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Abstract
Aims/hypothesis Antagonism of the glucagon receptor
(GCGR) represents a potential approach for treating diabetes.
Cpd-A, a potent and selective GCGR antagonist (GRA) was
studied in preclinical models to assess its effects on alpha cells.
Methods Studies were conducted with Cpd-A to examine
the effects on glucose-lowering efficacy, its effects in
combination with a dipeptidyl peptidase-4 (DPP-4) inhib-
itor, and the extent and reversibility of alpha cell hypertro-
phy associated with GCGR antagonism in mouse models.
Results Chronic treatment with Cpd-A resulted in effective
and sustained glucose lowering in mouse models in which
endogenous murine Gcgr was replaced with human GCGR
(hGCGR). Treatment with Cpd-A also led to stable,
moderate elevations in both glucagon and glucagon-like
peptide 1 (GLP-1) levels, which were completely reversible
and not associated with a hyperglycaemic overshoot
following termination of treatment. When combined with
a DPP-4 inhibitor, Cpd-A led to additional improvement of
glycaemic control correlated with elevated active GLP-1
levels after glucose challenge. In contrast to Gcgr-knockout
mice in which alpha cell hypertrophy was detected, chronic
treatment with Cpd-A in obese hGCGR mice did not result
in gross morphological changes in pancreatic tissue.

Conclusions/interpretation A GRA lowered glucose effec-
tively in diabetic models without significant alpha cell
hypertrophy during or following chronic treatment. Treat-
ment with a GRA may represent an effective approach for
glycaemic control in patients with type 2 diabetes, which
could be further enhanced when combined with DPP-4
inhibitors.
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Abbreviations
ASO Antisense oligonucleotides
CHO Chinese hamster ovary
Cpd-A Compound A
DPP-4 Dipeptidyl peptidase-4
(h)GCGR (Human) glucagon receptor
GLP-1 Glucagon-like peptide-1
GRA Glucagon receptor antagonist
G/T Ratio of glucagon positive area to total area
HFD High-fat diet
I/T Ratio of insulin positive area to total area
KB Equilibrium binding (association) constant
STZ Streptozotocin

Introduction

Glucagon, a key hormone in maintaining glucose homeo-
stasis and preventing hypoglycaemia, [1] is secreted by
pancreatic alpha cells during the fasting state and in
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between meals. Acting via the glucagon receptor (GCGR),
which is predominantly localised in the liver, glucagon
increases hepatic glycogenolysis and gluconeogenesis with
subsequent elevation in hepatic glucose output. The actions
elicited by glucagon are critical for maintaining euglycaemic
states under normal physiological conditions. Conversely,
hyperglucagonaemia is associated with hyperglycaemia and
diabetes under pathophysiological conditions [2, 3]. Both
animals and human patients with diabetes present with
various degrees of hyperglucagonaemia [4, 5]. The state of
chronic hyperglucagonaemia is correlated with excess
hepatic glucose output and hyperglycaemia in diabetic
patients [6]. Finally, experimental suppression of hyper-
glucagonaemia has been shown to correct postprandial
hyperglycaemia in diabetic patients [7].

Given the role of glucagon in the development and
maintenance of diabetes in both humans and animals,
inhibition of the glucagon signalling pathway may repre-
sent a potential new approach for diabetes treatment [3, 7].
Somatostatin, an inhibitor of insulin and glucagon secre-
tion, has been well documented to have hypoglycaemic
effects [8–10]. Gcgr-knockout mice (Gcgr−/− mice) present
with lower plasma glucose levels in the absence of overt
hypoglycaemia [11, 12] and are resistant to hyperglycaemia
under conditions of insulin deficiency [13]. The adminis-
tration of glucagon-neutralising antibodies has been shown
to be effective in reducing circulating levels of glucagon
and hyperglycaemia in various animal models [14–16].
Furthermore, Gcgr antisense oligonucleotides (ASOs) have
been shown to improve glucose metabolism in ob/ob mice
[17, 18]. Studies have shown that acute treatment with non-
peptidyl small-molecule GCGR antagonists (GRAs)
blocked glucagon-induced glucose excursions in mice
[19–22], dogs [23] and humans [24]. Our laboratory has
recently reported [25, 26] that acute treatment with GRAs
elicits similar effects on glucagon-induced glucose excur-
sions in mice expressing the human GCGR (hGCGR) in
place of the murine Gcgr. Finally, chronic treatment with a
GRAwas shown to result in sustained glucose lowering and
improved pancreatic islet function in mice [27].

Previous reports showed Gcgr−/− mice possess a
favourable metabolic phenotype, including normal glucose
metabolism when fed a regular diet [11, 12]. In addition,
Gcgr−/− mice are resistant to diet-induced obesity and
streptozotocin (STZ)-mediated beta cell loss and hyper-
glycaemia [28]. However, Gcgr−/− mice have high
circulating levels of glucagon and glucagon-like peptide
1 (GLP-1) accompanied by dramatic pancreatic alpha cell
hypertrophy. Similar results have been seen in mice treated
with Gcgr ASOs [17, 18]. These observations suggest that
inhibition of glucagon signalling in Gcgr−/− and Gcgr
ASO-treated mice leads to strong compensatory responses
involving a marked alpha cell hypertrophy with associated

upregulation of glucagon and GLP-1 production and/or
secretion.

A critical question surrounding the use of small-
molecule GRAs for the treatment of diabetes is whether
or not these agents will elicit compensatory responses
similar to those observed in Gcgr−/− and Gcgr ASO-treated
mice. Potential treatment-induced elevations in glucagon
and GLP-1 could influence the overall efficacy of GRA
therapy. For competitive antagonists of GCGR, elevated
levels of circulating glucagon may compete with GRAs for
binding to GCGR, thereby reducing antagonism of the
receptor as well as the overall therapeutic efficacy of this
agent in vivo. In contrast, increased levels of GLP-1 may
lead to significant improvements in glucose-dependent
insulin secretion and postprandial glucose metabolism.
Circulating GLP-1 levels elevated by GRA treatment also
suggest potential for combination therapy with a GRA and
a dipeptidyl peptidase-4 (DPP-4) inhibitor for enhanced the
glycaemic efficacy. Depending on the magnitude and
reversibility of a compensatory response to GCGR antag-
onism, the ensuing hyperglucagonaemic state may lead to
transient or persistent hyperglycaemia when GRA therapy
is terminated.

The current report describes a series of studies designed
to examine the preclinical effects of treatment with a novel,
small-molecule GRA (Cpd-A) on glucose-lowering as well
as the extent, reversibility, metabolic consequences and
mechanism of potential compensatory responses stemming
from GRA treatment.

Methods

Animals All animal procedures were performed in accor-
dance with the guidelines of the Institutional Animal Care
and Use Committee of Merck. Gcgr−/− mice [11] and
hGCGR mice [25, 29] were generated and maintained as
previously reported [30]. Unless otherwise noted, animals
were fed standard rodent chow and water.

In vitro binding and functional assays Investigations of the
ability of compound A (Cpd-A) to bind to GCGR on
isolated cell membrane and to inhibit glucagon-stimulated
cAMP production in intact cells were performed as
previously described [25]. For Schild analysis, the ability
of glucagon to stimulate cAMP production in the intact
Chinese hamster ovary (CHO)-hGCGR cells was measured
in the presence of increasing concentrations of Cpd-A.

In vivo receptor occupancy assays To determine the ability
of Cpd-A to bind to glucagon receptors in liver in vivo, an
in vivo receptor occupancy assay were performed in
hGCGR mice as previously described [29]. Briefly, 1 h after
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Cpd-A administration, animals in the vehicle group were
injected via the tail vein with either 125I-labelled glucagon
alone or 125I-labelled glucagon plus excess unlabelled
glucagon. Animals in Cpd-A group were treated with
125I-labelled glucagon alone in a similar fashion. Tissues
were harvested 15 min after radiotracer injection, lysed and
counted to determine levels of 125I-labelled glucagon in
tissue.

Glucagon challenge assay Glucagon challenge assays were
performed as previously described [29]. Briefly, 1 h after
Cpd-A administration, animals were challenged with either
NaCl (vehicle group; negative control) or glucagon 15 μg/kg
body weight (vehicle and Cpd-A groups) through i.p.
injection. Blood glucose was measured via tail-vein bleeding
using a glucometer (Lifescan,Milpitas, CA, USA) at the times
indicated.

Chronic studies of obese hGCGR mice Male hGCGR mice
were fed a high-fat diet (HFD) (S3282: Bio-Serv, French-
town, NJ, USA) for 5 months to induce obesity. Obese
hGCGR mice with blood glucose >7.5 mmol/l were selected
for subsequent evaluation in which Cpd-Awas administered
as an admixture in the chow to reach the desired dose. Lean
hGCGR mice maintained on normal chow were used as
controls. In washout periods, animal were fed the same diet
without Cpd-A. Pancreatic tissues were obtained at the end
of the study for immunohistochemical staining. The oral
glucose tolerance test (OGTT) was performed as previously
described by Conarello et al. [28].

Efficacy studies in hGCGR HFD/STZ diabetic mice HFD/
STZ mice were prepared as previously described [31].
Briefly, hGCGR mice were fed an HFD (D12492; Research
Diets, New Brunswick, NJ, USA) for 3 weeks before they
were injected once (i.p.) with a low dose of STZ, 100 mg/kg
(Sigma Chemicals, St Louis, MO, USA), to induce partial
insulin deficiency. Three weeks after STZ injection, the
majority of hGCGR HFD/STZ mice displayed hyperglycae-
mia, insulin resistance and glucose intolerance [31]. Cpd-A,
des-fluoro-sitagliptin [31] (Merck Research Laboratories,
Rahway, NJ, USA), and a combination of the two were
dosed as an admixture to reach the desired dosage. Active
glucagon-like peptide 1 (GLP-1) was measured using
terminal (by cardiac puncture) plasma collected 5 min after
a glucose challenge at 2 g/kg body weight.

Plasma hormone measurements Glucagon and active GLP-
1 were measured using commercial ELISA kits (Linco
Research Immunoassay, St Charles, MO, USA). Inactive
GLP-1 ELISA assay detecting GLP-19–37 was developed
locally using an antibody specific to amino acid residues 9–
37 of GLP-1, which detects both GLP-19–36 amide and

GLP-19–37 but not other forms of GLP-1 [32]. Insulin was
measured by ELISA with a commercial kit (ALPCO
Diagnostics, Windham, NH, USA).

Immunohistochemical staining and analysis of pancreatic
tissues Immunolabelling was performed on pancreatic
tissues as previously described [31]. Briefly, cryostat
sections were immunostained with a combination of rabbit
anti-glucagon antibody and guinea pig anti-insulin anti-
body. The insulin-positive beta cell-to-total islet area and
glucagon-positive alpha cell-to-total islet area ratios were
calculated from digitised images. Images of ten randomly
chosen islets were captured from each section and were
averaged to calculate ratios for each animal. Final results
were represented by the mean and standard error of the
ratios of four animals per treatment group.

Calculations All data are expressed as means±SD. Appro-
priate ANOVA analysis was conducted using GraphPad
Prism software.

Results

Compound A (Cpd-A) is a potent and competitive antag-
onist of hGCGR in vitro The structure of Cpd-A is
illustrated in Fig. 1a. Cpd-A inhibited the binding of 125I-
labelled glucagon in membranes prepared from Chinese
hamster ovary (CHO)-hGCGR cells in a dose-dependent
fashion with an IC50 of ~34 nmol/l (Fig. 1b) [26]. In vitro
receptor signalling assays using intact CHO-hGCGR cells
showed that Cpd-A is able to inhibit glucagon-stimulated
cAMP production in a dose-dependent fashion with an IC50

of ~92 nmol/l (Fig. 1c) [26]. Cpd-A was similarly able to
inhibit the murine receptor stably transfected in CHO cells
with an IC50 of 398 nmol/l (data not shown). Schild
analysis showed that Cpd-A inhibited glucagon-stimulated
cAMP production in CHO-hGCGR cells with an equilibrium
binding (association) constant (KB) of ~56.2 nmol/l (Fig. 1d).
These collective results demonstrate that Cpd-A is a
competitive inhibitor of glucagon binding to hGCGR and
that the effects of this agent are approximately fourfold more
potent for hGCGR than for murine GCGR. Further to this
observed species specificity, all subsequent in vivo evaluations
with Cpd-Awere performed in mice expressing hGCGR rather
than mouse-endogenous Gcgr [30].

Cpd-A binds and functionally antagonises hGCGR in
vivo Previous reports have shown that Cpd-A exhibits a
favourable pharmacokinetic profile in mice with a half-life
of 3.5 h and an oral bioavailability of 20% [26]. Therefore,
receptor occupancy experiments were performed in hGCGR
mice to determine whether Cpd-A binds to hepatic hGCGR
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in vivo. Approximately 75% of 125I-labelled glucagon
present in liver occurred because of specific binding of
the radiolabelled ligand to its receptor (Fig. 2a, lane 2 vs 1).
Treatment with Cpd-A at 1, 3, and 10 mg/kg doses reduced
the specific binding of 125I-labelled glucagon by 26%, 39%
and 53%, respectively (Fig. 2b). These results demonstrate
that Cpd-A binds to the hepatic hGCGR in vivo.

The glucagon-challenged hGCGR mice showed a pro-
nounced glucose excursion compared with vehicle-treated
mice. Treatment with Cpd-A reduced the glucagon-induced
glucose excursions (Fig. 2c, d), demonstrating that Cpd-A
functionally antagonises GCGR in vivo.

Chronic treatment with Cpd-A in high-fat diet (HFD)-fed
hGCGR mice lowers glucose and concomitantly raises
circulating glucagon levels To evaluate whether chronic
treatment with GRA improves glucose metabolism in vivo,
obese hGCGR mice fed an HFD were dosed with Cpd-A at
1, 3 or 10 mg kg−1day−1 (as admixture to the HFD) for 11
consecutive days. Food intake or body weight was not
changed during the study (data not shown). An OGTTwas
conducted following dosing on day 11 using selected
groups and the animals were killed (after blood glucose
returned to pre-OGTT levels) to obtain plasma for
measuring glucagon and inactive GLP-1 levels. Obese
hGCGR mice had elevated plasma glucose levels compared
with lean hGCGR mice fed a normal diet. Treatment of

obese hGCGR mice with Cpd-A lowered plasma glucose
levels in a dose-dependent fashion on days 3 and 11. Obese
hGCGR mice treated with Cpd-A at 3 or 10 mg kg−1day−1

showed similar plasma glucose levels compared with
untreated, lean hGCGR mice on days 3 and 11 (Fig. 3a).
The magnitude of the reduction in plasma glucose seen
with Cpd-A at 3 and 10 mg kg−1day−1 was similar on
days 3 and 11. Furthermore, obese hGCGR mice treated
with Cpd-A at 10 mg kg−1day−1 showed an improvement in
fasting glucose (4.7±0.4, 3.8±0.5 [p<0.05 vs HFD control]
and 4.3±0.4 [p<0.05 vs HFD control]mmol/l, respectively
for HFD control, HFD Cpd-A and lean groups) as well as
oral glucose tolerance on day 11 compared with that of
untreated, obese hGCGR mice (Fig. 3b; baseline-subtracted
AUC). These results demonstrate that Cpd-A produced
sustained glucose lowering and improved glycaemic control
throughout the course of chronic treatment.

Previous reports have shown that Gcgr−/− mice [12, 28]
and mice treated with Gcgr ASOs [18] have a dramatic
elevation in circulating levels of glucagon, suggesting that
inhibition of the GCGR receptor results in a strong
feedback or compensatory response on glucagon produc-
tion and/or secretion. To determine whether treatment with
a GRA produces a similar compensatory response, circu-
lating levels of glucagon were measured in obese hGCGR
mice following 11 day treatment with Cpd-A. Obese
hGCGR mice treated with Cpd-A at 1, 3 or 10 mg kg−1
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Fig. 1 In vitro properties of
Cpd-A. a Structure of Cpd-A,
4-({9-tert-butyl-2-oxo-3-[4-(tri-
fluoromethoxy)phenyl]-1,3-dia-
zaspiro[5.5]undec-1-yl}meth-
yl)-N-(2H-tetrazol-5-yl)benza-
mide. b Inhibition of glucagon
binding on membranes. The
results of a single representative
study showing the binding of
125I-labelled glucagon to CHO-
hGCGR cell membranes in the
presence of increasing concen-
trations of Cpd-A. Data are
shown as mean ± SD. c Inhibi-
tion of glucagon-stimulated
cAMP production. The results
of a single representative study
showing the production of
glucagon-stimulated cAMP in
intact CHO-hGCGR cells in the
presence of increasing concen-
trations of Cpd-A. Data are
shown as mean ± SD. d Schild
plot: titration of glucagon-
stimulated cAMP production in
intact CHO-hGCGR cells in the
presence or absence of increas-
ing concentrations of Cpd-A;
KB=56.2 nmol/l
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day−1 showed a dose-dependent increase in plasma gluca-
gon of 1.3-, 2.0- and 2.7-fold relative to untreated obese
hGCGR mice, respectively (Fig. 3d). These results demon-
strate that pharmacological antagonism of the GCGR
induces a compensatory response by raising glucagon
levels; however, the extent of the hyperglucagonaemia
elicited by Cpd-A was 2.7-fold at the highest dose tested
compared with the 50- to 100-fold elevation in glucagon
observed in the Gcgr−/− mice [11, 12]. These findings are
consistent with a previous report showing that treatment
with a GRA for 30 days resulted in an approximately
threefold increase in circulating glucagon [27].

Enhanced glycaemic efficacy by treatment with Cpd-A in
combination with des-fluoro-sitagliptin in hGCGR HFD/
STZ mice Des-fluoro-sitagliptin is a potent and selective
DPP-4 inhibitor that has been shown to lower glucose
levels and improve glycaemic control in a diabetic mouse

model induced by a combination of HFD treatment and
low-dose STZ injection [31]. The in vivo glycaemic effects
of combination therapy with Cpd-A and des-fluoro-
sitagliptin were evaluated in hGCGR HFD/STZ mice.
Diabetic hGCGR HFD/STZ mice demonstrated marked
hyperglycaemia compared with non-diabetic control mice
as evidenced by an elevation in postprandial blood glucose
levels (Fig. 4a). To examine the glycaemic efficacy of
combination therapy, hGCGR HFD/STZ mice were treated
with Cpd-A, des-fluoro-sitagliptin, or a combination of the
two as admixtures to the HFD. At the end of the 2 week
treatment, both Cpd-A and des-fluoro-sitagliptin monother-
apy produced numerical reductions from baseline in blood
glucose in hGCGR/STZ mice compared with untreated
diabetic mice. In contrast, combination therapy with Cpd-A
and des-fluoro-sitagliptin led to a significant reduction in
blood glucose levels relative to untreated diabetic control
mice (Fig. 4a).
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Fig. 2 Cpd-A binds directly to hepatic hGCGR and blocks glucagon-
induced glucose excursions in hGCGR mice. Levels of 125I-labelled
glucagon in hepatic tissues (a) and the calculated percentage of
hepatic hGCGR occupancy (b) from in vivo receptor-occupancy
assays performed to assess the binding of Cpd-A to hepatic GCGR at
1 h after oral dosing. A glucagon challenge assay was performed to
assess the ability of Cpd-A to block glucagon-induced glucose

excursions. Blood glucose was measured at time points indicated in
(c) and glucose AUC changes from time 0 were calculated (d).
Significance was determined by ANOVA analysis; *p<0.05; **p<
0.01; ***p<0.001 vs glucagon-treated control. a–c show data as mean ±
SEM. In c, white circles, vehicle; black squares, glucagon; white
triangles, Cpd-A, 3 mg/kg; black triangles, Cpd-A, 10 mg/kg
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An OGTTstudy was performed in diabetic hGCGR HFD/
STZ mice after 2 weeks of treatment to further evaluate the
effects of combination therapy on glycaemic control.
Animals were fasted for 6 h prior to OGTT and fasting
glucose levels were 20.0±1.0, 16.1±1.1 (p<0.05 vs diabetic
control), 16.4±1.4 (p<0.05 vs diabetic control), 14.1±1.4 (p
<0.01 vs diabetic control), and 8.4±0.7 (p<0.001 vs diabetic
control) mmol/l, respectively, for diabetic control, Cpd-A,
des-fluoro-sitagliptin, combination and non-diabetic control
groups. Combination therapy resulted in significantly
reduced glucose excursions as compared with diabetic
control animals (Fig. 4b). Plasma samples were collected
5 min after the administration of a glucose challenge for the
measurement of active GLP-1 levels and its effect on insulin
secretion. Treatment with Cpd-A did not produce a signif-
icant effect on active GLP-1 levels compared with the
diabetic control group. In contrast, treatment with des-fluoro-
sitagliptin led to more than a twofold increase in active GLP-

1 levels, which was further elevated (~ fivefold total vs
diabetic control mice) by combination therapy (Fig. 4c),
which correlates with increased insulin level (Fig. 4d). These
findings suggest that combination treatment with a GRA
agent and DPP-4 inhibitor produce synergistic effects on the
biologically active form of GLP-1.

Prolonged treatment with Cpd-A leads to a moderate and
stable elevation in glucagon without marked alpha cell
hypertrophy in hGCGR mice Gcgr−/− mice demonstrate
alpha cell hypertrophy and dramatically elevated circulating
levels of glucagon [12, 28]. To assess the extent of alpha
cell hypertrophy following chronic treatment with GRAs,
obese hGCGR mice were treated with Cpd-A at 10 mg kg−1

day−1 for up to 82 days. Consistent with results shown in
Fig. 3d, treatment of obese hGCGR mice with Cpd-A
significantly increased circulating levels of glucagon by
2.8-, 3.6- and 3.3-fold at days 11, 28, and 82, respectively
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Fig. 3 Treatment with Cpd-A improves glucose metabolism with
concomitant elevations in circulating glucagon levels in hGCGR mice.
Obese hGCGR mice fed an HFD were treated with Cpd-A to achieve a
dosage of 1, 3 or 10 mg kg−1day−1 for a total of 11 days. The
postprandial glucose levels at the beginning of the study (day 0, white
bars; day 3, black bars; and day 11, hatched bars) following
initiation of treatment are shown in (a); data are mean ± SD. In a
similar study, an OGTT was performed on day 11 after overnight
fasting using the Cpd-A 10 mg/kg group and the control group. A

glucose load (2 g/kg) was administered at time 0 followed and blood
glucose and insulin levels were measured at the time points
indicated. Baseline (time 0)-subtracted glucose and insulin AUCs
are shown in (b) and (c), respectively. White bars, HFD control;
black bars, HFD Cpd-A 10 mg/kg; hatched bars, lean animal control.
Circulating levels of glucagon obtained from terminal plasma
samples are shown (mean ± SD) in (d). *p<0.05; **p<0.01 and
***p<0.001 vs HFD control group, n=8 in each group
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relative to untreated obese hGCGR mice. Inactive GLP-1
levels were significantly increased by 2.2- and 1.7-fold
relative to untreated obese hGCGR mice at days 28 and 82,
respectively.

The potential effects of Cpd-A on pancreatic tissue were
determined by immunohistochemical staining on pancreas
sections prepared from obese hGCGR mice treated with
Cpd-A at 10 mg kg−1day−1 for 8 and 82 days (Fig. 5a–f).
Pancreas from Gcgr−/− mice was included in the assay for
comparison (Fig. 5b). Compared with lean hGCGR mice,
pancreatic tissue from Gcgr−/− mice showed a ~4.6-fold
increase in the ratio of glucagon-positive area to total area
(G/T ratio). Obese hGCGR showed a ~50% lower G/T ratio
relative to lean hGCGR mice (Fig. 5a, b, g). Chronic
treatment with Cpd-A at 10 mg kg−1day−1 increased the G/T
ratio by approximately twofold in obese hGCGR mice
compared with the ratio in vehicle-treated obese hGCGR
mice and matched the G/T ratio observed in lean hGCGR
mice at days 8 and 82. Compared with lean hGCGR mice,
pancreatic tissues from Gcgr−/− mice showed a ~50%
reduction in the ratio of insulin positive area to total area
(I/T ratio). Untreated obese hGCGR mice demonstrated a
mean increase of ~20% in I/T ratio relative to untreated lean

hGCGR mice. Obese hGCGR mice chronically treated with
Cpd-A at 10 mg kg−1day−1 for 8 and 82 days showed a
reduction in I/T ratio to levels that were comparable with
those in lean hGCGR mice (Fig. 5a–f, h). These results
demonstrate that prolonged treatment of obese hGCGR mice
with Cpd-A does not cause overt alpha cell hypertrophy but
rather results in moderate changes of alpha cell and beta cell
mass to levels seen in lean hGCGR mice.

Cessation of Cpd-A treatment reverses hyperglucagonaemia
without hyperglycaemia rebound Studies were conducted to
establish whether the mild glucagon elevation observed
with Cpd-A treatment was reversible and whether rebound
hyperglycaemia resulted upon termination of treatment.
HFD-fed hGCGR mice were treated with Cpd-A at
10 mg kg−1day−1 for 5 days and then the drug was withdrawn
for 1 or 3 days. Plasma levels of glucagon and glucose were
measured on days 1 and 3 of the washout period. The
results showed that treatment of obese hGCGR mice with
Cpd-A for 5 days significantly increased glucagon levels
approximately twofold compared with control mice. Rela-
tive to day 5, plasma glucagon levels were corrected by
~50% or ~100% following 1 or 3 days of washout,
respectively (Fig. 6a, b). The blood glucose levels in
obese hGCGR mice following treatment with Cpd-A for
5 days were comparable with those in lean hGCGR mice.
Relative to plasma glucose levels on day 5 of Cpd-A
treatment, the removal of Cpd-A led to increases in plasma
glucose of 17% and 14% on day 1 or 3 of washout,
respectively. Nevertheless, the plasma glucose levels on
days 1 and 3 following the termination of treatment were
significantly lower than those seen in the HFD control
group (Fig. 6c, d). Taken together, these results suggest
that termination of Cpd-A treatment led to a rapid reversal
of plasma glucagon elevation with no evidence of a
hyperglycaemia overshoot.

Discussion

Small-molecule GRAs represent a potential new therapeutic
agent for diabetes treatment [7]. Acute treatment with a
GRA has been shown to block glucagon-induced glucose
excursions in various animal models [19–23, 25, 26, 29]
and in humans [24]. In contrast, relatively little is known
regarding the glucose-lowering efficacy of chronic GRA
treatment in disease-relevant animal models. Studies from
Gcgr−/− mice and mice treated with Gcgr ASOs suggest
that inhibition of glucagon signalling could lead to
compensatory increase of circulating glucagon and GLP-1,
possibly as a result of alpha cell hypertrophy [28]. It is not
known whether pharmaceutical inhibition of GCGR will
elicit similar compensatory responses and, more impor-
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Fig. 4 Combination therapy with Cpd-A and a DPP-4 inhibitor led to
improved glycaemic control. Diabetic hGCGR HFD/STZ mice were
treated with Cpd-A (10 mg kg−1day−1) or des-fluoro-sitagliptin
(200 mg kg−1day−1) alone or in combination for 2 weeks. Postprandial
glucose (a) and OGTT were measured at day 14. OGTT was
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†p<0.001 vs combination group, n=8–15 animals in each group
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tantly, how elevated levels of glucagon and GLP-1 might
affect GRA chronic efficacy. We report here that Cpd-A
binds to hepatic GCGR and functionally antagonises
GCGR action when administered acutely in vivo. Treatment
with Cpd-A for 11 days effectively improved glycaemic
control in HFD-fed hGCGR mice, demonstrating that
chronic treatment with GRA sustained glucose lowering
in mice with diet-induced obesity. The results of the current

studies demonstrate that treatment with Cpd-A increases
circulating levels of glucagon and GLP-1 moderately (i.e.
two- to threefold elevation vs vehicle) relative to those
observed in Gcgr−/− and Gcgr ASO treated mice. Similar
levels of glucagon and GLP-1 were seen following 11, 28
and 82 days of treatment with Cpd-A, suggesting that the
compensatory response to GRA treatment stabilised within
the first 11 days of treatment and did not continue to
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increase over time. This agrees well with a previous report
that chronic treatment with a structurally distinct GRA for
30 days resulted in an approximately threefold increase in
plasma glucagon levels [27].

In contrast to dramatic changes in islet cell morphology
and significant alpha cell hypertrophy in Gcgr−/− mice
observed in previous studies [11, 12, 28], chronic treatment
with Cpd-A for up to 82 days did not lead to detectable
changes in the islet cell morphology. A moderate increase
or decrease in the area of pancreatic tissue stained positive
for glucagon or insulin, respectively, was observed when
compared with HFD-treated vehicle control mice. These
pancreatic changes induced by Cpd-A actually made the
tissue closer to that of healthy lean hGCGR mice,
suggesting that chronic GRA therapy reversed the abnor-
malities seen in untreated obese hGCGR mice. These
results indicate that chronic GRA treatment does not induce
alpha cell hypertrophy and may improve pancreatic
function as suggested by Winzell et al. [27]. So, data

obtained from these studies demonstrate that chronic GRA
treatment using a compound such as Cpd-A represents a
potential means of effectively maintaining glucose lowering
and is unlikely to induce adverse events such as overt
hyperglucagonaemia or alpha cell hypertrophy. While
feasible, it may also be critical to maintain a balance of
potency and safety profile for therapy of this mechanism.
This becomes more important when considering the
relatively short treatment period of our studies vs the
lifetime GCGR blockage in Gcgr−/− mice. It also cannot be
ruled out completely that lack of alpha cell hypertrophy
with Cpd-A is partially due to its relatively moderate
potency, even though alpha cell hypertrophy was not
observed with some significantly more potent molecules
tested in a similar paradigm (data not shown).

The mechanism behind GRA-mediated mild glucagon
and GLP-1 elevations, in contrast to much greater increases
in Gcgr−/− or Gcgr ASO-treated mice, is unclear. Partial
receptor coverage as indicated by receptor occupancy
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results combined with changes in drug level over time
could be part of the answer. Results from current studies
suggest full receptor occupancy is not required for the
biological action of GRA. It will be interesting to find out
whether a more potent compound and longer treatment can
cause further elevation of glucagon/GLP-1 levels. Elevated
GLP-1 levels may contribute to the benefit seen with
incomplete GCGR blockade alone. Additional potential
players, e.g. leptin [13] and fibroblast growth factor 21
(FGF21), cannot be excluded and will be the subject of
future studies. As results from washout studies clearly
indicate, GRA-induced hyperglucagonaemia is reversible
and is unlikely to cause hyperglycaemia following the
termination of treatment. In contrast to concerns regarding
glucagon elevation, increased GLP-1 in circulation (pri-
marily the inactive form of GLP-1; data not shown) created
a potential opportunity to combine a GRA with a DPP-4
inhibitor to achieve a higher level of active GLP-1 in the
circulation and thus improve efficacy beyond that of
individual therapy. Indeed, studies performed in hGCGR
HFD/STZ mice show that combination treatment of Cpd-A
with des-fluoro-sitagliptin led to enhanced glycaemic
efficacy. Even though absolute improvement of glycaemic
control by Cpd-A or des-fluoro-sitagliptin does not seem to
be large or strictly additive in the severely diabetic HFD/STZ
model, a clear increase in active GLP-1 and its effects on
insulin secretion after a glucose challenge provided more
evidence of the mechanism of action and the potential of the
combination therapy. These results suggest that combination
therapy with GRAs and DPP-4 inhibitors may have added
benefit in treating diabetes when compared with individual
therapy alone.

In summary, the current study demonstrated that Cpd-A
functions as a potent and competitive antagonist of hGCGR
both in vitro and in vivo. In mice, chronic treatment with
Cpd-A resulted in sustained glucose lowering coincident
with stable and moderate elevations in glucagon and GLP-
1. Elevation of these hormones was reversible and did not
result in a glucose overshoot upon termination of treatment.
Furthermore, chronic treatment with Cpd-A was not
associated with overt changes in the morphology of
pancreatic tissues. These observations suggest that GRAs
may represent an effective and safe therapy for improving
glucose metabolism in humans. Furthermore, combination
therapy with a GRA and a DPP-4 inhibitor could lead to
enhanced glycaemic efficacy by combining the two
mechanisms.
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