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Abstract
Aims/hypothesis We aimed to generate human embryonic
stem cell (hESC) reporter lines that would facilitate the
characterisation of insulin-producing (INS+) cells derived
in vitro.
Methods Homologous recombination was used to insert
sequences encoding green fluorescent protein (GFP) into
the INS locus, to create reporter cell lines enabling the
prospective isolation of viable INS+ cells.
Results Differentiation of INSGFP/w hESCs using published
protocols demonstrated that all GFP+ cells co-produced
insulin, confirming the fidelity of the reporter gene. INS-
GFP+ cells often co-produced glucagon and somatostatin,
confirming conclusions from previous studies that early
hESC-derived insulin-producing cells were polyhormonal.
INSGFP/w hESCs were used to develop a 96-well format

spin embryoid body (EB) differentiation protocol that used
the recombinant protein-based, fully defined medium,
APEL. Like INS-GFP+ cells generated with other methods,
those derived using the spin EB protocol expressed a suite
of pancreatic-related transcription factor genes including
ISL1, PAX6 and NKX2.2. However, in contrast with
previous methods, the spin EB protocol yielded INS-GFP+

cells that also co-expressed the beta cell transcription factor
gene, NKX6.1, and comprised a substantial proportion of
monohormonal INS+ cells.
Conclusions/interpretation INSGFP/w hESCs are a valuable
tool for investigating the nature of early INS+ progenitors in
beta cell ontogeny and will facilitate the development of
novel protocols for generating INS+ cells from differentiat-
ing hESCs.
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Abbreviations
BMP4 Bone morphogenetic protein 4
BrdU Bromodeoxyuridine
EB Embryoid body
GFP Green fluorescent protein
FGF2 Fibroblast growth factor 2
hESC Human embryonic stem cell
HGF Hepatocyte growth factor
INS Insulin
IPA Insulin-positive aggregates
ISL ISL LIM homeobox
KGF Fibroblast growth factor 7
NKX2-2 NK2 homeobox 2
NKX6.1 NK6 homeobox 1
PAX6 Paired box 6
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PDX1 Pancreatic and duodenal homeobox 1
RA Retinoic acid
ROCK Rho associated kinase

Introduction

Type 1 diabetes is an autoimmune disease characterised by
destruction of beta cells in the pancreas, deficient insulin
production, and persistent high levels of blood glucose.
Treatment with exogenous insulin, although life-saving,
does not restore physiological control of blood glucose,
leaving people with type 1 diabetes at risk of long-term
complications. Control can be improved by islet transplan-
tation (reviewed by Speight et al. [1]), but this treatment
option will always be limited by the scarcity of cadaveric
donor tissue.

Beta cells derived from the differentiation of human
embryonic stem cells (hESCs) in vitro potentially represent
an inexhaustible source of insulin-producing cells for the
treatment of type 1 diabetes. Several laboratories have
demonstrated that hESC-derived endocrine cells can regu-
late blood glucose in a diabetic mouse model, providing
proof of principle for future clinical application (for
example, see studies by Kroon et al. [2] and Jiang et al.
[3] and a review by van Hoof et al. [4]). However, while
attempts to generate INS+ cells from pluripotent stem
cells have been encouraging, the biology of this process
remains poorly understood. In this light, better tools and
reagents to facilitate the understanding of beta cell
development are required.

We describe the generation and characterisation of two
independently derived hESC lines in which sequences
encoding green fluorescent protein (GFP) have been
targeted to the insulin locus (INSGFP/w hESCs). We
demonstrate the utility of these lines by characterising the
transcriptional signature of hESC-derived insulin-producing
(INS+) cells generated using established differentiation
protocols. Analysis of these data in conjunction with
immunofluorescence studies confirms that such cells
display an immature phenotype, with the majority of INS+

cells also producing glucagon. We used INSGFP/w hESCs to
develop a novel 96-well format spin embryoid body (EB)
differentiation protocol for the differentiation of hESCs to
INS+ pancreatic endoderm. This method is based on a
protocol originally developed for the differentiation of
hESCs to mesodermal populations [5] and uses a defined
wholly recombinant protein-based medium (APEL) [6].
Characterisation of INS+ cells generated with this platform
reveals that, unlike INS+ cells derived with previous
methods, a substantial proportion also produce the beta
cell-associated marker, NK6 homeobox 1 (NKX6.1),
suggesting that the EB environment is conducive to

ongoing differentiation. INSGFP/w hESCs are therefore a
valuable tool for investigating and refining the generation
of INS+ cells from pluripotent stem cells in vitro.

Methods

Generation and identification of targeted INSGFP/W

hESCs The INS-targeting vector comprised a 10.7 kb 5′
homology arm, GFP coding sequences, a loxP flanked
phosphoglycerol kinase (PGK)-promoter-neomycin resis-
tance cassette and 2.9 kb 3′ homology arm. The 5′
homology arm was derived from a bacterial artificial
chromosome (RP11 889I17) encompassing the human
insulin locus using ET cloning as described previously
[7]. The 3′ homology arm was derived by PCR using the
same bacterial artificial chromosome clone as a template.
The vector was digested with the restriction enzyme
PacI before electroporation into the hESC lines HES3
(http://www.escellinternational.co/) and MEL1 (Millipore,
Billerica, MA, USA) as described previously [8]. Targeted
hESC clones were identified by a PCR-based screening
strategy using primer P1, a forward primer in the neomycin
resistance gene, in conjunction with P2, a reverse primer
located immediately 3′ of genomic sequences encompassed
by the targeting vector. The fidelity of homologous
recombination within the 5′ arm was confirmed by PCR
using P3, a forward primer located immediately 5′ of
genomic sequences included in the targeting vector, in
conjunction with P4, a reverse primer in the GFP gene. By
these criteria, a number of clones were identified in which
the vector was correctly integrated into the INS locus in
both HES3 and MEL1 lines. One HES3-derived and one
MEL1-derived INSGFPNeo/w clone was expanded, and the
neomycin resistance cassette removed as described previ-
ously [9]. Single-cell cloning was performed by single-cell
deposition using a FACSaria FACS station as described
previously [9]. Several colonies representing each primary
clone were picked and screened for the loss of the
neomycin resistance cassette by PCR. Southern blot
analysis using a probe encompassing the coding sequences
of enhanced green fluorescent protein (EGFP) (Invitrogen,
Carlsbad, CA, USA) was performed on EcoRV-digested
genomic DNA from each cell line (Fig. 1b). As this enzyme
cuts only once within the vector, the presence of a single
band indicated that each cell line contained a single
integration of the targeting vector. The DNA fragments
generated by PCR using the primers P1 and P2, P3 and P4
were cloned and sequenced to establish that the targeting
vector had been correctly integrated into the INS locus.

hESC culture and differentiation hESCs were cultured and
passaged as reported elsewhere [10]. The differentiation of
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hESCs into INS+ cells was performed using several
different protocols. Adherent, flat culture differentiations
based on the work of D’Amour et al. [11] and Kroon et al.
[2] (referred to as ‘flat cultures’). Spin EB differentiations
(referred to as ‘spin EBs’) [5], were set up in APEL
medium [6]. Differentiation of spin EBs under pancreatic-

specific conditions was as follows. EBs were formed by the
forced aggregation of 2,000 (HES3) or 3,500 (MEL1)
hESCs in APEL (the protein-free hybridoma medium
component was omitted from this formulation) containing
10 ng/ml bone morphogenetic protein 4 (BMP4) and 150–
200 ng/ml activin A (batch dependent) in low-attachment
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Fig. 1 Generation and characterisation of INSGFP/w hESCs. a Vector
used to target the INS locus in hESCs. The G418 antibiotic resistance
(NeoR) cassette, flanked by loxP sites (black triangles), was removed
with Cre recombinase. PCR primers (P1, P2) and (P3, P4) were used
to identify targeted clones. The sequences of PCR fragments shown
below represent the junctions between the extremities of the targeting
vector (red text) and the INS locus (black text). b Southern blot
analysis of SphI-digested genomic DNA isolated from single-cell
cloned MEL1 and HES3 INSGFP/w hESCs showed a single GFP insert
present in both lines. c PCR analysis with primer pairs (P3, P4) and
(P5, P2) generated DNA fragments of ~10 and 4 kb, respectively, the
size predicted for correct integration of the targeting vector into the

INS locus. d Images showing clusters of GFP+ cells in differentiated
cultures of INSGFP/w hESCs. Scale bar, 100 μm. e–h Immunofluorescence
analysis of flat cultures showing that INS-GFP+ cells produce insulin,
C-peptide (C-pep), glucagon (GCG) and somatostatin (SOM). Scale bar,
10 μm. i Flow cytometry analysis showing that INS-GFP+ cells can be
clearly distinguished from the GFP− population. j–l Intracellular flow
cytometry (ICF) analysis confirming that the majority of INS-GFP+ cells
co-produce glucagon and/or somatostatin. FACS plot shows the
production of glucagon and somatostatin in cells gated on INS-GFP+

expression. Note: GFP intensity is decreased by ~1 log in processing
samples for ICF

696 Diabetologia (2012) 55:694–706



96-well plates. After 3 days, medium was replaced with
APEL containing 200–400 ng/ml noggin (batch dependent).
At day 6, medium was replaced with APEL containing 1×
10−5 mol/l retinoic acid (RA). At day 9, the medium was
changed to APEL without polyvinyl alcohol (AEL) contain-
ing 1×10−5 mol/l RA, 100 μmol/l glucagon-like peptide 1
(GLP1), 1×B27 and 10 mmol/l nicotinamide. At day 15 of
differentiation, EBs were transferred to gelatinised, adherent
96-well plates, and insulin production was induced in AEL
containing 10 mmol/l nicotinamide and 50 ng/ml IGF-I.
With this system, most EBs contained INS-GFP+ cells by
day 30 of differentiation. In addition, INS-GFP+ cells were
also differentiated according to a protocol developed by
Nostro and colleagues [12], referred to as the ‘Nostro
protocol’. Recombinant human activin A, fibroblast growth
factor 10 (FGF10), fibroblast growth factor 7 (KGF), IGF-I
and hepatocyte growth factor (HGF) were purchased from
R&D Systems (Minneapolis, MN, USA). Basic FGF (FGF2)
was purchased from Peprotech (Rocky Hill, NJ, USA).
Wingless-type MMTV integration site family, member 3A
(WNT3A) and noggin were purchased from R&D Systems
or provided by the Australia Stem Cell Centre (Melbourne,
VIC, Australia). KAAD-cyclopamine was purchased from
Toronto Research Chemicals (North York, ON, Canada);
all-trans RA, nicotinamide, SB431542 and GLP1 were
purchased from Sigma-Aldrich (St Louis, MO, USA).

Live cell imaging and immunofluorescence Live cell
imaging of spin EBs in a 96-well plate format was
performed with a Leica TCS NT inverted microscope, and
images were processed with ImageJ software. For immu-
nofluorescence analysis of flat cultures, differentiated cells
were fixed for 15 min in 4% (wt/vol.) paraformaldehyde in
PBS, permeablised in 0.2% (vol./vol.) Triton X-100 at
room temperature for 10 min, and blocked for 60 min in
10% (vol./vol.) goat serum. Primary antibodies were
incubated overnight at 4°C, and secondary antibodies were
incubated for 1 h at 24°C. The following antibodies were
used: rabbit anti-pancreatic and duodenal homeobox 1
(PDX1) (kindly provided by C. Wright, Vanderbilt
University, Nashville, TN, USA); mouse anti-NK2 homeobox
2 (NKX2-2) (Developmental Studies Hybridoma Bank
(DSHB; Iowa City, IA, USA; clone 74.5A5); mouse anti-
NKX6.1 (DSHB); mouse anti-ISL LIM homeobox (ISL)1/2
(DSHB clone 39.4D5); mouse anti-paired box 6 (PAX6)
(DSHB); guinea pig anti-insulin (Dako, Glostrup, Denmark;
clone A0564); rabbit anti-C-peptide (Millipore; clone 4020;
note that this antibody detects both C-peptide and proinsulin);
rabbit anti-glucagon (Dako; clone A0565); anti-glucagon
(Sigma; clone K79bB10); rat anti-somatostatin (Millipore;
clone MAB354). Secondary antibodies used were Alexa-488-
and Alexa-568-conjugated goat antibodies against mouse, rat,
rabbit and goat (Invitrogen) and a tetramethyl rhodamine

iso-thiocyanate (TRITC)-conjugated antibody against guinea
pig (Sigma).

For wholemount immunofluorescence of spin EBs [13],
differentiated EBs were removed from 96-well plates and
fixed for 90 min on ice in 4% (wt/vol.) paraformaldehyde in
PBS and permeablised in 1% (vol./vol.) Triton X-100 at
room temperature for 90 min. EBs were blocked for 90 min
in 10% (vol./vol.) goat serum. Incubation of primary and
secondary antibodies was as described above. All washes
were for 15 min in PBS/10% FCS.

Flow cytometric analysis For flow cytometric analysis and
sorting of live cells, hESCs differentiated in flat cultures or
as spin EBs were dissociated with TrypLE-select (Invitrogen)
to give a single-cell suspension and purified as described
previously [7]. High-throughput flow cytometric analysis
of cells in 96-well plates was performed with an LSR II
multi-laser benchtop flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA), and FACS plots processed using
Gatelogic software (www.inivai.com/GatelogicHome.html).

Reculture experiments By using flow cytometry we purified
day 20 INS-GFP+ cells generated with the flat culture
protocol and then added between 2×103 and 5×103 INS-
GFP+ cells to each well of a low-attachment 96-well tray in
APEL medium containing 10 μmol/l rho-associated, coiled-
coil containing protein kinase 1 (ROCK) inhibitor Y27632
[7, 14]. FGF10, HGF, FGF2, BMP4, KGF and noggin (10–
100 ng/ml) were added singly or in combination at the time
of aggregation or after 24 h. Medium containing the ROCK
inhibitor was replaced with APEL containing combinations
of the above growth factors after aggregates had formed
(usually 24–72 h). Half of the medium was changed every
3–4 days over a 3-week period. When used, 20 μl Matrigel
(diluted 2:1 in APEL medium) was added directly to
reaggregated INS-GFP+ cells. After Matrigel polymerisation,
100 μl APEL medium containing combinations of the above
growth factors was added to each well. Medium was
refreshed periodically as described above. Intracellular flow
cytometric analysis was performed as described by Nostro et
al. [12]. Bromodeoxyuridine (BrdU) incorporation measured
by flow cytometry was performed according to the manu-
facturer’s (BD Biosciences) instructions.

Gene expression analysis RNA preparation, Illumina
microarray analysis and real-time quantitative PCR was
performed essentially as described previously [7]. Briefly,
total RNA for each sample was amplified, labelled and
hybridised to human WG-6v2, human HT12v3 or HT12v4
BeadChips according to Illumina standard protocols
(Illumina, San Diego, CA, USA) at the Australian
Genome Research Facility. Initial data analysis was
performed using GenomeStudio version 2010.3 (Illumina),
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using average normalisation across all the samples. Alterna-
tively, data were analysed using R/BioConductor using
algorithms within the lumi package [15] (function: bgAdjust.
affy and quantile normalisation [16]). Subsequent data
analysis was performed using MultiExperiment Viewer [17,
18]. Hierarchical clustering was performed using Pearson
correlation with average linkage clustering. Differentially
expressed genes were subjected to functional clustering
analysis using the DAVID public database (Database for
Annotation, Visualization and Integrated Discovery) [19, 20].

Results

We targeted a GFP reporter gene to the INS locus of HES3
and MEL1 hESCs, creating a reagent to enable detailed
study of the potential and characteristics of INS+ cells
(Fig. 1a). Undifferentiated INSGFP/w hESCs had a normal
karyotype (46XX for the HES3-derived line and 46XY for
the MEL1-derived line), produced stem cell markers and
generated teratomas containing derivatives of the three
primary germ layers upon transplantation into immunode-
ficient mice (electronic supplementary material [ESM]
Fig. 1). Southern blotting analysis indicated that both lines
contained a single GFP insertion, while PCR and DNA
sequencing confirmed that the targeting vector had been
integrated by homologous recombination (Fig. 1a–c).
Differentiation of INSGFP/w hESCs in flat culture (ESM
Fig. 2) revealed that INS-GFP+ cells appeared as small
clusters, which co-stained with insulin and C-peptide
(Fig. 1d–f), confirming the fidelity of the reporter gene.
Immunofluorescence experiments also demonstrated that
INS-GFP+ cells co-produced somatostatin and glucagon
(Fig. 1g, h), confirming previous reports [11] that early
hESC-derived INS+ cells are polyhormonal. This conclusion
was supported by flow cytometry analysis, which showed
that ~80% of INS-GFP+ cells co-produced glucagon, and
~20% produced somatostatin (Fig. 1i–l). INS-GFP+ cells
producing neither hormone constituted a minor proportion of
the population; however, it is possible that these cells
produced other hormones that were not assayed (e.g.
pancreatic polypeptide [PPY], ghrelin [GHRL]).

Two distinct but not necessarily mutually exclusive
scenarios may explain the prevalence of polyhormonal
INS+ cells generated by many current in vitro differentia-
tion protocols. First, it has been postulated that the first
wave of INS+ cells emerging during human embryonic
development represent a primary wave of endocrine cells,
the contribution of which to the mature endocrine organ is
still undetermined [21]. Alternatively, the cells produced in
current differentiation systems may have the potential for
further maturation and proliferation, but this requires
appropriate culture conditions. We attempted to address

these possibilities by asking if INS-GFP+ cells derived from
flat culture differentiation could mature further in vitro. To
perform these experiments, purified INS-GFP+ cells were
reaggregated in APEL medium containing 10 μmol/l ROCK
inhibitor Y27632 [7] (Fig. 2a). This reaggregation step
substantially improved the viability of cells after sorting.
After 24 h, INS-GFP+ cells formed tight E-cadherin+

clusters (insulin-positive aggregates [IPAs]) that displayed
the same spectrum of GFP intensities as present in the
original sorted population and continued to co-produce
glucagon (Fig. 2b, c).

The growth and differentiation potential of IPAs was
subsequently examined in vitro. We first tested the ability
of previously reported pancreatic growth factors to either
sustain INS-GFP production over a 3-week period or
promote expansion of the GFP+ population. Extended
cultures of IPAs in APEL medium alone revealed that
INS-GFP production waned rapidly after IPA formation
(data not shown). We also observed that factors previously
reported to have a role in expansion of the pancreatic
primordium, such as HGF and FGF10 [22–24], promoted
the slow growth of the population overall, particularly in
the presence of Matrigel (Fig. 2d and data not shown).
However, none of the factor combinations tested (see
Methods) sustained GFP production for more than 3 weeks
nor promoted expansion of the INS-GFP+ pool. Instead,
GFP− cells (either derived from INS+ cells or representing
contaminants in the original sorted population) eventually
became the predominant cell type within the IPAs (Fig. 2d),
raising the possibility that INS-GFP+ cells generated in flat
cultures were postmitotic. To address this, we performed
BrdU incorporation analysis of cells differentiated using the
flat culture protocol. This analysis indeed showed that, at
later differentiation stages, few INS-GFP+ cells and/or their
immediate precursors incorporated BrdU (Fig. 2e), consis-
tent with the notion that these cells were essentially non-
proliferative.

In order to further characterise INS-GFP+ cells generated
using the flat culture and Nostro protocols, cells were
isolated by flow cytometry and processed for gene
expression microarray analysis (Fig. 3a). Data were
compared with those of the INS-GFP− fraction from the
same cultures, as well as from fetal pancreas, adult pancreas
and adult islets. Differentially expressed genes were
identified by performing sequential pair-wise comparisons
between the GFP+ and GFP− fractions from four indepen-
dent sorting experiments using two different cell lines,
performed in two different laboratories. A total of 202
probes (186 genes) were identified that were upregulated
more than twofold across all four comparisons (see ESM
Fig. 3 for scatter plots for individual pair-wise compar-
isons). For display purposes, a selected subset of these 186
genes was grouped into functional categories based on their
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gene ontology (secretory, transcription factors, diabetes
associated) (Fig. 3a).

Comparison of GFP+ and GFP− fractions indicated that
GFP+ cells had upregulated a suite of genes that confirmed
the commitment of this population to endocrine differentiation
(Fig. 3b). Genes that were substantially upregulated in the
GFP+ fraction included those for hormones traditionally
associated with pancreatic endocrine cells (GCG, INS, SST,
PPY), a suite of known pancreatic transcription factor genes
(NKX2.2 [also known as NKX2-2], ARX, NEUROD1,
MAFB) as well as a number of genes associated with type
1 diabetes (HLA, GAD, PTPRN). This analysis also revealed
that, within this restricted set, INS-GFP+ samples were most
similar to islets, consistent with their endocrine nature.

Gene profiling data were compared with the results of
immunofluorescence experiments, confirming that INS-

GFP+ cells produced transcription factors such as PAX6,
NKX2.2 and ISL1 (Fig. 4). We also investigated the
expression of PDX1 and NKX6.1, two genes that were
absent from the composite list derived from comparison of
all four sorting experiments as well as being absent from
pair-wise comparison of individual experiments. In the case
of PDX1, quantitative PCR studies (ESM Fig. 4) suggested
that its absence from the GFP+ fraction appeared to partly
reflect low sensitivity of the Illumina probe set to detect this
particular gene. However, although GFP+ cells appeared to
produce elevated levels of PDX1 (Fig. 4), it is also possible
that the relatively high frequency of PDX1+ cells present in
the INS− fraction overall may have contributed to the poor
enrichment of PDX1 transcripts observed in the former
population (see ESM Fig. 5). In contrast with PDX1, co-
production of NKX6.1 with INS-GFP was not observed in
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flat cultures, and transcripts were not detected in samples
generated in either the flat culture or the Nostro protocols.
This last observation is consistent with other reports and the
notion that these hESC-derived INS+ cells represent an
immature precursor population that is not yet fully
committed to beta cell differentiation [11].

Analysis of INS-GFP+ cells confirmed that both proto-
cols generated cells at a stage of pancreas development that
precedes the onset of overt beta cell differentiation.
Therefore, we reasoned that the further testing of variables
affecting the course of in vitro pancreatic differentiation
would be required before more mature phenotypes could be
generated. We used INSGFP/w hESCs to develop a novel 96-
well format spin EB protocol [5] for generating INS-GFP+

cells (Fig. 5a). With this method, we observed that INS-
GFP+ cells emerged with slower kinetics compared with the

flat culture or the Nostro protocols, with the onset of GFP
expression at differentiation day 20 (compared with day 15
for flat cultures). Late-stage spin EBs displayed a spectrum
of morphologies with respect to the localisation of INS-
GFP+ cells (Fig. 5b). In general, these cells appeared in
clusters either within the main body of the EB or as isolated
spheres surrounding the GFP− EB core. Visual inspection
suggested that some EBs contained a substantial fraction of
GFP+ cells, an observation confirmed by FACS analysis
that showed that single EBs contained up to 37% INS-
GFP+ cells (Fig. 5c). However, without specific preselec-
tion of GFP+ EBs, the overall frequency of GFP+ cells
generated with this protocol was ~2–5%.

Immunofluorescence and flow cytometry analysis of
spin EB-derived cells indicated that, unlike cells generated
using the flat culture protocol, a substantial fraction (40%)
of INS-GFP+ cells produced neither glucagon nor somato-
statin (Fig. 6a–e). Immunofluorescence analysis showed that,
like cells generated in flat cultures, spin EB-derived INS-
GFP+ cells produced PAX6, ISL1, NKX2.2 and PDX1. In
addition, similar to that observed with flat cultures, PDX1+

nuclei were also observed in a substantial proportion of
GFP− cells within spin EBs that contained INS-GFP+ cells
(Fig. 6f). However, unlike cells derived with either the flat
culture or the Nostro protocols, many INS-GFP+ cells within
spin EBs co-produced NKX6.1 (Fig. 6c) (see ESM Fig. 6 for
single-colour images). In a survey of EBs immunostained for
NKX6.1, we observed that 34% (122/363) of cells were
GFP+ and 16% (58/363) of cells were NKX6.1+. In these
EBs, INS-GFP+/NKX6.1+ cells comprised 11% (39/363) of
the total cell population or 32% (39/122) of the INS-GFP+

cell population (data not shown). The presence of an INS-
GFP+/NKX6.1+ population using the spin EB method
suggests that the differentiation conditions are conducive to
ongoing differentiation of pancreatic endoderm.

Microarray analysis confirmed that INS-GFP+ cells
generated by the spin EB method had upregulated a similar
cohort of pancreatic genes to those derived using the flat
culture differentiation protocol (Fig. 7a). However, given
the presence of INS-GFP+/NKX6.1+ cells in spin EBs, we
used microarray analysis to explicitly compare the gene
expression profiles of INS-GFP+ cells generated using all
three protocols. Specifically, we were interested in genes
that might provide information relating to differentiation
status and/or cellular identity. This comparison showed that
INS-GFP+ cells derived from flat cultures expressed
elevated levels of a number of genes that are associated
with non-pancreatic derivatives of foregut endoderm
(Fig. 7b). In particular, transcripts encoding apolipoproteins
(liver), claudin 18 (CLDN18) (lung) and pepsinogen
(stomach) were more abundant in INS-GFP+ cells generated
using previously described methods. Conversely, INS-GFP+

INS-GFP

INS-GFP

INS-GFP

INS-GFP

INS-GFP

NKX2.2

ISL1

PAX6

PDX1

NKX6.1

Fig. 4 Gene expression analysis reveals that INS-GFP+ cells express
a suite of pancreas-associated transcription factors. Immunofluorescence
studies show that INS-GFP+ cells generated with the flat culture protocol
express PAX6, NKX2.2, ISL1 (scale bar, 20 μm) and PDX1 (scale bar,
10 μm) but not NKX6.1 (scale bar, 20 μm). Note that all transcription
factors are also produced by GFP− cells present in these cultures
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cells derived from spin EB cultures were enriched for
transcripts encoding a number of HOX genes, some of
which have been previously associated with axial patterning
of the developing gut tube [25]. Whether these differences
are indicative of differences in relative developmental
maturity or reflect some underlying difference in the
specification process remains to be determined.

Discussion

INSGFP/w hESCs reported on here represent a novel reagent
for the study of beta cell differentiation in vitro. By directly
tagging the INS locus, cells can be viably isolated for
further studies or followed in real time, allowing their
growth and response to culture manipulations to be directly
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Fig. 6 Hormone and transcrip-
tion factor production by cells
within INS-GFP+ spin EBs. a
Individual spin EBs containing
INS-GFP+ cells were collected,
immunolabelled with antibodies
directed against endocrine
hormones as indicated and
imaged by confocal microscopy.
Scale bar, 10 μm. b–e Flow
cytometric analysis of HES3
INS-GFP+ cells representing
selected EBs for co-production
of glucagon (GCG) and
somatostatin (SOM). Note that
GFP intensity is lost during
fixation and permeabilisation
(compare b with d). The
percentage of cells within
specific regions or quadrants is
indicated. e The expression of
glucagon and somatostatin in the
INS-GFP+ population. f Whole-
mount immunofluorescence of
INS-GFP+ EBs generated with
the spin EB platform showing
production of PAX6, NKX2.2,
ISL1, PDX1 and NKX6.1.
Scale bar, 20 μm. Note that all
transcription factors are also
produced by GFP− cells present
in these cultures
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monitored. We have used these cells to generate a set of
gene profiling data that will serve as a baseline for future
studies on hESC-derived endocrine cells. These data, in
conjunction with immunofluorescence studies, reveal that
INS-GFP+ cells generated with two distinct but related
protocols [11, 12] have hallmarks of immature endocrine
cells. This conclusion was drawn from the observation that
most INS-GFP+ cells in late-stage (day 20–25) cultures
produced other endocrine hormones, most commonly
glucagon. Although cells producing multiple hormones
are present in the developing human pancreas, their relative
abundance as a fraction of the hormone-positive population
is minor [26]. Several theories have been proposed to
account for polyhormonal cells in cultures of differentiating
hESCs. The preponderance of INS+ cells that express
other hormones may indicate a bona fide differentiation-
intermediate population, further development of which is
arrested because culture conditions are not appropriate.
Alternatively, the appearance of this cell type may signify
that current culture conditions drive the generation of an in
vitro artefact that lacks the capacity for further differenti-
ation along the beta cell lineage. BrdU labelling experi-
ments suggest that the polyhormonal cells generated under
these conditions are postmitotic, a conclusion consistent

with other studies suggesting that the major source of new
islets during development is not pre-existing hormone-
producing cells [27–30].

Taken together, the above observations emphasise that
further work will be required before mature beta cells can
be readily generated from hESCs. Therefore, methodolo-
gies that lend themselves to testing large numbers of
variables will assist efforts to refine or reconstruct hESC
to beta cell differentiation protocols. In this context, we
used INSGFP/w hESCs to develop a 96-well format spin EB
differentiation protocol that used the recombinant protein-
based medium, APEL [6]. This platform has a number of
advantages that will facilitate further exploration of path-
ways governing pancreatic differentiation of hESCs. First,
the 96-well format is compatible with high-throughput
methodologies that enable the simultaneous assessment of
large numbers of variables. Second, because APEL contains
only recombinant proteins (albumin, transferrin and insulin),
inconsistencies arising from batch to batch variation intrinsic
to media components such as BSA are minimised. Using the
spin EB platform, we observed that INS-GFP+ cells
appeared in the context of a variety of morphologically
distinct structures, some of which appeared to derive and/or
separate from the main mass of the EB and resembled
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islet-like clusters described by others [3, 31]. Interestingly,
islet-like clusters in both reports contained a substantial
fraction of INS+ cells that did not co-produce either
glucagon or somatostatin, mirroring our findings with spin
EB-derived INS-GFP+ cells. This phenotype would be
consistent with the idea that spin EB-derived INS-GFP+

cells represented a more mature stage of development, a
conclusion supported by the substantial number of INS-GFP+

cells in spin EBs producing the later-stage beta cell
differentiation marker, NKX6.1 [32].

Nevertheless, with the notable exception of INS, GCG
and SST, our microarray data indicated that INS-GFP+ cells
generated using all of the protocols (flat, Nostro or spin EB)
expressed relatively low levels of genes recently reported
by Dorrell and colleagues [33] to be associated with mature
alpha or beta cells (ESM Fig. 7). This observation
reinforces the notion that establishing culture conditions
that promote appropriate maturation represents a significant
hurdle for the generation of functional beta cells in vitro.

Our microarray data also suggested that spin EB-derived
INS-GFP+ cells expressed lower levels of transcripts
associated with non-pancreatic endodermal cell types and
higher levels of HOX genes—genes with a known role in
setting axial position within the developing embryo. In this
light, it is tempting to speculate that the spin EB
environment may provide differentiative cues that more
precisely specify positional identity and/or more closely
resemble those in the embryo. While further studies are
necessary to determine if INS-GFP+ cells can be further
differentiated, the INSGFP/w hESCs and 96-well spin EB
format protocol described here represent new tools for
optimising generation of beta cells in vitro for the treatment
of type 1 diabetes.
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