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Is FTO a type 2 diabetes susceptibility gene?
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Abbreviations
DXA Dual-emission X-ray absorptiometry
FTO Fat mass and obesity-associated

Obesity is a major predictor of future risk of type 2 diabetes [1]
and the escalating prevalence of type 2 diabetes worldwide is
mainly attributable to the continued rise in obesity observed
over the last decades [2]. Identification of the complex inter-
actions and shared molecular pathways linking obesity and
type 2 diabetes is an area of intense research [3]. Human
molecular genetics in particular has led to the identification of
numerous molecular determinants of obesity and type 2
diabetes and to the global conclusion that the genes
involved in genetic predisposition towards type 2 diabetes
influence pancreatic beta cell function/mass and, to a lesser
extent, insulin action, whereas obesity predisposing genes
modulate hypothalamic sensing and control of energy balance
[4, 5]. To date, few loci have been convincingly associated
with both obesity- and type 2 diabetes-related traits, and FTO,
in addition to IRS1 [6, 7], ENPP1 [8–10] or GIPR [11, 12],
may be one of the molecular determinants linking obesity and
type 2 diabetes.

In 2007, four independent teams found that variation in
intron 1 of FTO (which encodes fat mass and obesity-
associated protein) is the major contributor to polygenic
obesity in European populations [13–16]. Three of these
studies investigated obesity phenotypes [14–16], whereas
the other one initially identified FTO through a genome-
wide association study for type 2 diabetes [13]. As the
strong association between the intronic variant rs9939609
and type 2 diabetes (OR 1.09–1.23, p09×10−6) observed in
3,757 type 2 diabetes cases and 5,346 controls from the UK
was abolished after the adjustment for BMI (OR 0.96–1.10,
p00.44), the authors concluded that the association of FTO
rs9939609 with type 2 diabetes was mediated through BMI
and that FTO may be primarily considered as an obesity
susceptibility locus [13]. However, in contrast with the UK
data, Hertel et al recently reported that the association of
FTO rs9939609 with type 2 diabetes was partly independent
of its effect on BMI [17]. They prospectively followed
20,686 non-diabetic Scandinavian individuals at baseline
and followed them up for over 10 years. Overall, 3,153
individuals developed type 2 diabetes and the FTO
rs9939609 polymorphism was strongly associated with the
incident risk of type 2 diabetes after adjustment for age and
sex (OR 1.10–1.22, p03.2×10−8). Further adjustment for
BMI or change in BMI during the follow-up attenuated, but
did not remove, the association of rs9939609 with incident
type 2 diabetes (OR 1.05–1.18, p01.1×10−4; OR 1.05–1.18,
p01.5×10−4, respectively).

In this issue of Diabetologia, Li and colleagues provide
convincing evidence that FTO variation is associated with
type 2 diabetes, and that this association is partly independent
of BMI in East and South Asian populations [18]. In a meta-
analysis of 22 studies, including 33,744 type 2 diabetes cases
and 43,549 controls, they found that the FTO rs9939609
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variant was associated with type 2 diabetes under an allelic
model and after adjusting the OR for sex and age (OR 1.09–
1.21, p05.5×10−8). Interestingly, further adjustment for BMI
attenuated, but did not abolish, the association of FTO
rs9939609 with type 2 diabetes (OR 1.05–1.16, p06.5×
10−5). The authors also confirmed that FTO rs9939609 was
associated with risk for obesity and for overweight, variation
for BMI, waist-to-hip ratio and percentage body fat in Asians.
The frequency of the obesity/type 2 diabetes risk allele (the
minor allele) was lower in East Asians (12–20%) than in
South Asians (30–33%), but the effects of the variant on
obesity-related traits and type 2 diabetes were similar in both
subgroups. The study by Li and colleagues is subject to
several limitations. First, the authors adjusted the OR for type
2 diabetes with BMI, but the ability of this adjustment to
account for the degree of adiposity has been questioned.
BMI is significantly correlated with fat mass in obese individ-
uals, but there is little or no correlation between BMI and fat
mass in normal weight and underweight individuals. BMI
does not distinguish between lean and fat body mass and,
for a given BMI, fat mass may vary by more than 100%
[19]. Adjustment for body fat content estimated by dual-
energy X-ray absorptiometry (DEXA) or for the recently
proposed body adiposity index [20] may better account for
the degree of adiposity of the participants.

Another limitation of this study is the cross-sectional
nature of the meta-analysis (data have been collected at
one time point). There is indeed an important source of bias
in cross-sectional studies of FTO and type 2 diabetes, as
BMI measured after the diagnosis of type 2 diabetes is
unlikely to be identical to BMI prior to the onset of the
disease. Some patients tend to lose weight prior to being
diagnosed with type 2 diabetes because of the presence of
glycosuria [21], a phenomenon amplified if health systems
are less efficient at identifying type 2 diabetes at an early
stage (as is the case in some parts of Asia). Insulin therapy
[22] or rosiglitazone treatment [23] promote weight gain,
whereas lifestyle intervention [24], glucagon-like peptide 1
agonists or amylin analogues [25] promote weight loss. The
major impact of type 2 diabetes and its treatments on body
corpulence may introduce some noise into the analysis
and tend to result in an overestimation of genetic effects.
Longitudinal studies that compare newly diagnosed type 2
diabetes cases to matched controls are undoubtedly more
suited to exploration of the complex and dynamic nature of
the FTO genetic association on adiposity and glucose homeo-
stasis evolution across the lifespan [17, 26].

This study adds to the growing body of evidence that FTO
may be a type 2 diabetes susceptibility locus independently of
BMI. Beyond genetic association studies for type 2 diabetes
status, additional reports provide strong arguments in favour of
this hypothesis. The FTO intronic variant has been associated
both with cerebrocortical [27] and peripheral [28–31] insulin

resistance, the association being abolished after BMI
adjustment in some [28–30], but not all [27, 31], studies.
FTO mRNA levels in several key tissues involved in the
pathogenesis of type 2 diabetes (pancreatic beta and alpha
cells, liver, skeletal muscle, adipose tissue) are modulated by
type 2 diabetes status [32, 33], glucose levels [34, 35], glucose
oxidation rate [36] or treatment by the hypoglycaemic drug
rosiglitazone [33]. The FTO mRNA level is related to the
expression of genes involved in gluconeogenesis in the liver
[35], with TNF and NFKB1 (also known as NF-ĸB) mRNA
levels in subcutaneous adipose tissue [34] and with insulin
and KCNJ11 mRNA levels in beta cells [32]; all these genes/
pathways are involved in the regulation of glucose homeosta-
sis. Adenoviral overexpression of FTO in myotubes increases
basal protein kinase B phosphorylation, enhances lipogenesis
and oxidative stress and reduces mitochondrial oxidative
function—a cluster of metabolic defects associated with
type 2 diabetes [33]. Conditional overexpression of FTO in
INS-1 pancreatic beta cells enhances first-phase insulin secre-
tion in response to glucose [37], and transcription factor 7-like
2 (TCF7L2), a major determinant of type 2 diabetes risk [38],
binds to the FTO promoter in this cell line [39]. FTO function
may relate to the demethylation of single-stranded DNA and
nucleic acid repair or modification processes [40, 41]. FTO
has been proposed to be a transcriptional coactivator that
enhances the transactivation potential of the CCAAT/enhan-
cer binding proteins from unmethylated as well as methylation-
inhibited promoters, suggesting a role in epigenetic regulatory
processes [42]. In addition, the FTO intronic gene variant is
associated with a distinct methylation pattern over a 7.7 kb
region at the FTO locus that includes a highly conserved
non-coding element validated as a long-range enhancer
[43, 44]. The role of FTO in general mechanisms of nucleic
acid repair and epigenetic regulation is consistent with the
notion that FTO may be a pleiotropic factor involved in
various diseases such as obesity or type 2 diabetes [45].

Although the findings listed above are encouraging, there
are several lines of evidence that are less supportive of a role
of FTO in susceptibility to type 2 diabetes. Complete or
partial inactivation of the Fto gene in mice protects them
from obesity [46, 47], whereas overexpression of Fto in
mice increases food intake and results in obesity [48].
However, despite a careful phenotypic examination, no
striking type 2 diabetes phenotype has been observed in
these genetic mouse models [46–48]. A mild improvement in
the insulin sensitivity of Fto-deficient mice has been observed
and a reduction in the glucose tolerance ofmice with increased
Fto expression in response to a high-fat diet has been reported,
likely as a result of the body weight differences of these
animals compared with wild-type controls [46, 48]. Li et al
recently constructed an obesity genetic predisposition score
using information on 12 validated obesity predisposing gene
variants, and tested whether this score was associated with the
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incident risk of type 2 diabetes in 20,428 individuals from the
European Prospective Investigation of Cancer (EPIC)-
Norfolk cohort with an average follow-up of 12.9 years,
during which 729 individuals developed type 2 diabetes
[49]. The score was modestly associated with the inci-
dent risk of type 2 diabetes (OR 1.005–1.078 by addi-
tional obesity risk allele, p00.02), but adjustment for
BMI completely abolished the association (OR 0.967–
1.039, p00.89). These data suggest that, when analysed
together, obesity predisposing gene variants lead to an
increased risk of developing type 2 diabetes, almost
completely through their effect on BMI [49]. Obesity-
susceptibility genes predisposing to type 2 diabetes partly by
mechanisms independent of adiposity may therefore represent
an exception.

Is FTO a type 2 diabetes susceptibility gene? Even if a
growing body of evidence supports this hypothesis, including
the study by Li et al in this issue of Diabetologia, further data
are needed at this stage and I propose few directions to feed
the debate in the future. Large-scale type 2 diabetes case–
control studies in which cases and controls are matched at the
individual level, not only for sex and age, but also for BMI or
ideally for body fat content or body adiposity index, may help
to investigate whether the FTO rs9939609 polymorphism is
associated with type 2 diabetes when there is a similar degree
of adiposity among cases and controls. Genetic association
studies performed in large-sized longitudinal cohorts with
careful collection of obesity and type 2 diabetes-related deep
phenotypes (e.g. body fat content evaluated by DEXA,
OGTT-derived variables) and the comparison of newly
diagnosed type 2 diabetes cases to nested controls may
give a more complete picture of the effect of FTO gene
variation on adiposity and glucose homeostasis. As the
relationships between adiposity and risk of type 2 diabetes
vary with ethnicity [50], it would be important to perform
these studies in individuals with different ethnic backgrounds.
The involvement of genes adjacent to FTO (such as RBL2,
AKTIP, RPGRIP1L or IRX3) in the pathogenesis of type 2
diabetes should also be further investigated. The first intron of
FTO has been involved in long-range gene regulation of IRX3,
a gene potentially involved in pancreatic alpha and beta cell
function [51]. One cannot exclude the possibility that gene
variation in intron 1 of FTOmay predispose to type 2 diabetes
independently of FTO itself but through the regulation of
adjacent genes. This may explain the lack of type 2 diabetes-
related phenotypes observed in Fto-deficient mice and Fto-
overexpressing mice.
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