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Abstract
Aims/hypothesis Endothelium-derived factors are thought to
be physiological modulators of large artery stiffness. The
aim of the study was to investigate whether endothelial
function could be a determinant of arterial stiffness in es-
sential hypertensive patients, in relation with the concomi-
tant presence of type 2 diabetes mellitus.
Methods The study included 341 participants (84 hyperten-
sive patients with and 175 without type 2 diabetes mellitus,
82 matched controls). Brachial artery endothelium-
dependent flow-mediated dilation (FMD) was determined
by high-resolution ultrasound and computerised edge detec-
tion system. Applanation tonometry was used to measure
carotid–femoral pulse wave velocity (PWV).
Results Hypertensive patients with diabetes had higher PWV
(10.1±2.3 m/s vs 8.6±1.4 m/s, p<0.001) and lower FMD
(3.51±2.07 vs 5.16±2.96%, p<0.001) than non-diabetic hy-
pertensive patients, who showed impaired vascular function
when compared with healthy participants (7.9±1.6 m/s and
6.68±3.67%). FMD was significantly and negatively
correlated to PWV only in hypertensive diabetic patients

(r0−0.456, p<0.001), but not in hypertensive normogly-
caemic patients (r0−0.088, p00.248) or in healthy par-
ticipants (r00.008, p00.946). Multivariate analysis
demonstrated that, in the diabetic group, FMD remained
an independent predictor of PWV after adjustment for
confounders (r200.083, p00.003). Subgroup analysis
performed in non-diabetic hypertensive patients revealed
that neither obesity nor the metabolic syndrome affected
the relationship between FMD and PWV.
Conclusions/interpretation Endothelial dysfunction is a
determinant of aortic stiffness in hypertensive diabetic
patients but not in hypertensive patients without diabe-
tes. These results suggest that type 2 diabetes mellitus
on top of hypertension might worsen arterial compliance
by endothelium-related mechanisms.
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Abbreviations
FMD Flow-mediated dilation
GTN Glyceryl trinitrate
hsCRP High-sensitive C-reactive protein
PWV Pulse wave velocity
UACR Urinary albumin/creatinine ratio

Introduction

Arterial stiffness has been commonly considered to be a
consequence of structural alterations of the vessel wall.
However, mechanistic studies have suggested that a ‘func-
tional’ component may contribute to the compliance of large
arteries. In particular, endothelium-derived factors such as

L. Ghiadoni and S. Del Prato contributed equally to this study.

Electronic supplementary material The online version of this article
(doi:10.1007/s00125-012-2517-1) contains peer-reviewed but unedited
supplementary material, which is available to authorised users.

R. M. Bruno : F. Stea : L. Landini :G. Cartoni : S. Taddei :
L. Ghiadoni (*)
Department of Internal Medicine, University of Pisa,
Via Roma 67,
56126 Pisa, Italy
e-mail: l.ghiadoni@med.unipi.it

G. Penno :G. Daniele : L. Pucci :D. Lucchesi : S. Del Prato
Department of Endocrinology and Metabolism, University of Pisa,
Pisa, Italy

Diabetologia (2012) 55:1847–1855
DOI 10.1007/s00125-012-2517-1

http://dx.doi.org/10.1007/s00125-012-2517-1


NO [1] and endothelin-1 [2] have been proposed as physi-
ological modulators of arterial stiffness in healthy individu-
als. An inverse correlation between endothelial dysfunction
and arterial stiffness has been reported in cross-sectional
studies performed in mixed cohorts including healthy par-
ticipants as well as patients with isolated systolic hyperten-
sion [3], type 2 diabetes [4–6] and coronary artery disease
[7–9], although conflicting results were obtained in healthy
participants [10, 11]. Preliminary studies have suggested
that vascular correlates of arterial stiffness measurements
might differ in patients with cardiovascular risk factors in
comparison with healthy individuals [12], also depending
on atherosclerotic burden [9], so that studies mixing
different populations might be misleading.

Arterial hypertension and type 2 diabetes mellitus are
well known cardiovascular risk factors, often associated
[13], and both characterised by increased arterial stiffness
and endothelial dysfunction [5, 14–16]. Indeed, patients
with both hypertension and diabetes mellitus seem to have
a stiffer aorta compared with patients with only one of these
conditions [17]. Several specific pathophysiological mech-
anisms are involved in the development of arterial stiffness
in type 2 diabetes mellitus, with endothelial dysfunction
playing a relevant role [14].

Thus, the aim of the study was to investigate whether
conduit artery endothelial function could be a determinant of
arterial stiffness in patients with arterial hypertension, and
whether the concomitant presence of metabolic alterations
such as type 2 diabetes mellitus might influence this
relationship.

Methods

Study population A total of 341 individuals (259 patients
and 82 age- and sex-matched healthy participants) were
enrolled at the Diabetes Outpatient Clinic of the Department
of Endocrinology and Metabolism and the Hypertension
Outpatient Clinic of the Department of Internal Medicine
of the University Hospital of Pisa, Italy. Group inclusion
criteria were: diagnosis of essential hypertension and/or type
2 diabetes according to current guidelines [18, 19], or cur-
rent treatment with BP-lowering or glucose-lowering drugs.
Exclusion criteria were: chronic kidney disease (National
Kidney Foundation Disease Outcomes Quality Initiative
[KDOQI] stage 4 and 5), current insulin therapy, prior
cardiovascular events, major co-morbidities (malignancies,
chronic and acute inflammatory diseases, chronic heart fail-
ure and liver insufficiency, atrial fibrillation or frequent
ectopic beats), non-cardiovascular medications interfering
with vascular function (i.e. hormonal therapy, steroidal and
non-steroidal anti-inflammatory drugs). Patients were divided
in two groups according to the presence (n084) or absence

(n0175) of type 2 diabetes mellitus. All pharmacologically
treated patients were on a stable therapeutic regimen for at
least 3 months. The study conformed to the Declaration of
Helsinki, was approved by the local Ethics Committee and all
patients provided written informed consent prior to entering
the study.

Experimental protocol Participants were requested to refer
to the local Diabetes Unit after an overnight fasting for
collection of medical history, anthropometric variables
(body weight, height, and waist circumference) as well as
blood and urine samples. On the following day, BP mea-
surement and vascular assessment (endothelial function and
arterial stiffness) were determined at the Hypertension Unit.
All measurements were performed in the morning after an
overnight fast, in a quiet air-conditioned room (22–24°C).
For the duration of the study patients were kept on their
usual pharmacological treatment.

Blood pressure measurement Brachial BP was measured
with the patients resting in a supine position for at least
10 min under quiet environmental conditions. BP measure-
ment was repeated three times at 2 min intervals by a trained
physician by using an automatic oscillometric device
(OMRON-705IT, Omron, Kyoto, Japan). Average BP was
then calculated from the last two measurements.

Arterial stiffness Arterial tonometry was performed accord-
ing to international recommendations [20] using procedures
previously described [21]. Aortic pulse wave velocity
(PWV) was assessed with the same device, sequentially
recording pressure waveforms at the femoral and carotid
site. PWV was calculated as the ratio of the surface distance
between the two recording sites (subtracting the carotid–
sternal notch distance from the femoral–sternal notch dis-
tance) and wave transit time. Central BP values were
obtained from radial pressure waveform analysis based on
a validated transfer function (SphygmoCor, AtCor Medical,
Sydney, NSW, Australia). Two consecutive measurements
were recorded and averaged.

Endothelial function Brachial artery scans were obtained by
high-resolution ultrasound with a 10 MHz linear array trans-
ducer (MyLab25, ESAOTE, Florence, Italy). The
endothelium-dependent response was assessed as the dila-
tion of the brachial artery in response to increased blood
flow (flow-mediated dilation; FMD) [18]. In brief, a
B-mode scan of the right brachial artery was obtained in
the longitudinal section between 5 cm and 10 cm above the
elbow, with the probe held by a stereotactic clamp to ensure
steady image recordings. A paediatric cuff was placed
around the forearm just below the elbow, inflated for
5 min at 300 mmHg, and then deflated to induce reactive
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hyperaemia. Endothelium-independent dilation was
obtained by sublingual administration of 25 μg glyceryl
trinitrate (GTN). Vessel diameter was measured using a
real-time computerised edge detection system. FMD and
response to GTN were calculated as maximal per cent
increase in diameter above baseline. The intra-observer
coefficient of variation for repeated FMD measurements
in the lab was 14% [18]. Arterial blood flow velocity
was determined by pulsed Doppler signal at a 70°
angle, with the range gate in the centre of the artery
and measured at baseline and within 15 s after cuff
release. This insonation angle is able to provide sufficient
validity and precision of blood velocity measurement
[22, 23]. Peak local shear stress was calculated according to
the following equation:

8� blood viscosity�mean flow velocity=brachial artery diameter;

assuming that blood viscosity was 0.0035 Pa × s [24].

Laboratory tests Lipid profile, plasma glucose and HbA1c

were all determined according to standard laboratory proce-
dures. Hypercholesterolaemia and the metabolic syndrome
were defined according to ATP-III criteria. High-sensitive
C-reactive protein (hsCRP) was measured using a high-
sensitive (low detection limit, 0.3 mg/l) immunoassay
(N High Sensitivity CRP, Dade Behring, Marburg,
Germany). Urinary albumin was determined using a Behring
Nephelometer II analyser (Dade Behring, Milton Keynes,
UK) (low detection limit 0.12 mg/dl) together with urine
creatinine taken from a sample of the first urine of the
morning, in order to calculate urinary albumin/creatinine ratio
(UACR).

Statistical analysis All statistical analyses were performed
using NCSS 2004 (NCSS, Kaysville, UT, USA). For nor-
mally distributed data, results are expressed as mean ± SD,
whereas median value and 25–75% interquartile range are
used for non-normally distributed data. Differences in
means among groups were analysed using ANOVA and
Bonferroni post-hoc analysis for normally distributed varia-
bles, or the Kruskal–Wallis z test for non-normally distrib-
uted variables; categorical variables were analysed by χ2

test. Analysis of covariance was used to compare aortic
PWV and FMD in different subgroups, as appropriate.
Spearman’s rank was used to explore correlations among
variables. Multiple linear regression analysis was performed
including variables with significant correlation with the
dependent variable and building different models. The study
was powered (90%) to detect a 1.3% difference in FMD, a
0.8 m/s difference in aortic PWVand a difference of 0.20 in
the slopes of regression lines, with a type I error probability
of 0.05.

Results

Clinical variables Clinical characteristics of the study pop-
ulation are shown in Table 1. Diabetic and non-diabetic
hypertensive patients were comparable for age, sex, duration
of hypertension, percentage of smokers, renal function, and
UACR. Diabetic hypertensive patients showed a higher
prevalence of isolated systolic hypertension (78.8% vs
63.1%, p00.012) in comparison with non-diabetic hyper-
tensive patients, in spite of similar systolic BP and lower
diastolic BP. Diabetic patients also had higher BMI, waist
circumference, blood glucose and HbA1c values. Owing to
the higher use of statins (35% vs 6%, p<0.001), diabetic
hypertensive patients had lower total- and LDL-cholesterol,
and a higher prevalence of hypercholesterolaemia (defined
according to ATP-III criteria or by current lipid-lowering
therapy, 82% vs 63%). HDL-cholesterol was lower and
triacylglycerols higher in diabetic than in non-diabetic hy-
pertensive patients. Diabetic hypertensive patients also
showed higher levels of hsCRP. Obesity (defined as BMI
≥30 kg/m2) and the metabolic syndrome, defined according
to ATP-III criteria [25], were significantly more prevalent
among diabetic hypertensive patients than in normoglycae-
mic hypertensive patients (66% vs 18%; 91% vs 40%,
respectively; p<0.001 for both). The majority of patients in
both groups were on BP-lowering treatment (65% vs 59%,
p0ns). Details of cardiovascular drug therapy are shown in the
electronic supplementary material (ESM Table 1).

Vascular variables Brachial artery diameter and hyperaemic
shear stress did not significantly differ between diabetic and
non-diabetic hypertensive patients, although in both groups
they were significantly higher than in healthy participants
(Table 1). FMD was lower in non-diabetic hypertensive
patients than in healthy participants, and further reduced in
diabetic patients (Fig. 1). When brachial artery diameter and
hyperaemic shear stress were considered as covariates, FMD
was still significantly different among the three groups studied
(p<0.001). On the contrary, GTN response was not different
between diabetic and non-diabetic hypertensive patients, al-
though similarly reduced compared with healthy participants
(Table 1), even after adjustment for brachial artery diameter.

PWV was higher in non-diabetic hypertensive patients
than in healthy participants, and further increased in diabetic
hypertensive patients (Fig. 1). The significance was not
affected after considering mean BP, age and BMI as cova-
riates (p<0.001). Central systolic BP and pulse pressure
were similarly increased in diabetic and non-diabetic hyper-
tensive patients, while mean BP was higher in the latter
group (Table 1).

Relationship between PWV and FMD: role of type 2 diabe-
tes mellitus In the univariate analysis performed on the
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whole study population, aortic PWV was significantly and
negatively correlated with FMD (r0−0.272; p<0.001).
Among the other vascular variables, aortic PWV was also
correlated with hyperaemic shear stress and brachial artery
diameter (Table 2). However, FMD remained a significant
determinant of PWV even after adjustment for these two
confounders, as shown by multiple regression analysis
(Model 1, Table 3). Among clinical features, PWV

significantly correlated in the univariate analysis with age,
brachial and central BP values, heart rate, BMI and waist
circumference, cholesterol levels, triacylglycerols, fasting
blood glucose and HbA1c, and hsCRP. In the multiple re-
gression analysis including variables in Model 1 plus age,
mean BP, heart rate, total and HDL-cholesterol, triacylgly-
cerols and hsCRP, (Model 2, Table 3), FMD remained a
significant predictor of PWV. After adding fasting blood

Table 1 Clinical and vascular variables in hypertensive patients without or with type 2 diabetes mellitus and in healthy participants

Variable Healthy participants
(n=82)

Hypertensive patients without
type 2 diabetes mellitus
(n=175)

Hypertensive patients with
type 2 diabetes mellitus
(n084)

Clinical variables

Age (years) 54.8±6.6 54.4±6.5 56.7±7.6

Male sex n (%) 47 (57) 105 (60) 49 (58)

Smokers n (%) 15 (18) 32 (18) 10 (12)

Duration of hypertension (years) – 9 (6–14) 10 (7–16)

Duration of diabetes (years) – – 8 (5–13)

Brachial systolic BP (mmHg) 128.7±9.6 144.6±13.2† 143.9±14.3†

Brachial diastolic BP (mmHg) 78.9±7.7 85.6±9.3† 81.4±10.1*

Brachial pulse pressure (mmHg) 49.8±6.9 58.0±10.6† 62.5±13.1*†

Heart rate (bpm) 67.5±9.9 66.8±10.9 75.0±12.6*†

BMI (kg/m2) 25.3 (23.2–27.4) 26.9 (24.5–29.3)† 32.8 (28.7–36.0)*†

Waist circumference (cm) 90.5±6.6 98.3±10.1† 112.1±11.6*†

Blood glucose (mmol/l) 5.2 (4.8–5.5) 5.2 (4.8–5.7) 8.9 (7.5–10.9)*

HbA1c

% 5.5±0.6 5.6±0.5 8.0±1.0*

mmol/mol 36.3±5.6 37.4±4.2 64.4±9.3*

Total cholesterol (mmol/l) 5.6±0.9 5.7±0.9 4.9±1.1*

HDL-cholesterol (mmol/l) 1.6±0.5 1.4±0.4† 1.3±0.3*†

LDL-cholesterol (mmol/l) 3.4±0.7 3.5±0.8 2.9±1.0*

Triacylglycerols (mmol/l) 1.0 (0.8-1.4) 1.3 (1.0-2.0)† 1.6 (1.2-2.2)*†

Plasma creatinine (μmol/l) 75 (63–88) 74 (61–94) 73 (63–87)

Estimated GFR (ml/min) 91.7±18.8 89.1±15.1 91.7±18.8

UACR (mg/mmol) 0.02 (0–0.28) 0.03 (0–0.55) 0.07 (0.03-0.27)

hsCRP (mg/l) 0.5 (0.1–1.5) 0.8 (0.3–2.7) 2.3 (1.3–6.0)*†

Vascular variables

Central systolic BP (mmHg) 118.3±23.5 128.4±25.1† 130.5±14.5†

Central pulse pressure (mmHg) 39.6±7.8 49.8±12.8† 49.1±13.1†

Mean BP (mmHg) 101.5±12.4 109.3±18.3† 103.6±10.8*

Aortic PWV (m/s) 7.9±1.6 8.6±1.4† 10.1±2.3*†

Brachial artery diameter (mm)

Baseline 3.77±0.88 4.15±0.96† 4.33±0.77†

Maximum, after reactive hyperaemia 4.01±0.97 4.36±0.87† 4.48±0.78†

Maximum after GTN 4.06±1.01 4.44±0.86† 4.58±0.78

Hyperaemic shear stress (Pa) 0.56±0.28 0.47±0.22† 0.45±0.20†

FMD (%) 6.68±3.97 5.16±2.96† 3.51±2.07*†

Response to GTN (%) 7.93±4.09 6.87±3.78† 6.11±2.92†

Values are mean ± SD or median value (25–75% interquartile range), if not otherwise specified. *p<0.05 vs hypertensive patients without type 2
diabetes mellitus; †p<0.05 vs healthy participants
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glucose to the model, the relationship between PWV and
FMD was no longer significant (Model 3, Table 3). In
Model 3, independent predictors of PWV were: age, sex,
BMI, heart rate, mean BP and fasting blood glucose (see
ESM Table 2).

Univariate correlation analysis performed separately in
the three groups showed that FMD was significantly corre-
lated to PWV only in diabetic hypertensive patients, while
the relationship was not significant either in healthy indi-
viduals or in normoglycaemic hypertensive patients (Table 2,
Fig. 2). The slope of the relationship between FMD and
PWV in diabetic hypertensive patients was steeper than in
the other two groups (p<0.05). Multivariate regression anal-
ysis performed in the diabetic group showed that FMD was
an independent predictor of aortic PWV in a model adjusted
for age, sex, mean BP, BMI and fasting blood glucose,
(β0−0.348 [95%CI −0.577,−0.120], p00.003), explaining
8.3% of the variance of PWV.

Subgroup analysis in non-diabetic hypertensive patients
Among non-diabetic hypertensive patients, the relationship
between FMD and PWV was investigated comparing
patients with obesity (n033) or the metabolic syndrome
(n069) with those without obesity and the metabolic syn-
drome, respectively. PWV was higher in obese hypertensive
patients but not in those with the metabolic syndrome,
whereas FMD was not affected by the two conditions (see
ESM Table 3). FMD and PWV were not correlated in either
obese or in lean hypertensive patients (r00.167, p00.360
and r0−0.118, p00.167). Results were also non-significant
in hypertensive patients with (r0−0.006, p00.961) or
without the metabolic syndrome (r0−0.106, p00.305).

The role of medications known to influence vascular
function was also investigated. PWV was lower in patients
on antihypertensive treatment, but was not affected by use
of statins. Among BP-lowering-drug-treated patients, PWV
was lower, but not significantly, in patients on renin–angio-
tensin system blockers. FMD was not significantly affected
by any of the above-mentioned treatments (see ESM Ta-
ble 3). The relationship between FMD and PWV was not
influenced by the presence or absence of antihypertensive
treatment (r00.027, p00.800 vs r0−0.130, p00.232) and
by current therapy with renin–angiotensin system blockers
(r0−0.029, p00.821 vs r0−0.110, p00.249) or statins
(r0−0.021, p00.950 vs r0−0.069, p00.384).

Discussion

The present study explored the role of endothelial function in
the peripheral conduit arteries, measured as FMD, as a pre-
dictor of arterial stiffness in hypertensive patients with and
without type 2 diabetes mellitus, in the attempt to establish the
role of endothelial dysfunction in the pathophysiology of
arterial stiffening. The main finding of this study is that
FMD is related to aortic stiffness in hypertensive patients with,
but not in those without, type 2 diabetesmellitus. These results
suggest that diabetes-related metabolic alterations on top of
hypertension might contribute, through reduced endothelial
function, to increase the wall stiffness of large arteries inde-
pendently of other confounders.

An element of novelty of the present paper is the dem-
onstration of an additive effect of hypertension and type 2
diabetes in causing an impairment of conduit artery
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endothelial function. Hypertensive diabetic patients had
lower FMD compared with non-diabetic hypertensive
patients, in the presence of similar baseline brachial artery
diameter, peak shear stress and endothelium-independent
dilation, highlighting a specific deleterious effect of diabetes
on nitric oxide-dependent vasodilatation of conduit arteries.
These results are in contrast with those obtained in small
resistance arteries, showing that the concomitance of the
two risk factors did not cause a further impairment of
endothelial function [26, 27]. However this discrepancy
should not be surprising, given the different district studied
and the known heterogeneity of the vascular properties in
different vascular beds [28]. On the other hand, our results
confirm the presence of endothelial dysfunction and in-
creased arterial stiffness in hypertensive patients compared
with healthy participants [29, 30], as well as the further

Table 2 Univariate correlations between PWV and clinical and vascular variables in the overall population and in different subgroups

Variable Overall population
(n=341)

Hypertensive patients without
type 2 diabetes mellitus
(n=175)

Hypertensive patients with
type 2 diabetes mellitus
(n=84)

Healthy participants
(n=82)

r p value r p value r p value r p value

Clinical variables

Age 0.217 <0.001 0.108 0.157 0.249 0.028 0.195 0.092

Duration of hypertension – – 0.057 0.864 0.197 0.175 – –

Duration of diabetes – – – – −0.056 0.676 – –

Brachial systolic BP 0.405 <0.001 0.238 0.002 0.454 <0.001 0.513 <0.001

Brachial diastolic BP 0.196 <0.001 0.140 0.067 0.187 0.103 0.476 <0.001

Pulse pressure 0.352 <0.001 0.198 0.009 0.326 0.004 0.231 0.038

Heart rate 0.261 <0.001 0.153 0.047 0.134 0.246 0.307 0.006

BMI 0.286 <0.001 0.057 0.459 0.299 0.008 0.061 0.592

Waist circumference 0.242 <0.001 –0.058 0.566 0.186 0.145 −0.031 0.862

Blood glucose 0.426 <0.001 0.065 0.401 0.267 0.020 0.131 0.282

HbA1c 0.310 <0.001 0.240 0.268 –0.068 0.590 –0.282 0.373

Total cholesterol −0.156 0.006 0.057 0.465 −0.116 0.319 −0.102 0.409

HDL-cholesterol −0.115 0.041 −0.020 0.793 −0.017 0.885 −0.112 0.379

LDL-cholesterol −0.135 0.021 0.081 0.308 −0.128 0.291 0.005 0.965

Triacylglycerols 0.224 <0.001 0.144 0.062 0.183 0.113 0.072 0.560

Serum creatinine 0.013 0.818 0.018 0.815 0.015 0.897 0.184 0.155

Creatinine clearance 0.077 0.183 0.042 0.589 −0.037 0.750 0.110 0.396

UACR 0.103 0.180 0.061 0.570 0.274 0.026 −0.077 0.776

hsCRP 0.297 0.006 −0.132 0.651 0.023 0.863 −0.260 0.439

Vascular variables

Central systolic BP 0.355 <0.001 0.255 <0.001 0.433 <0.001 0.453 <0.001

Central diastolic BP 0.132 0.016 0.028 0.712 0.247 0.030 0.399 <0.001

Central pulse pressure 0.263 <0.001 0.119 0.242 0.230 0.049 0.033 0.817

Mean BP 0.171 0.002 0.057 0.453 0.375 <0.001 0.359 0.001

Brachial artery diameter 0.198 <0.001 0.091 0.236 0.071 0.540 0.189 0.100

Hyperaemic shear stress −0.267 <0.001 −0.206 0.016 −0.037 0.761 −0.432 <0.001

FMD −0.272 <0.001 −0.088 0.248 −0.456 <0.001 0.008 0.946

Response to GTN −0.041 0.466 0.028 0.716 −0.093 0.427 0.197 0.089

Table 3 Multiple regression analysis in the whole study population,
considering PWV as dependent variable and FMD as independent
variable

Model r2 p value β 95% CI

Unadjusted 0.061 <0.001 −0.135 −0.193, −0.078

Model 1a 0.047 <0.001 −0.132 −0.197, −0.066

Model 2b 0.019 0.010 −0.092 −0.161, −0.022

Model 3c 0.006 0.121 −0.049 −0.111, 0.013

aAdjusted for brachial artery diameter and hyperaemic shear stress
bAs Model 1, plus age, sex, mean BP, heart rate, total- and HDL-
cholesterol, triacylglycerols, hsCRP and BMI
cAs Model 2 plus fasting blood glucose
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increased PWV in diabetic hypertensive patients compared
with normoglycaemic hypertensive patients [17].

Brachial artery FMD and aortic PWV were negatively
correlated in the whole population. This finding is in agree-
ment with previous studies performed in mixed populations
comprising healthy individuals and patients with different
cardiovascular risk factors or established coronary artery
disease [3, 7, 8], also including diabetic patients [4–6].
Multiple regression analysis, including vascular determi-
nants of FMD such as baseline brachial artery diameter
and hyperaemic shear stress, showed that endothelium-
dependent vasodilation remained per se an independent
predictor of aortic PWV. Furthermore, FMD has been
shown to be a predictor of arterial stiffening independently
of age and BP, which are known to be the main determinants
of arterial stiffness [31], and other classical cardiovascular
risk factors. Only the inclusion of fasting blood glucose
caused loss of significance of the relationship between
FMD and PWV in the whole population. This result sug-
gests a specific role of glucose abnormalities in determining
the association between endothelial dysfunction and in-
creased arterial stiffness.

This hypothesis is further supported by subgroup analy-
sis. Interestingly, FMD was a predictor of aortic PWV only
among diabetic hypertensive patients. In this subgroup the
relationship remained significant after taking into account
age, BP values, BMI and fasting blood glucose. Thus the
greater aortic stiffening found in diabetic hypertensive
patients compared with patients with hypertension alone is
determined, at least in part, by an independent, detrimental
effect of type 2 diabetes mellitus on endothelial function.
Despite the fact that the present study was not designed to
investigate the pathophysiological mechanisms underlying

the development of arterial damage, several factors related
to type 2 diabetes mellitus may be involved, including
obesity, insulin resistance and hyperinsulinaemia, low-
grade inflammation, increased oxidative stress and deposi-
tion of advanced glycation end-products [14]. All these
factors may concur in accelerating and worsening endothe-
lial dysfunction, favouring arterial stiffness, although the
present study suggests that neither obesity nor low-grade
inflammation seem to play a major role. Moreover, we
cannot rule out the possibility that, rather than a single
mechanism, it is the complexity of the diabetic condition
that sustains a greater and more prolonged alteration of
endothelial function, leading to an increased PWV.

Because of the cross-sectional design of the study, it is
not possible to establish whether the association between
endothelial function and arterial stiffness in diabetes
depends on common causative factors or on a cause–effect
relationship. Nonetheless, growing evidence suggests that
endothelial dysfunction can lead to arterial stiffness. In
keeping with this hypothesis is the notion that NO, whose
reduced bioavailability is the molecular basis of endothelial
dysfunction, is involved in the regulation of arterial disten-
sibility [1]. Diseases characterised by endothelial dysfunc-
tion, such as diabetes [5] and arterial hypertension [32], also
show increased arterial stiffness [14, 16]. Moreover, thera-
peutic approaches, such as blockade of the renin–angioten-
sin system, improve both vascular alterations [30, 33, 34].
Conversely, the hypothesis that structural alterations associ-
ated with arterial stiffness could impair vasodilation is un-
likely, since the response to GTN was not different between
hypertensive patients with and without type 2 diabetes
mellitus, although it was impaired compared with healthy
controls. However, we cannot completely exclude the pos-
sibility that increased arterial stiffness, altering pulsatile
haemodynamics, blood flow pattern and shear stress, could
lead to decreased NO bioavailability [35].

In the present study, endothelial dysfunction was not a
determinant of aortic stiffness either in healthy participants
or in non-diabetic hypertensive patients. As far as healthy
participants are concerned, our results are in agreement with
a recent study carried out in a cohort of 1,754 adults, aged
30–45 years, with a very low prevalence of cardiovascular
risk factors, suggesting that in young individuals PWV and
FMD might reflect different aspects of cardiovascular dam-
age [11]. In contrast McEniery et al. [10] found a significant
correlation between endothelial function and PWV. This
conflicting result might be attributable to biological differ-
ence of participants enrolled (wider age range and younger
population compared with that in our study), as well as
different methodology for the assessment of endothelial
function (pulse wave analysis after albuterol inhalation, with
FMD performed only in a subgroup). On the other hand, to
our knowledge, this is the first study aimed, and adequately
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Fig. 2 Scatterplot and regression lines of the correlation between
aortic PWV and brachial artery FMD in hypertensive patients with
(black circles, black line) and without (grey circles, grey line) type 2
diabetes mellitus, and in healthy participants (white circles, dotted line)
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powered, to directly address the role of endothelial function
in the determination of arterial stiffening in essential hyper-
tension, since previous studies included, in pooled analysis,
healthy people and did not exclude diabetic individuals
[3–8]. Our results suggest that in essential hypertension
the ‘functional’ component of PWV is negligible in com-
parison with haemodynamic load and structural wall alter-
ations associated to BP increase, while only the presence of
type 2 diabetes mellitus is able to cause endothelium-
dependent stiffening of large arteries.

We also investigated the possible role of metabolic fac-
tors on top of high BP in hypertensive, normoglycaemic
patients. Obesity was demonstrated to further worsen PWV
but not FMD, and the relationship between the two variables
was not significant either in the presence or in the absence of
obesity. This observation suggests that the deleterious
effects on arterial stiffness of obesity on top of hypertension
are unlikely to be mediated by endothelium-related mecha-
nisms. Furthermore, it indirectly confirms that differences
found between hypertensive patients with or without type 2
diabetes mellitus were not secondary to the greater preva-
lence of obesity in the former group. On the other hand, our
results support the hypothesis, not universally accepted in
the literature, of blood pressure dependence of vascular
alterations in the metabolic syndrome [36–38].

Finally, it is well known that BP-lowering and lipid-
lowering treatments can affect vascular function [30, 39].
Therefore a further analysis was performed, in order to
exclude the possibility that the lack of relationship between
FMD and PWV in hypertensive patients could be due to the
confounding effect of chronic therapies. Although chronic
antihypertensive treatment was associated with a lower
PWV, it did not affect the relationship between FMD and
PWV.

Limitations The cross-sectional design of the study did not
allow us to determine whether the association between
endothelial function and arterial stiffness that we found in
diabetic patients was due to common causative factors or
really reflected a cause–effect relationship. In addition, our
data do not allow us to investigate the pathophysiological
mechanisms underlying the development of arterial damage.
Further prospective and mechanistic studies are required to
confirm the present findings and to answer these crucial
questions.

Some methodological limitations of our study are worth
commenting on. Stimulus for FMD was evaluated as peak
hyperaemic shear stress. Although this variable was chosen
because a correlation with clinical risk factors was demon-
strated in large cohort studies [24], emerging evidence sug-
gests that shear rate area under the curve could be a more
accurate estimation of the hyperaemic stimulus [23]. More-
over, estimation of central BP was derived by radial artery

waveform through a transfer function, upon calibration with
brachial BP. Although validity of transfer function in resting
conditions was demonstrated in comparison with invasive
central BP recordings [40], pulse pressure amplification
over the brachial-to-radial arterial path can be a critical
source of error [41]. Nonetheless, the method is widely
accepted because it is a simple, non-invasive way to obtain
a highly predictive variable in cardiovascular disease [30].

Conclusions Our results suggest that endothelial dysfunc-
tion can contribute to arterial stiffness in diabetic hyperten-
sive individuals independently of common confounders.
Conversely, this mechanism does not seem to play a major
role in patients with essential hypertension in the absence of
type 2 diabetes mellitus. The greater impairment in nitric
oxide availability brought about by type 2 diabetes may
accelerate and worsen vessel wall distensibility, critically
worsening cardiovascular prognosis inherent to this
condition.
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