 h with Alexa Fluor 488-conjugated don-
key anti-rabbit IgG (Invitrogen, Paisley, UK) diluted 1:500.
After washing, coverslips were mounted on microscope
slides and examined under a confocal laser scanning micro-
scope (TCS-SP2-AOBS; Leica, Heidelberg, Germany). For
more details see ESM.

Cell cultures Human stromovascular fraction cells
(SVFC) were isolated from omental adipose tissue from
obese normoglycaemic participants and differentiated as
previously described [8]. Differentiated human omental
adipocytes were serum-starved for 24 h and then treated
for 24 h with increasing concentrations of insulin
(Sigma), leptin (PeproTech, Rocky Hill, NJ, USA),
TNF-α (PeproTech), acylated ghrelin (Tocris, Ellisville,
MO, USA) or desacyl ghrelin (Tocris). In a subset of
experiments quiescent cells were incubated for 24 h
with TNF-α (100 ng/ml) in the presence or absence of
acylated ghrelin (100 pmol/l) or desacyl ghrelin
(100 pmol/l). One sample per experiment was used to

obtain control responses in the presence of the solvent.
For more details see ESM.

TUNEL assay The TUNEL assay was performed using an
in situ cell death detection kit (POD; Roche, Basel, Switzer-
land) following the manufacturer’s instructions. TUNEL-
positive cells were analysed under the light microscope.
For more details see ESM.

Statistical analysis Data are expressed as mean ± SEM.
Statistical differences between mean values were deter-
mined using Student’s t test, a χ2 test and one-way
ANOVA, followed by Scheffé’s or Dunnet’s tests where
appropriate. A value of p<0.05 was considered statisti-
cally significant. Due to their non-normal distribution,
plasma concentrations of acylated and desacyl ghrelin,
and TNF-α were logarithmically transformed (log10) for
statistical analyses. In the analysis of Pearson’s correla-
tion coefficients (r), Bonferroni’s correction was applied
when multiple comparisons were performed simulta-
neously, establishing the significance level at p00.003.
For more details see ESM.

Results

Plasma levels of acylated and desacyl ghrelin, and TNF-α
in obesity and obesity-associated type 2 diabetes Obese
participants showed increased circulating concentrations of
acylated ghrelin (obese 5.1±0.3, lean 3.9±0.3 pmol/l [mean
± SEM], p00.013) and decreased circulating concentrations
of desacyl ghrelin (obese 90.9±4.7, lean 168.1±15.6 pmol/
l, p<0.001) compared with lean individuals (Fig. 1a, b).
Acylated ghrelin levels were also higher (p<0.01) in obese
individuals with type 2 diabetes than in obese participants
with normoglycaemia or impaired glucose tolerance
(Fig. 1a). No effect of glucose intolerance or diabetes was
observed on circulating desacyl ghrelin concentrations.
Plasma desacyl ghrelin concentrations were increased in
women compared with men in the lean group (women
192.5±13.6, men 133.3±13.8 pmol/l, p<0.001) and in the
obese group (women 104.3±12.1, men 88.6±9.4 pmol/l,
p<0.001). This sexual dimorphism was not found in the
plasma acylated ghrelin levels of lean participants (women
3.8±0.4, men 4.2±0.5 pmol/l) or in those of the obese patients
(women 4.7±0.4, men 5.3±0.3 pmol/l).

Type 2 diabetes was associated with increased circulating
levels of well-known inflammatory markers, including
TNF-α (Table 1). Interestingly, no correlation was observed
between acylated ghrelin and TNF-α (Fig. 1c), whereas
desacyl ghrelin showed a negative correlation (r00.23,
p<0.05) with this proinflammatory cytokine (Fig. 1d).
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Localisation and abundance of ghrelin and GOAT in human
adipose tissue To analyse whether adipose tissue is a pro-
duction site of ghrelin and its acylating enzyme, GOAT, the
presence of both molecules was analysed in biopsies of
omental and subcutaneous adipose tissue from lean and
obese patients. Analysis was performed by western-blot
and real-time PCR. Omental adipose tissue of obese partic-
ipants showed similar gene expression of ghrelin (p00.800),
but increased transcript levels of MBOAT4 (p<0.01) com-
pared with lean individuals (Fig. 2a). Furthermore, tran-
script levels of GOAT were higher (p<0.05) in obese
individuals with type 2 diabetes than in normoglycaemic
patients. No differences in GHRL and MBOAT4 mRNA in
subcutaneous fat were found between the lean and obese
groups (Fig. 2b). The levels of ghrelin and GOAT in omen-
tal and subcutaneous fat depots exhibited a similar pattern to
that observed in the gene expression analyses (Fig. 2c, d). A
positive correlation between MBOAT4 mRNA levels and
serum LDL-cholesterol in omental adipose tissue (r00.71,
p00.002) was found.

To identify the cell type responsible for ghrelin and
GOAT production, the presence of both molecules in omen-
tal adipose tissue was evaluated by immunohistochemistry
and real-time PCR. Positive black staining for ghrelin and
GOAT was observed in fully mature adipocytes, as well as
in the SVFC of omental and subcutaneous fat depots from

obese patients (Fig. 2e, f). Adipocytes and SVFC showed
similar (p>0.05) transcript levels for ghrelin and GOAT in
omental (GHRL 1.00±0.67 vs 0.38±0.26 arbitrary units
[AU]; MBOAT4 1.00±0.40 vs 0.70±0.43 AU) and subcuta-
neous (GHRL 1.00±0.45 vs 1.52±0.36 AU;MBOAT4 1.00±
0.53 vs 0.82±0.33 AU) adipose tissue. To gain more insight
into the localisation of ghrelin and GOAT, the subcellular
localisation of both proteins was studied in differentiated
human adipocytes using confocal immunofluorescence mi-
croscopy. As shown in Fig. 2g, ghrelin and GOAT exhibited
a cytoplasmic distribution in adipocytes. More specifically,
the ghrelin immunosignal surrounded the nucleus and
appeared as ring-shaped structures at the periphery of lipid
droplets, which is morphologically reminiscent of the appear-
ance of the ER. A similar intracellular distribution was ob-
served for GOAT immunoreactivity (Fig. 2g). No
immunoreaction was detected when primary or secondary
antibodies were omitted.

Regulation of ghrelin and GOAT in human omental adipo-
cytes Given the increased abundance of GOAT in omental
adipose tissue and the metabolic relevance of this fat depot
[22], the subsequent experiments focused on this fat depot.
To gain insight into the regulation of ghrelin and GOAT
production, the roles of insulin and leptin, two hormones
that are tightly associated with obesity and obesity-
associated type 2 diabetes and have opposite effects on fat
deposition, and the role of the proinflammatory cytokine,
TNF-α, were analysed as plausible regulators of the expres-
sion of GHRL and MBOAT4 in human omental adipocytes
(Fig. 3a–f). GHRL expression was reduced (p<0.05) by
increasing concentrations of insulin and leptin, but augment-
ed (p<0.05) in response to TNF-α in human visceral fat
cells. MBOAT4 transcript levels increased (p<0.05) in re-
sponse to insulin, while neither leptin nor TNF-α modified
them. The self-regulation of ghrelin in human visceral fat
cells was also tested (Fig. 3g–j). GHRL expression was
downregulated (p<0.01) by desacyl ghrelin and upregulated
(p00.019) by acylated ghrelin. MBOAT4 transcript levels in
human visceral adipocytes were significantly increased
(p<0.01) by acylated ghrelin treatment at all the concentra-
tions tested.

Acylated and desacyl ghrelin prevent TNF-α-induced apo-
ptosis in human visceral adipocytes TUNEL assays were
initially performed to analyse adipocyte apoptosis in human
omental adipose tissue from a well-characterised group of
lean and obese participants. Adipocyte apoptosis was mark-
edly increased (p<0.0001) in the visceral adipose tissue of
obese participants (Fig. 4a and b), which is in agreement
with previous reports [12]. The quantification of TUNEL-
positive cells showed that adipocyte apoptosis was further
increased (p<0.05) in adipose tissue of obese type 2
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Fig. 1 (a) Impact of obesity and obesity-associated type 2 diabetes on
fasting plasma concentrations of acylated and (b) desacyl ghrelin in
lean volunteers (n055), obese normoglycaemic (NG) participants (n0
66), obese individuals with impaired glucose tolerance (IGT) (n037)
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diabetes patients compared with normoglycaemic obese
participants.

We evaluated the effect of acylated and desacyl ghrelin
on TNF-α-induced caspase activation by examining the
appearance of cleaved caspase-8 and caspase-3, while apo-
ptosis was explored by detecting DNA fragmentation with

the TUNEL assay. As expected, the incubation of human
visceral fat cells with different concentrations of TNF-α
for 24 h significantly (p<0.001) increased the activation
of caspase-8 and caspase-3, and apoptotic cell death
(Fig. 4c, d and e). The co-incubation with desacyl ghrelin
(100 pmol/l) or acylated ghrelin (100 pmol/l) significantly
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pocytes. Images represent the Z-projection of 20 confocal stacks.
Representative images of at least three separate experiments are shown
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reduced the cleavage of caspase-8 and caspase-3, as
well as the apoptotic indices induced by TNF-α (100 ng/ml)
(Fig. 4f, g and h).

Acylated and desacyl ghrelin prevent basal autophagy in
human visceral adipocytes To study the regulation of
autophagy in obesity, we first examined the expression
patterns of several molecular indicators of autophagy
(ATG5, ATG7 and Beclin-1/ATG6) in human visceral adi-
pose tissue from lean and obese participants. Obese patients
with type 2 diabetes showed significantly (p<0.05) in-
creased transcript levels of ATG7 and BECN1 in omental
adipose tissue compared with lean controls and normogly-
caemic obese individuals (Fig. 5b, c). The expression of
ATG5 showed a similar trend in obesity-associated type 2
diabetes, but differences did not reach statistical significance
(p<0.10) (Fig. 5a). Adipocytes and SVFC isolated from
omental adipose tissue of morbidly obese patients were used
to identify which cell type expressed the ATGs in this fat
depot. No statistically significant differences were observed
in the transcript levels of ATG5, ATG7 and BECN1 in
adipocytes and SVFC (Fig. 5d–f).

To determine whether acylated and desacyl ghrelin, and
TNF-α directly affect autophagy in adipose tissue, differen-
tiated human adipocytes were exposed for 24 h to increasing
concentrations of acylated and desacyl ghrelin in the pres-
ence or absence of TNF-α and the expression of ATG5,
ATG7 and BECN1 was analysed. TNF-α upregulated
(p<0.05) these ATGs at the highest concentration tested
(100 ng/ml) (Fig. 6a, e and i). The stimulation of human
visceral adipocytes with desacyl ghrelin did not modify the
basal expression of ATGs, but acylated ghrelin decreased
(p<0.05) the transcript levels of ATG5 and ATG7 in human
visceral adipocytes (Fig. 6c and g). The co-incubation of TNF-
α with acylated ghrelin returned the expression of BECN1 to
basal levels, while co-incubation with desacyl ghrelin
inhibited the TNF-α-induced increase in ATG5, ATG7 and
BECN1 (Fig. 6d, h and l).

Discussion

Circulating total ghrelin levels are decreased in obesity,
insulin resistance or the metabolic syndrome, all well-
known low-grade chronic inflammatory diseases [23–25].
Our findings show that obesity-associated type 2 diabetes is
related to low desacyl ghrelin concentrations (the most
abundant form of the hormone) and high acylated ghrelin
levels, which is in accordance with previously published
data [8, 10]. Our study also provides evidence that acylated
ghrelin correlates negatively with TNF-α. A similar rela-
tionship between ghrelin and TNF-α has been found in
other pathological inflammatory conditions, such as juvenile
idiopathic arthritis, rheumatoid arthritis or congenital heart
disease [25–27]. Since TNF-α and ghrelin exert opposite
effects on the immune system and metabolism [28], the
present study focused on the interaction of both molecules

O
m

en
ta

l a
di

po
cy

te
s

G
H

R
L

 m
R

N
A

/1
8S

 r
R

N
A

O
m

en
ta

l a
di

po
cy

te
s

M
B

O
A

T
4 

m
R

N
A

/1
8S

 r
R

N
A

O
m

en
ta

l a
di

po
cy

te
s

G
H

R
L

 m
R

N
A

/1
8S

 r
R

N
A

O
m

en
ta

l a
di

po
cy

te
s

M
B

O
A

T
4 

m
R

N
A

/1
8S

 r
R

N
A

O
m

en
ta

l a
di

po
cy

te
s

G
H

R
L

 m
R

N
A

/1
8S

 r
R

N
A

O
m

en
ta

l a
di

po
cy

te
s

M
B

O
A

T
4 

m
R

N
A

/1
8S

 r
R

N
A

a

c

e

Insulin (nmol/l)

1000101

Insulin (nmol/l)

Leptin (nmol/l)

1000101

Leptin (nmol/l)

TNF-α (ng/ml)
1000101

TNF-α (ng/ml)

0.0

1.0

2.0

3.0

4.0

5.0

*

0.0

1.0

2.0

3.0

4.0

5.0

*
0.0

1.0

2.0

3.0

4.0

5.0 *

0.0

1.0

2.0

3.0

4.0

5.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0

1.0

2.0

3.0

4.0

5.0

*

g

0.0

1.0

2.0

3.0

4.0

5.0

O
m

en
ta

l a
di

po
cy

te
s

G
H

R
L

 m
R

N
A

/1
8S

 r
R

N
A

** **
**

Desacyl ghrelin (pmol/l)
10 100

i

0.0

1.0

2.0

3.0

4.0

5.0

Acylated ghrelin (pmol/l)

O
m

en
ta

l a
di

po
cy

te
s

G
H

R
L

 m
R

N
A

/1
8S

 r
R

N
A

*

*

0.0

1.0

2.0

3.0

4.0

5.0

O
m

en
ta

l a
di

po
cy

te
s

M
B

O
A

T
4 

m
R

N
A

/1
8S

 r
R

N
A

Desacyl ghrelin (pmol/l)

0.0

1.0

2.0

3.0

4.0

5.0

O
m

en
ta

l a
di

po
cy

te
s

M
B

O
A

T
4 

m
R

N
A

/1
8S

 r
R

N
A

Acylated ghrelin (pmol/l)

0 100 1 10

0 100 1 10

0 100 1 10

0 1,000

10 100

10 100

10 1000 1,000

0 1,000

0 1,000

** **
**

b

d

f

h

j
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MBOAT4 expression of incubating differentiated omental fat cells
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Differences between groups were analysed by one-way ANOVA
followed by Dunnet’s test; *p<0.05 and **p<0.01 vs unstimu-
lated adipocytes
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in human adipose tissue. Despite the negative correlation of
TNF-α with plasma desacyl ghrelin, we observed that TNF-α
increased GHRL mRNA expression in human visceral adipo-
cytes, suggesting that both molecules interact at the autocrine/
paracrine level in fat cells. In this sense, as described below in
detail, our data show that acylated and desacyl ghrelin directly
act on visceral adipose tissue to regulate TNF-α-induced
apoptosis and autophagy in humans.

Human adipose tissue produces all the components of the
ghrelin system, namely ghrelin, obestatin, GOAT, and the
receptors of ghrelin-related peptides, GHS-R type 1a and G
protein-coupled receptor 39 (GPR39) [8, 21, 29, 30]. Our
findings show for the first time that ghrelin and GOAT are
co-produced in human visceral adipocytes and SVFC. In line

with this, we observed a similar intracellular distribution of
ghrelin and GOAT immunosignals in human adipocytes,
which resembled that observed in the ER. In this sense, it has
been suggested that GOAT is located in the membrane of the
ER and mediates the translocation of the octanoyl-CoA from
the cytosolic side to the ER lumen prior to the transport of
acylated ghrelin to the Golgi [31–33]. The subcellular local-
isation of ghrelin and GOAT found in the present study is
similar to that observed in human myometrial smooth muscle
cells and in the human embryonic kidney (HEK) 293 cell line
[9, 34–36]. Further investigation is warranted to ascertain the
mechanisms of ghrelin trafficking in human adipocytes.

Since human obesity and obesity-associated type 2 diabe-
tes are associated with altered levels of circulating acylated
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Fig. 4 Effect of acylated and desacyl ghrelin on TNF-α-induced
apoptosis. (a) Adipocyte apoptosis in omental white adipose tissue
(WAT) obtained from lean volunteers (white bars), obese normogly-
caemic (NG) participants (grey bars), obese individuals with impaired
glucose tolerance (IGT) (hatched bars) and obese patients with type 2
diabetes (T2D) (black bars); n05 per group. Differences between
groups were analysed by one-way ANOVA followed by Scheffé’s test;
*p<0.05, **p<0.01 and ***p<0.001 vs lean participants; †p<0.05 vs

obese NG. (b) Images on which bar graph (a) is based. (c) The effect of
TNF-α (0, 1, 10 and 100 ng/ml) treatment for 24 h on the activation of
caspase-8 and (d) caspase-3, and (e) on apoptosis. (f) Effect of co-
incubation with acylated ghrelin (100 pmol/l) or desacyl ghrelin
(100 pmol/l) on TNF-α (100 ng/ml)-induced activation of caspase-
8 and (g) caspase-3, and (h) apoptosis. (c–h) Differences between
groups were analysed by one-way ANOVA followed by Dunnet’s test;
n08 per group; *p<0.05 and ***p<0.001 vs unstimulated adipocytes
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and desacyl ghrelin, the potential contribution of human adi-
pose tissue to this dysregulation was analysed. GhrelinmRNA
levels in omental and subcutaneous adipose tissue were sim-
ilar and comparable within groups, which is in accordance
with data published by Knerr and colleagues [29]. To our
knowledge, the present study shows for the first time that
insulin resistance rather than obesity increases the abundance
of GOAT in human visceral adipose tissue, suggesting that
this fat depot contributes to the acylation of ghrelin.Moreover,
transcript levels of MBOAT4 in omental adipose tissue were
positively associated with serum LDL-cholesterol. Interest-
ingly, LDL-cholesterol interacts with acylated ghrelin, and a
plausible role of triacylglycerol-rich LDL- and HDL-
cholesterol particles as ghrelin transporters in the bloodstream
has been suggested [37]. Although correlation does not imply

causality, the association between GOATand LDL-cholesterol
may reflect an increased transport of ghrelin into the blood-
stream, thereby contributing to the high levels of circulating
acylated ghrelin in insulin resistance.

Several nutritional and hormonal factors are involved in
the regulation of the ghrelin/GOAT system [29, 30]. Our
data show that insulin and leptin suppressed ghrelin mRNA
levels in human visceral fat cells. In this regard, perfusion of
the rat stomach with insulin or leptin induced a dose-
dependent inhibition of ghrelin release [38] and infusion of
insulin at physiological doses throughout prolonged eugly-
caemic–hyperinsulinaemic clamps significantly decreased
desacyl ghrelin in healthy participants and pregnant women
with type 2 diabetes [13, 39]. Our results also show that
insulin increases GOAT transcript levels in human fat cells.
The existing literature on the effect of insulin on GOAT is
scarce and controversial, with insulin inhibiting GOAT in
INS-1 pancreatic cells, but lacking effect in murine primary
pituitary cells [40, 41]. Here, we have also shown that
acylated ghrelin promotes ghrelin production and acylation
in human adipocytes, a finding in agreement with previous-
ly published data on murine primary pituitary cells [41],
while desacyl ghrelin acts as a repressor of ghrelin transcrip-
tion. In this sense, Mboat4 knockout mice, which lack
acylated ghrelin, but otherwise exhibit physiological levels
of desacyl ghrelin, showed a decreased body weight without
changes in fat mass when fed a high-fat diet [42], which
may be explained by the negative regulatory effect of
desacyl ghrelin on GHRL evidenced in the present study.
Taken together, insulin, leptin, TNF-α and ghrelin isoforms
themselves act as transcriptional regulators of GHRL and
MBOAT4 in human visceral adipocytes.

Acylated and desacyl ghrelin reduce the adipocyte apo-
ptosis induced by TNF-α, a well-known regulator of apo-
ptosis in adipose tissue. Upon binding of TNF-α to its
receptor, TNF-α proapoptotic signalling occurs, resulting
in caspase-8 cleavage and activation, which further activates
caspase-3, leading to adipocyte cell death [43]. Our findings
provide evidence that ghrelin isoforms reduce the activation
of caspase-8 and caspase-3, and the apoptosis induced by
TNF-α. In this regard, ghrelin reportedly prevented apopto-
sis in murine 3T3-L1 and rat adipocytes [16, 44], as well as
in other cell types, such as the murine adult cardiomyocyte
cell line HL-1, porcine aortic endothelial cells, rat hypotha-
lamic neurons and cortical oligodendrocytes, rat INS-1E
pancreatic beta cells, and the human adrenal gland carcino-
ma cell line [15, 17, 45–47]. In the present study, we also
confirmed increased adipocyte apoptosis in human obesity
and obesity-associated type 2 diabetes. Since adipocyte
apoptosis constitutes a key initial event that contributes to
macrophage infiltration into adipose tissue, insulin resis-
tance and the hepatic steatosis associated with human obe-
sity [12], the inhibition of adipocyte apoptosis by ghrelin
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Fig. 5 Impact of obesity and obesity-associated type 2 diabetes on
indicators of autophagy in human omental adipose tissue. Expression
of ATG5 (a), ATG7 (b) and BECN1 (c) mRNA in omental white
adipose tissue (WAT) obtained from lean volunteers (white bars), obese
normoglycaemic participants (grey bars), obese individuals with im-
paired glucose tolerance (hatched bars) and obese patients with type 2
diabetes (black bars). Gene expression in lean participants was as-
sumed to be 1. Differences between groups were analysed by one-
way ANOVA followed by Scheffé’s test; n09–13 per group; *p<0.05
vs lean normoglycaemic participants; †p<0.05 vs obese normoglycae-
mic. (d) Comparison of ATG5, ATG7 (e) and BECN1 (f) gene expres-
sion in freshly isolated adipocytes and SVFC from omental WAT of
obese patients; n015. Differences between groups were analysed by
two-tailed unpaired Student’s t test
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isoforms may represent a novel potential therapeutic strate-
gy for the treatment of obesity-associated inflammation
(Fig. 7).

Autophagy plays an important role in the regulation of
adipose mass and differentiation [14, 48, 49], since ATG5
and ATG7 knockdown in 3T3-L1 adipocytes inhibits lipid
accumulation and decreases the abundance of the adipogenic
transcription factors, peroxisome proliferator-activated recep-
tor γ and CCAAT/enhancer binding protein α (C/EBPα)[49].
Human adipose tissue contains autophagosomes and obesity is
associated with altered levels of the autophagy-related mole-
cules microtubule-associated protein 1 light chain 3 I (LC3-I)
and II (LC3-II) and ATG5 [13]. Our data provide evidence that
ATG5, beclin-1/ATG6 and ATG7 are present in human

adipocytes and SVFC, and that hyperglycaemia, rather than
obesity, is associated with altered expression of BECN1 and
ATG7 in adipose tissue of obese patients with type 2 diabetes.
In this sense, insulin constitutes a major inhibitor of autophagy,
with insulin resistance being a potential activator of this pro-
cess, since patients with type 2 diabetes show elevated forma-
tion of autophagosomes in subcutaneous adipose tissue [50].

The activation of autophagy in type 2 diabetes may
reflect an underlying cell death of hypertrophied adipocytes
[13]. In this regard, Beclin-1/ATG6 has been proposed as a
potential link between apoptosis and autophagy [51]. More-
over, TNF-α reportedly induces the production of Beclin-1/
ATG6 in vascular smooth muscle cells in atherosclerotic
plaques, and Beclin-1/ATG6 is associated with cell death
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Fig. 6 Regulation of
autophagy induced by TNF-α
and ghrelin isoforms in human
omental adipocytes. The effect
of TNF-α (0, 1, 10 and 100 ng/
ml) treatment for 24 h on the
induction of (a) ATG5, (e)
ATG7 and BECN1 (i) mRNA in
human omental adipocytes. Ef-
fect of desacyl ghrelin on (b)
ATG5, (f) ATG7 and BECN1
(j), and acylated ghrelin on (c)
ATG5, (g) ATG7 and BECN1
(k) expression. Effect of acyl-
ated ghrelin (100 pmol/l) or
desacyl ghrelin (100 pmol/l) on
TNF-α (100 ng/ml)-induced
activation of (d) ATG5, (h)
ATG7 and (l) BECN1 expres-
sion. Differences between
groups were analysed by one-
way ANOVA followed by
Dunnet’s test; n08–10 per
group; *p<0.05 vs unstimu-
lated adipocytes

Diabetologia (2012) 55:3038–3050 3047



in the plaque [52]. In this context, we analysed the role of
the pro-apoptotic TNF-α and the anti-apoptotic ghrelin in
the regulation of ATGs. TNF-α increased the transcript
levels of ATG5, BECN1 and ATG7, while acylated ghrelin
reduced ATG5 and ATG7 expression in human visceral
adipocytes. In addition, desacyl ghrelin reduced the TNF-
α-induced expression of ATG5, ATG7 and BECN1. Taken
together, we have thus shown for the first time that acylated
ghrelin and TNF-α exert opposite effects on the regulation
of autophagy in human visceral adipocytes (Fig. 7). Further-
more, the imbalance of both molecules in hyperglycaemic
states may contribute to the altered autophagy observed in
patients with type 2 diabetes.

In summary, the main findings of the present study are that:
(1) GOAT abundance, but not that of ghrelin, is increased in
human visceral adipose tissue in patients with type 2 diabetes;
(2) insulin, leptin, TNF-α and ghrelin itself constitute tran-
scriptional regulators of GHRL and MBOAT4 in human vis-
ceral adipocytes; and (3) acylated and desacyl ghrelin reduce
TNF-α-induced apoptosis and basal autophagy in human vis-
ceral adipocytes. These results broaden the current understand-
ing of the defective mechanisms underlying type 2 diabetes.
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Fig. 7 Schematic diagram of the effect of ghrelin isoforms on TNF-α-
induced autophagy and apoptosis in human visceral adipocytes. Acyl-
ated (pink circles) and desacyl (orange circles) ghrelin inhibit the
activation of caspase-3 and caspase-8, and apoptosis induced by
TNF-α upon binding to its receptor, TNFR1. Desacyl ghrelin reduces
TNF-α-induced transcription of BECN1, an ATG required to initiate
the formation of the autophagosome in autophagy, as well as that of

ATG7 and ATG5, the corresponding proteins of which participate in the
conjugation cascades for autophagosome elongation. Acylated ghrelin
reduces the basal expression of the ATGs ATG5 and ATG7. The
imbalance of ghrelin isoforms and TNF-α in states of hyperglycaemia
may contribute to the altered apoptosis and autophagy observed in
patients with type 2 diabetes
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