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Abstract
Aims/hypothesis Vasopressin plays a role in osmoregula-
tion, glucose homeostasis and inflammation. Therefore,
plasma copeptin, the stable C-terminal portion of the pre-
cursor of vasopressin, has strong potential as a biomarker
for the cardiometabolic syndrome and diabetes. Previous
results were contradictory, which may be explained by dif-
ferences between men and women in responsiveness of the
vasopressin system. The aim of this study was to evaluate
the usefulness of copeptin for prediction of future type 2
diabetes in men and women separately.
Methods From the Prevention of Renal and Vascular End-
stage Disease (PREVEND) study, 4,063 women and 3,909
men without diabetes at baseline were included. A total of
208 women and 288 men developed diabetes during a
median follow-up of 7.7 years.
Results In multivariable-adjusted models, we observed a
stronger association of copeptin with risk of future diabetes

in women (OR 1.49 [95% CI 1.24, 1.79]) than in men (OR
1.01 [95% CI 0.85, 1.19]) (pinteraction<0.01). The addition of
copeptin to the Data from the Epidemiological Study on the
Insulin Resistance Syndrome (DESIR) clinical model im-
proved the discriminative value (C-statistic,+0.007, p00.02)
and reclassification (integrated discrimination improvement
[IDI] 0 0.004, p<0.01) in women. However, we observed
no improvement in men. The additive value of copeptin in
women was maintained when other independent predictors,
such as glucose, high sensitivity C-reactive protein
(hs-CRP) and 24 h urinary albumin excretion (UAE), were
included in the model.
Conclusions/interpretation The association of plasma
copeptin with the risk of developing diabetes was stronger
in women than in men. Plasma copeptin alone, and along
with existing biomarkers (glucose, hs-CRP and UAE), sig-
nificantly improved the risk prediction for diabetes in
women.
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Introduction

The arginine vasopressin (AVP) stress-adaptation system has
been shown to play a role in glucose homeostasis in both
experimental and human studies [1, 2]. Epidemiological studies
investigating the prospective association between plasma AVP
levels and risk of type 2 diabetes are scarce. The main reason
for this may be that reliable measurements of AVP are difficult
in large collections of samples. AVP in blood is mainly bound
to platelets in circulation and is unstable in isolated plasma
[3, 4]. In addition, most AVP measurements have relatively
limited sensitivity. Recently, an assay for copeptin, the
C-terminal portion of the precursor of AVP, has been developed
[5]. Copeptin is a reliable marker of AVP secretion and a
surrogate for circulating AVP concentration [3, 5].

One recent study found that high baseline levels of copep-
tin are associated with increased risk for development of type
2 diabetes [6]. The link between the AVP stress-adaptation
system and type 2 diabetes may lie in stimulatory effects of
AVP on hepatic glucose production [7], effects on insulin
release from the pancreas [8], stimulation of endogenous
cortisol secretion [9] and adverse effects on whole-body insu-
lin resistance [10]. Of note, there are marked differences in
responsiveness of the AVP stress-adaptation system between
men and women [11, 12].

We hypothesised that there could be a difference in the
association of copeptin with type 2 diabetes between men and
women. In a previous study in the population in which we
planned to test this hypothesis, we found independent associ-
ations of high sensitivity C-reactive protein (hs-CRP) and 24 h
urinary albumin excretion (UAE) with the risk of type 2
diabetes in the general population [13]. Associations of hs-
CRP and UAE with the risk of type 2 diabetes have also been
found in several other studies [14–17]. We aimed to test
whether the association of copeptin with type 2 diabetes was
independent of other covariates, including clinical variables
and more established biomarkers such as glucose, hs-CRP and
24 h UAE. In addition, the present study evaluates the predic-
tive ability of copeptin for the risk of developing type 2
diabetes in men and women separately. The predictive ability
is evaluated by addition to an existing sex-specific prediction
model. We then performed a comparison of the potential
additive value of copeptin to glucose, hs-CRP and 24 h UAE.

Methods

Study population and design The study population was
obtained from the Prevention of Renal and Vascular End-
stage Disease (PREVEND) study, a Dutch cohort drawn
from the general population (age range between 28 and
75 years) of the city of Groningen, the Netherlands. Details
on study design, recruitment, and procedures have been

published elsewhere [18]. Of 8,592 participants in the baseline
cohort, we excluded 331 individuals with diabetes at baseline
(self-reported physician diagnosis and screen-detected preva-
lent cases) and 289 with missing data on follow-up, leaving
4,063 non-diabetic women and 3,909 non-diabeticmen for the
post-hoc analysis. The PREVEND study was approved by the
local medical ethics committee, University Medical Center
Groningen, and was performed according to the principles
outlined in the Declaration of Helsinki. All participants gave
written informed consent.

Clinical and biomarker measurements The first screening
took place in 1997–1998, the second in 2001–2003 and the
third in 2003–2006. In each screening, the participants under-
went two outpatient visits to assess medical history, anthro-
pometry and cardiovascular and metabolic risk factors, and
they collected two 24 h urine samples. Information on use of
medication was completed and confirmed by using data from
pharmacy registries of all community pharmacies in the city of
Groningen [19]. In 89.9% of all participants, blood samples for
measurement of copeptin were taken after overnight fasting.
Total cholesterol and plasma glucose were measured by dry
chemistry (Eastman Kodak, Rochester, NY, USA). HDL-
cholesterol was measured using a homogeneous method (direct
HDL, Aeroset TM System, Abbott Laboratories, Abbott Park,
IL, USA). Hypertension was defined by self-reported physician
diagnosis, use of antihypertensive medication, or blood pres-
sure ≥140/90 mmHg. Triacylglycerol was measured enzymat-
ically. hs-CRP was determined by nephelometry (BN II, Dade
Behring, Marburg, Germany). UAE, given as the mean of the
two 24 h urine excretions, was determined by nephelometry
with a threshold of 2.3 mg/l and intra- and inter-assay coef-
ficients of variation of less than 2.2% and less than 2.6%,
respectively (Dade Behring Diagnostic, Marburg, Germany).
Plasma copeptin level was measured using a new sandwich
immunoassay (B.R.A.H.M.S GmbH/Thermo Fisher Scientif-
ic, Hennigsdorf/Berlin, Germany), which has been described
previously [5, 20]. The lower detection limit was 0.4 pmol/
l and the functional assay sensitivity (20% inter-assay coeffi-
cient of variation) was less than 1 pmol/l [5]. All the techni-
cians were blinded to the participants’ characteristics.

Outcome definition Incident cases of type 2 diabetes were
ascertained if one or more of the following criteria were met:
(1) fasting plasma glucose ≥7.0 mmol/l (126 mg/dl); (2)
random sample plasma glucose ≥11.1 mmol/l (200 mg/dl);
(3) self-report of a physician diagnosis; (4) use of glucose-
lowering medications based on a central pharmacy registra-
tion [21]. We included cases from 3 months after the base-
line screening visits (1997–1998) until January 2007.

Statistical analyses Continuous data were compared by using
one-way ANOVA or a Kruskal–Wallis test, as applicable. A
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χ2 test was used for the comparison of categorical variables to
test differences across sex-specific quartiles of copeptin. Be-
cause of significant sex differences, we investigated the asso-
ciations between baseline characteristics and plasma copeptin
levels separately for women and men. We applied logistic
regression analysis to examine the hypothesis that plasma
copeptin is associated with the risk of developing type 2
diabetes in women and men. ORs with 95% CIs for type 2
diabetes were calculated according to base-2 logarithmically
transformed copeptin measurements. In further analyses, these
associations were tested across sex-specific quartiles of copep-
tin, with the lowest quartile considered as the reference. In
model 1, basic adjustment was for age. In model 2, we further
adjusted for alcohol use, smoking status and family history of
diabetes as covariates that could confound the association
between copeptin and risk of diabetes. In model 3, we further
adjusted for covariates included in the metabolic syndrome,
those are, waist circumference, hypertension, HDL-
cholesterol, triacylglycerol and fasting glucose. In model 4,
we further adjusted for hs-CRP and 24 h UAE.

We examined the added value of copeptin for the risk
prediction of developing diabetes on top of the existing Data
from the Epidemiological Study on the Insulin Resistance
Syndrome (DESIR) clinical models. The DESIR models
were chosen because they have separate prediction rules
for women and men [22]. The DESIR models included data
on family history of diabetes, waist circumference and hy-
pertension in women; and data on smoking status, waist
circumference and hypertension in men [22]. To evaluate
the added value of copeptin, we compared the prediction of
the DESIR models, as the reference, to that of the models
including log2 copeptin. Next, we added log2 hs-CRP and
log2 UAE to the DESIR models and examined whether
these two conventional cardiometabolic biomarkers could
improve the risk prediction of diabetes. Thereafter, to evaluate
the value of copeptin over existing biomarkers, we added log2
copeptin along with log2 hs-CRP and log2 UAE to the DESIR
models. Finally, we added glucose, a strong predictor for
diabetes, to the DESIR models and examined whether copep-
tin, hs-CRP and 24 h UAE could improve prediction above
the models incorporating glucose.We examined improvement
of diabetes prediction in terms of discrimination and integrat-
ed discrimination improvement (IDI) [23, 24]. The discrimi-
nation performance denotes the extent to which the model
distinguishes between individuals with and without incident
diabetes; a value of 1 implies a perfect discrimination and
a value of 0.5 implies performance no better than chance.
Discrimination was examined by calculating the C-statistic
with 95% CI. IDI, a continuous measure of reclassification,
was calculated by subtracting the mean difference of predicted
risk between the DESIR models and the models including
biomarkers for those who developed diabetes from the
corresponding risks for those who did not develop diabetes.

A significant p value of IDI represents an improved prediction
[23, 24].

For most baseline variables, <1% were missing, whereas
this was up to 8% for self-reported variables. A single impu-
tation and predictive mean matching was applied for missing
data. In the current analysis, a weighted method was per-
formed to compensate for baseline enrichment of the PRE-
VEND participants with high urinary albumin concentration
(>10 mg/l).

Given the strong predictive value of glucose, we per-
formed a sensitivity analysis with exclusion of individuals
(women, n0305; men, n0538) with impaired fasting glu-
cose (IFG) at baseline. IFG was defined by the ADA criteria
of fasting glucose of 5.6–6.9 mmol/l [25]. Next, we repeated
analyses after excluding those who used antihypertensive
medications (women, n0569; men, n0617). In addition, we
assessed whether the different components of the DESIR
models might have affected the predictive value of copeptin.
To do this, we fitted the model for women and examined the
effect of adding copeptin in men.

A p value of 0.05 or less, two-sided, was considered
statistically significant. All the statistical analyses were car-
ried out using IBM SPSS Statistics 19 and R-2.13.1 for
Windows (http://cran.r-project.org/).

Results

Baseline clinical characteristics The associations between
baseline clinical characteristics and plasma copeptin, stratified
by sex, are summarised in Table 1. Median (interquartile range
[IQR]) copeptin levels were higher in men, i.e. 6.2 (4.0-–9.4)
pmol/l in men and 3.6 (2.4–5.5) pmol/l in women (p<0.001).
For both men and women, across sex-specific quartiles of
copeptin, a higher copeptin level was positively related to
age, BMI, waist circumference, high blood pressure, fasting
blood glucose and total cholesterol, but was not related to
HDL-cholesterol. In addition, hs-CRP and UAE increased
with higher copeptin levels. Women with higher copeptin
levels were more likely to be smokers, whereas men with
higher copeptin levels also had higher triacylglycerol.

Plasma copeptin and type 2 diabetes During median (IQR)
follow-up for 7.7 (7.4–8.0) years, 208 (5.1%) women and
288 (7.4%) men developed type 2 diabetes. Table 2 depicts
the association between copeptin and the risk of type 2
diabetes, calculated per doubling (per log2-unit increase)
of copeptin levels and over sex-specific quartiles separately
for women and men. In women, the crude OR (95% CI) for
the risk of type 2 diabetes was 1.60 (1.37, 1.85) per dou-
bling of copeptin levels. After adjustment for age (model 1),
smoking, alcohol use, and family history of diabetes (model 2),
and waist circumference, hypertension, fasting glucose, HDL-
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cholesterol and triacylglycerol (model 3) this association
(OR 1.50 [95% CI 1.25, 1.80]) remained statistically signifi-
cant. In model 4, adjustment for hs-CRP and 24 h UAE did not
further change the association of copeptin with type 2 diabetes
(OR 1.49 [95% CI 1.24, 1.79]).

Inmen, crude OR (95%CI) for the risk of developing type 2
diabetes was 1.19 (1.03, 1.37) per doubling of copeptin levels.

Adjustment for the variables in model 2 did not materially
change this association (OR 1.18 [95%CI 1.01, 1.37]). Further
adjustments for waist circumference, hypertension, fasting
glucose, HDL-cholesterol and triacylglycerol attenuated the
association to non-significance (p00.74). Higher copeptin lev-
els were a significantly stronger predictor of type 2 diabetes in
women than in men (p<0.01 for interaction) in both crude and

Table 1 Baseline clinical characteristics of participants in total and according to quartiles of plasma copeptin

Characteristic Sex-specific quartiles p valuea

Total 1 2 3 4

Women

No. of participants 4,063 1,001 1,025 1,019 1,018 –

Copeptin level (pg/ml) 3.6 (2.4–5.5) 1.8 (1.4–2.1) 2.9 (2.6–3.2) 4.4 (4.0–4.9) 7.6 (6.3–9.8) –

Age (years) 47.7±12.2 46.7±12.2 46.8±11.8 47.8±12.2 49.6±12.3 <0.001

Family history of diabetes (%) 830 (20.4) 202 (20.2) 190 (18.5) 208 (20.4) 230 (22.6) 0.16

Current smoker (%) 1,374 (33.8) 275 (27.5) 313 (30.5) 366 (35.9) 420 (41.3) <0.001

Ever use alcohol (%) 2,718 (67.2) 641 (64.2) 707 (69.2) 684 (67.5) 686 (67.9) 0.10

BMI (kg/m2) 25.8±4.6 25.4±4.1 25.6±4.5 26.0±4.7 26.2±5.2 <0.001

Waist circumference (cm) 82.9±12.4 81.2±11.1 82.5±12.3 83.4±12.3 84.3±13.6 <0.001

Systolic blood pressure (mmHg) 119.4±19.5 118.3±18.7 118.4±18.6 119.7±19.8 121.1±20.9 0.003

Diastolic blood pressure (mmHg) 68.7±9.0 68.3±8.9 68.5±8.8 68.7±9.2 69.4±9.0 0.03

Hypertension (%) 959 (23.6) 222 (22.2) 216 (21.1) 235 (23.1) 286 (28.1) 0.001

Glucose (mmol/l) 4.62±0.64 4.61±0.60 4.59±0.59 4.61±0.62 4.67±0.71 0.04

Total cholesterol (mmol/l) 5.60±1.14 5.56±1.15 5.51±1.12 5.61±1.15 5.71±1.15 0.001

HDL-cholesterol (mmol/l) 1.49±0.41 1.49±0.41 1.49±0.40 1.47±0.39 1.50±0.41 0.44

Triacylglycerol (mmol/l) 1.05 (0.78–1.46) 1.02 (0.76–1.43) 1.04 (0.77–1.45) 1.06 (0.78–1.48) 1.06 (0.80–1.50) 0.13

hs-CRP (mg/l) 1.31 (0.55–3.21) 1.20 (0.50–3.19) 1.26 (0.53–3.01) 1.35 (0.61–3.27) 1.46 (0.58–3.34) 0.03

UAE (mg/24 h) 10.4 (6.8–20.6) 7.3 (5.5–11.7) 8.2 (5.7–13.1) 8.3 (5.8–13.7) 9.8 (6.3–17.7) <0.001

Men

No. of participants 3,909 973 980 978 978 –

Copeptin level (pg/ml) 6.2 (4.0–9.4) 3.5 (3.0–2.3) 4.6 (5.1–5.6) 7.6 (6.9–8.5) 12.5 (10.5–15.5) –

Age (years) 50.2±1.8 49.3±12.6 49.5±12.9 49.9±12.6 52.2±12.8 <0.001

Family history of diabetes (%) 753 (19.3) 187 (19.2) 169 (17.2) 206 (21.1) 191 (19.5) 0.20

Current smoker (%) 1,369 (35.0) 319 (32.8) 347 (35.4) 361 (36.9) 342 (35.0) 0.29

Ever use alcohol (%) 3,210 (82.5) 794 (81.8) 821 (84.3) 798 (81.9) 797 (81.9) 0.40

BMI (kg/m2) 26.2±3.6 25.8±3.4 26.1±3.5 26.4±3.6 26.5±3.8 <0.001

Waist circumference (cm) 93.6±10.9 92.6±10.4 92.7±10.9 94.0±10.8 94.9±11.4 <0.001

Systolic blood pressure (mmHg) 128.7±17.8 126.5±17.3 127.5±17.5 129.9±17.4 131.0±18.8 <0.001

Diastolic blood pressure (mmHg) 74.7±9.5 73.2±9.1 74.2±9.4 75.2±9.3 76.1±10.0 <0.001

Hypertension (%) 1,278 (32.7) 273 (28.1) 317 (32.3) 316 (32.3) 372 (38.0) <0.001

Glucose (mmol/l) 4.86±0.66 4.82±0.66 4.80±0.61 4.86±0.65 4.95±0.70 <0.001

Total cholesterol (mmol/l) 5.68±1.10 5.60±1.04 5.64±1.10 5.66±1.09 5.81±1.17 <0.001

HDL-cholesterol (mmol/l) 1.16±0.31 1.17±0.31 1.16±.30 1.15±0.31 1.17±0.35 0.19

Triacylglycerol (mmol/l) 1.28 (0.91–1.88) 1.24 (0.89–1.75) 1.23 (0.90–1.80) 1.30 (0.93–1.90) 1.35 (0.95–2.00) <0.001

hs-CRP (mg/l) 1.20 (2.64–0.55) 1.03 (0.47–2.28) 1.08 (0.52–2.50) 1.22 (0.58–2.74) 1.45 (0.70–3.11) <0.001

UAE (mg/24 h) 8.3 (5.8–13.9) 9.3 (6.4–17.2) 9.7 (6.6–19.3) 10.7 (7.1–20.0) 11.9 (7.4–27.9) <0.001

Data are given as mean ± SD or median (IQRs) for continuous variables, tested using ANOVA or the Kruskal–Wallis test, and numbers (percentage)
for categorical variables, tested using the χ2 test
a Univariate analyses were for comparison across sex-specific quartiles of plasma copeptin
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multivariable-adjusted models. We also repeated the main
analyses to examine the association between copeptin and the
risk of diabetes in the entire sample. The age- and sex-adjusted
OR (95% CI) for the risk of type 2 diabetes was 1.31 (1.18,
1.46) per doubling of copeptin levels. After multivariable
adjustment, including age, sex and the other variables in model
4, the risk was attenuated to 1.21 (1.07, 1.37).

Prognostic value of plasma copeptin We examined the pre-
dictive value of copeptin for the risk of developing type 2
diabetes when added to the DESIR clinical models (Table 3)
[22]. In women, the DESIR model, including data on family
history of diabetes, waist circumference and hypertension as

predictors, showed a C-statistic of 0.822 (95% CI 0.795,
0.850). Addition of copeptin (log2) significantly improved the
C-statistic (a change of +0.007; p00.02) of the model, and led
to an IDI of 0.004 (p<0.01). Addition of hs-CRP (log2) and
24 h UAE (log2) improved the C-statistic (a change of +0.009;
p00.09) and led to an IDI of 0.007 (p<0.02). After addition of
copeptin along with hs-CRP and 24 h UAE, we observed a
change of +0.013 for the C-statistic and an IDI of 0.010 (p0
0.01). The DESIR model with the addition of glucose showed
a C-statistic of 0.886 (95% CI 0.860, 0.911). Addition of
copeptin significantly improved the C-statistic (a change of
+0.005; p00.01) of the DESIRmodel with glucose. When hs-
CRP and 24 h UAE were included along with the DESIR

Table 2 ORs (95% CI) for incident type 2 diabetes according to quartiles of plasma copeptin

Model Sex-specific quartiles OR (95% CI) per
log2-unit increase

a
p valuea

1 2 3 4

Women (n04,063)

No. of cases (%) 31 (3.1) 42 (4.1) 59 (5.8) 76 (7.5)

Crude analysis (95% CI) 1.00 1.33 (0.79, 2.26) 2.54 (1.58, 4.06) 3.82 (2.42, 6.03) 1.60 (1.37, 1.85) <0.001

Model 1 1.00 1.42 (1.83, 2.41) 2.29 (1.42, 3.69) 3.24 (2.03, 5.16) 1.47 (1.26, 1.71) <0.001

Model 2 1.00 1.47 (0.86, 2.52) 2.33 (1.43, 3.77) 3.22 (2.01, 5.15) 1.45 (1.24, 1.69) <0.001

Model 3 1.00 1.66 (0.89, 3.11) 3.46 (1.95, 6.13) 3.57 (2.03, 6.27) 1.50 (1.25, 1.80) <0.001

Model 4 1.00 1.66 (0.88, 3.10) 3.37 (1.90, 6.00) 3.54 (2.01, 6.24) 1.49 (1.24, 1.79) <0.001

Men (n03,909)

No. of cases (%) 58 (6.0) 62 (6.3) 88 (9.0) 80 (8.2)

Crude analysis (95% CI) 1.00 0.99 (0.65, 1.49) 1.30 (0.88, 1.93) 1.57 (1.07, 2.32) 1.19 (1.03, 1.37) 0.02

Model 1 1.00 1.00 (0.66, 1.52) 1.31 (0.88, 1.95) 1.46 (0.99, 2.16) 1.17 (1.01, 1.35) 0.04

Model 2 1.00 1.02 (0.67, 1.55) 1.28 (0.86, 1.91) 1.48 (0.99, 2.19) 1.18 (1.01, 1.37) 0.03

Model 3 1.00 1.18 (0.76, 1.84) 1.28 (0.83, 1.95) 1.03 (0.66, 1.59) 1.03 (0.87, 1.21) 0.74

Model 4 1.00 1.16 (0.74, 1.80) 1.25 (0.81, 1.91) 1.00 (0.63, 1.52) 1.01 (0.85, 1.19) 0.95

Model 1 is adjusted for age; model 2 is adjusted for age plus alcohol use, smoking status, and family history of diabetes; model 3 is adjusted for
variables in model 3 plus waist circumference, hypertension, fasting glucose, HDL-cholesterol and triacylglycerol; model 4 is adjusted for variables
in model 3 plus high sensitivity C-reactive protein and 24 h urine albumin excretion
a OR (95% CI) and p value expressed per unit increase in log2-transformed levels of plasma copeptin

Table 3 Added value of plasma
copeptin above the DESIR
model for the prediction risk of
developing type 2 diabetesa

aThe DESIR models include data
on family history of diabetes,
waist circumference and hyper-
tension in women, and data
on smoking status, waist cir-
cumference and hypertension in
men. The DESIR model was
considered as reference

Women Men

C-statistic for the DESIR model (95% CI)a 0.822 (0.795, 0.850) 0.716 (0.686, 0.745)

C-statistic for the DESIR model plus copeptin (95% CI) 0.829 (0.803, 0.855) 0.714 (0.685, 0.744)

p value for change in C-statistic 0.02 0.40

IDI (p value) 0.004 (<0.01) 0.0005 (0.15)

C-statistic for the DESIR model plus
hs-CRP and UAE (95% CI)

0.831 (0.805, 0.857) 0.729 (0.700, 0.757)

p value for change in C-statistic 0.09 0.01

IDI (p value) 0.007 (0.01) 0.006 (0.003)

C-statistic for the DESIR model plus copeptin,
hs-CRP and UAE (95% CI)

0.835 (0.810, 0.860) 0.728 (0.700, 0.757)

p value for change in C-statistic 0.02 0.01

IDI (p value) 0.010 (0.01) 0.006 (0.002)
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model and glucose, we observed non-significant improve-
ments (a change of C-statistic: +0.003; p00.11).

In men, the DESIRmodel including data on smoking status,
waist circumference and hypertension as predictors showed a
C-statistic of 0.716 (95% CI 0.681, 0.745), which was consid-
erably lower than in women. The addition of copeptin (log2)
alone did not improve the prediction in terms of discrimination
(p00.40) and reclassification (IDI of 0.0005; p00.15). Addi-
tion of hs-CRP (log2) and 24 h UAE (log2) significantly im-
proved the C-statistic (a change of 0.011; p00.01) and led to an
IDI of 0.006 (p00.003). The DESIR model with glucose
showed a C-statistic of 0.835 (95% CI 0.811, 0.859). When
hs-CRP and 24 h UAE were included along with the DESIR
model with glucose, we observed borderline improvements
(a change of C-statistic: +0.004; p00.07).

Sensitivity analyses First, when we excluded the individuals
with IFG at baseline, the crude OR (95% CI) for the risk of
diabetes was 1.93 (1.58, 2.36) per doubling of copeptin
levels in women. The adjusted OR for model 4 was 1.81
(1.42, 2.30). In men, the crude and adjusted ORs were 1.21
(1.00, 1.47) and 1.03 (0.82, 1.28), respectively (p<0.01 for
interaction by sex in both the crude analyses and in model 4).
The DESIR model combined with glucose showed a C-
statistic of 0.801 (95% CI 0.756, 0.845) in women. Addition
of copeptin significantly improved the C-statistic (a change of
+0.016; p00.05) of the DESIRmodel combined with glucose.
The DESIR model combined with glucose showed a C-
statistic of 0.761 (95% CI 0.721, 0.801) in men. Addition of
copeptin did not improve the C-statistic (p00.63).

Second, we calculated the risk of diabetes per doubling of
copeptin in individuals who did not use antihypertensive
medication. The crude OR and adjusted OR (95% CI) for
model 4 in women were 1.75 (1.43, 2.14) and 1.65 (1.27,
2.13), respectively. The crude and adjusted ORs in men
were 1.24 (1.05, 1.47) and 1.02 (0.84, 1.25), respectively.

Third, we fitted the model for women and calculated the
C-statistic for predicting the risk of diabetes in men. In men,
the model for prediction of diabetes risk in women, based on
family history of diabetes, waist circumference and hyper-
tension as predictors, showed a C-statistic of 0.740 (95% CI
0.711, 0.769). Addition of copeptin did not improve the C-
statistic (p00.94) in men, which was similar to our finding
when applying the DESIR model to men.

Discussion

In this population-based cohort, we demonstrated that plasma
copeptin, as a reliable surrogate marker for AVP, is of additive
value in predicting future type 2 diabetes. Furthermore, we
show that the association between copeptin and the risk of
developing type 2 diabetes is modified by sex.

In women, the addition of copeptin to the DESIR model
significantly improved the risk prediction for diabetes in terms
of discrimination and reclassification. It is true that fasting
glucose is a very good predictor of incident type 2 diabetes,
because it is part of the diagnosis. Despite this, women in the
fourth quartile for copeptin had a 3.5-times higher risk for
developing type 2 diabetes compared with those in the first
quartile for copeptin, when we adjusted for fasting glucose and
other clinical variables. Of note, along with glucose and exist-
ing biomarkers for inflammation (hs-CRP) and renal function
(24 h UAE), the addition of copeptin to the model further
improved the risk prediction for diabetes. In men, we observed
that the addition of copeptin did not improve the risk prediction
for diabetes in terms of discrimination and reclassification. In
addition, the association of copeptin with the risk of diabetes
was strengthened in women when we further excluded the
individuals with IFG at baseline. Thus, it is particularly impor-
tant for the assessment of the value of novel biomarkers to take
into account the possible effect of sex on the risk prediction of
diabetes. There are several prediction models including data on
demographics, anthropometric measures and lifestyle factors
that have been developed to ascertain the risk of diabetes in the
general population [26, 27]. In these models, sex has been
incorporated as one of the most commonly used predictors
for the risk of diabetes [27]. In our study, we used the DESIR
clinical model, because the DESIR models were developed for
men and women separately [22].

Another aspect regarding risk prediction is the clinical
utility of novel biomarkers such as copeptin. A change in C-
statistics is interpreted as showing whether the addition of
biomarkers may improve the ability of the model to assign a
higher probability of risk to cases compared with non-cases
[24]. The C-statistic is considered to be one of the main
commonly reported measures. However, it may be insensi-
tive for small improvements in prediction [24, 28]. Alterna-
tively, the IDI can be calculated as a measure of continuous
reclassification. A significant IDI is interpreted as indicating
that the addition of biomarkers to the model increases the
difference in average predicted risk between cases and non-
cases [23, 24]. It is difficult to judge whether the statistically
significant improvements in the risk prediction of diabetes
may be clinically relevant. In order to address this issue
clinically, relevant definitions of risk strata are required so
that the effect of movement of cases and non-cases between
different risk strata using different predictive models can be
described [24, 28]. However such clinically relevant defini-
tions of risk strata from the DESIR models do not exist at
present. Thus, further studies will need to replicate current
findings in other settings and subsequently assess the clinical
utility of novel biomarkers such as copeptin.

With regard to the differences in copeptin levels in men
and women, the higher plasma copeptin level in men was
consistently observed in our study and in previous studies
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[4, 29–31]. Sex is one of the major determinants of plasma
levels of copeptin. The range in copeptin levels is compa-
rable between men and women, and the difference in abso-
lute copeptin level is not likely to be the explanation for the
difference in predictive ability for men and women. More
generally, it is worth noting that most prediction models
including data on common risk factors have shown a better
performance in women compared with men [26]. Various
known biomarkers, such as hs-CRP, insulin and endogenous
sex hormone, improved the risk prediction for type 2 diabe-
tes differently in women and in men [16, 32, 33].

We and others have shown before that higher plasma
copeptin levels are positively associated with the metabolic
syndrome, insulin resistance, the inflammatory marker hs-
CRP and higher UAE in cross-sectional studies [4, 29, 30].
Likewise, all these conditions are known to be predictors for
the risk of type 2 diabetes [13]. In an extension of these
studies, two previous studies have investigated the associa-
tion of copeptin with the risk of type 2 diabetes [6, 32]. The
Malmö Diet and Cancer (MDC) study showed that copeptin,
independently of a wide range of clinical risk factors, pre-
dicts the risk of type 2 diabetes in the general population [6].
However, the FINRISK97 study could not find an indepen-
dent association [32]. The fact that we found a stronger
association between copeptin and the risk of type 2 diabetes
in women than inmenmight partly be explained by differences
in population characteristics compared with other studies. For
example, the MDC study from a Swedish population-based
cohort included 4,472 participants with 174 incident cases [6]
who were older (mean age of 58 years) and contained around
60% women. In the MDC study, including a higher number of
women who had comparable copeptin levels to those in our
study, a potential sex-related effect on the association of copep-
tin with diabetes risk was not addressed. The FINRISK97
study from a cohort of 7,827 participants with 417 incident
cases included similar numbers of women andmen [32]. In the
FINRISK97 study, a higher but non-significant risk of type 2
diabetes per one SD increase in copeptin was found in the total
and sex-stratified population [32]. In this latter study, the range
of copeptin levels was smaller than in the MDC study and our
study, for both women and men. Theoretically, this smaller
range may also lead to overlap of copeptin levels between
individuals with and without type 2 diabetes in the latter study,
which limits the predictive value of copeptin above clinical risk
factors [34].

The finding that the AVP system may provide promising
biomarkers for the prediction of type 2 diabetes is in line
with experimental data showing that the AVP system has
various actions on underlying pathways involved in the path-
ogenesis of type 2 diabetes. AVP stimulates glycogenolysis
and gluconeogenesis through the arginine vasopressin recep-
tor 1 A (V1a) receptors in the liver [7]. In addition, AVP has
been shown to induce glucagon and insulin release from the

pancreas, mediated by V1b receptors on islet cells [10]. Fur-
thermore, AVP, via the same receptor (V1b), exerts stimulato-
ry effects in maintaining basal secretion of ACTH and
corticosterone, and in modulating hypothalamic–pituitary–ad-
renal axis (HPA) activity under stress conditions [9]. In another
study, insulin sensitivity signalling was oppositely modulated
by AVP effects via both V1a and V1b receptors in adipose
tissue of mice [35].

Previous experimental and clinical data show differences
between men and women in responsiveness to the vasopres-
sin system. Both AVP V1a and V1b receptors have been
shown to be more sensitive to some effects of AVP in
women than in men [11, 36]. In addition, women have
markedly lower AVP expression and lower AVP levels due
to modulatory actions of oestrogen on the nuclear receptors
in cells of the paraventricular nucleus [37]. One may assume
that a lower tolerance to changes in AVP levels leads to a
stronger effect in women than in men.

In conclusion, it is particularly important for the assessment
of the value of novel biomarkers to take into account possible
sex differences [38, 39]. We found a stronger association of
plasma copeptin with the risk of type 2 diabetes in women
than in men. In women, copeptin was an independent predic-
tor for type 2 diabetes with added predictive value on top of
the existing prediction model together with glucose and exist-
ing biomarkers for inflammation (hs-CRP) and renal function
(UAE), whereas in men, copeptin showed no added predictive
value.
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