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Abstract
Aims/hypothesis Tissue-specific amplification of glucocor-
ticoid action through 11β-hydroxysteroid dehydrogenase
type 1 (11β-HSD1) affects the development of the
metabolic syndrome. Hexose-6-phosphate dehydrogenase
(H6PDH) mediates intracellular NADPH availability for
11β-HSD1 and depends on the glucose-6-phosphate trans-
porter (G6PT). Little is known about the tissue-specific
alterations of H6PDH and G6PT and their contributions to
local glucocorticoid action in db/db mice.
Methods We characterised the role of H6PDH and G6PT in
pre-receptor metabolism of glucocorticoids by examining
the production of the hepatic 11β-HSD1-H6PDH–G6PT
system in db/db mice.

Results We observed that increased production of hepatic
H6PDH in db/db mice was paralleled by upregulation of
hepatic G6PT production and responded to elevated circu-
lating levels of corticosterone. Treatment of db/db mice with
the glucocorticoid antagonist RU486 markedly reduced
production of both H6PDH and 11β-HSD1 and improved
hyperglycaemia and insulin resistance. The reduction of
H6PDH and 11β-HSD1 production by RU486 was accom-
panied by RU486-induced suppression of hepatic G6pt
(also known as Slc37a4) mRNA. Incubation of mouse
primary hepatocytes with corticosterone enhanced G6PT
and H6PDH production with corresponding activation of
11β-HSD1 and PEPCK: effects that were blocked by
RU486. Knockdown of H6pd by small interfering RNA
showed effects comparable with those of RU486 for
attenuating the corticosterone-induced H6PDH production
and 11ß-HSD1 reductase activity in these intact cells.
Addition of the G6PT inhibitor chlorogenic acid to primary
hepatocytes suppressed H6PDH production.
Conclusions/interpretation These findings suggest that in-
creased hepatic H6PDH and G6PT production contribute to
11β-HSD1 upregulation of local glucocorticoid action that
may be related to the development of type 2 diabetes.
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G6Pase Glucose-6-phosphatase
G6PT Glucose-6-phosphate transporter
GR Glucocorticoid receptor
H6PDH Hexose-6-phosphate dehydrogenase
ITT Insulin tolerance test
TLC Thin layer chromatography

Introduction

Excess glucocorticoid (GC) production strongly affects the
development of type 2 diabetes and obesity via activation
of intracellular GC receptor (GR) [1–5]. In rodents,
increased GC production promotes hepatic gluconeogenesis
and adipocyte differentiation and induces insulin resistance
and obesity in genetically obese db/db and ob/ob mice [5–8].
However, tissue GC action can also be regulated at the pre-
receptor level by the 11β-hydroxysteroid dehydrogenases.
Metabolic tissues such as liver and adipose tissue abundantly
produces 11β-hydroxysteroid dehydrogenase (11β-HSD1), a
resident enzyme of the endoplasmic reticulum (ER) lumen
that acts in vivo as an NADPH-dependent reductase to
generate active cortisol (corticosterone in rodents) from
inactive 11-keto cortisone (11-dehydrocorticosterone) [9–11].
11β-HSD1 plays an important role in the regulation of tissue
GC action [12–15]. Indeed, enhanced 11β-HSD1 could
result in the production of excess tissue GCs and induction
of GC-receptor-mediated local GC action related to glucose
homeostasis, insulin action and adiposity, all of which are
associated with the development of type 2 diabetes and
visceral obesity [16–18]. Pharmacological evidence further
validates the role of 11ß-HSD1 in the control of insulin
resistance and obesity as 11ß-HSD1 inhibitors reduced
hepatic glucose output and improved insulin sensitivity in
obese animal models, as well as in patients with type 2
diabetes [19–23]. These studies implicate the importance of
11ß-HSD1 in the pathogenesis of metabolic syndrome and
obesity.

The role of 11ß-HSD1 in the pre-receptor activation of
GCs is entirely dependent on the production of its cofactor
NADPH in the ER lumen [24, 25]. NADPH is regenerated
by hexose-6-phosphate dehydrogenase (H6PDH) [26, 27], a
microsomal enzyme located in the lumen of the ER and
principally produced in hepatocytes and adipocytes, sites of
11β-HSD1 and GR [28, 29]. In these target tissues, H6PDH
uses glucose 6-phosphate (G6P) and NADP to produce
NADPH. The supply of G6P to H6PDH is ensured by a
functional membrane ER protein, the G6P transporter
(G6PT), which specifically transports cytosolic G6P into
the ER and therefore regulates H6PDH activity via
modulation of G6P level within the ER [30, 31]. The
generation of NADPH by H6PDH can be used by NADPH-

dependent 11ß-HSD1 reductase activity [32, 33]. H6PDH is
thus a potential candidate supplying NADPH for 11β-HSD1-
induced amplification of tissue GC production [34–36].

In the present study, we characterised the metabolic
phenotype of H6PDH and G6PT in relation to pre-receptor
metabolism of GCs by examining the effects of the GC
antagonist RU486 on the production of the 11β-HSD1–
H6PDH–G6PT system in the liver and adipose tissues of
db/db mice. We also assessed the direct interaction of G6PT
and H6PDH in the control of 11β-HSD1 driving tissue GC
action in primary cultures of hepatocytes from db/db mice
by using H6pdh small interfering (si)RNA and the G6PT
inhibitor chlorogenic acid (CA). Finally, we examined the
hormonal regulation of H6PDH and G6PT in these intact
cells.

Methods

Animals Male C57BL/KsJ-obese (db/db) mice and their
lean littermates (db/+) were purchased at 10 weeks of age
from Taconic Farms (Hudson, NY, USA) and housed in a
room illuminated daily from 07:00 to 19:00 hours (12 h
light/dark cycle) with free access to water and standard
laboratory chow. RU486 (25 mg/kg) or vehicle was given
by intraperitoneal injection twice each day (at 07:00 and
19:00 hours) for 3 days or 3 weeks as previously described
by Friedman et al. and Liu et al. [5, 15]. Body weight and
food intake were recorded daily. All animal experiments
were approved by the Charles Drew University Institutional
Animal Care and Use Committee.

Insulin tolerance test For the insulin tolerance test (ITT),
animals were fasted for 12 h, and blood samples were
drawn at different times following insulin injection (2 U/kg
i. p.; Novolin R; Eli Lilly, Indianapolis, IN, USA).

Biochemical assays Blood glucose levels were determined
by the glucose oxidase method [36]. Plasma corticosterone
levels were determined by RIA using mouse corticosterone
as a standard (ICN Biomedicals, Costa Mesa, CA, USA).
Plasma insulin levels were measured by RIA using rat
insulin as a standard (Crystal Chemicals, Chicago, IL, USA).

Cell culture and treatment Primary hepatocytes were
isolated from male db/db mice [21] and seeded onto
collagen-coated dishes in DMEM/F-12 medium with 10%
FBS at 37°C for 4 h. Cells were then washed with PBS, and
the medium was changed to DMEM/F-12 medium without
FCS. After 12 h, cells were treated with corticosterone
1� 10�7 � 1� 10�5mol=l
� �

or insulin (1×10−5 mol/l) in
the presence or absence of RU486 (1×10−6 mol/l) for 48 or
72 h. The G6PT inhibitor CA (0–200 μmol/l) was added to
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primary cultures of hepatocytes for 48 h. This pharmaco-
logical dose of CA is similar to doses previously used in
mouse 3T3-L1 pre-adipocytes and glioma cells [37, 38].

siRNA experiments in primary cultures of hepatocytes Cells
were transfected with the H6pd siRNA (SABiosciences
siRNA ID KM26265; SABiosciences, Frederick, MD,
USA), or negative control siRNA (SABiosciences) using
lipofectamine 2000 transfection agent according to the
manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA).
After 4 h, cells were treated with vehicle or corticosterone
(1×10−6 mol/l) for an additional 48 h.

Microsomal enzymatic activity assays The liver microsomal
pellet was obtained and 11ß-HSD1 activity was evaluated by
addition of 0.4–1 mmol/l NADPH and 900 nmol/l unlabelled
11-dehydrocorticosterone (11-DHC) with 100 nmol/l 11-
[3H]DHC as tracer to microsomes in Krebs–Ringer buffer

solution at 37°C for 10–30 min [36, 39]. The liver
microsomes (1 mg/ml protein) were permeabilised with
1% Triton-100 to allow the free access of the cofactor to the
intraluminal enzyme. Steroids were separated by thin-layer
chromatography (TLC) and analysed by scintillation count-
ing. The percentage of interconversion of [3H]corticosterone
and 11-[3H]DHC was calculated from the radioactivity in
each fraction. Reductase activity of 11ß-HSD1 was also
evaluated by immunoassay of the corticosterone produced
from 11-DHC using a sensitive corticosterone ELISA kit.

H6PDH enzyme activity was determined by spectropho-
tometric measurement of NADPH production in the presence
of G6P and NADP using absorbance at 340 nm with a
spectrophotometer (Ultrospec 2100, Amersham Biosciences)
[36, 40]. Protein, 50 μg, from liver microsomes was
incubated with 0.5–5 mmol/l G6P, 1–5 mmol/l NADP and
100 mmol/l glycine buffer solution at 22°C for 0–5 min.
Specific activities were calculated and expressed as micro-

Variable db/+ + vehicle db/+ + RU486 db/db + vehicle db/db + RU486

n 7 7 8 8

Body weight (g) 31±1.5 31.5±1.8 55±4.3*** 48.8±3.6

Glucose (mmol/l/) 8.2±0.5 7.3±0.6 30±2.3*** 11.7±1.2 †††

Insulin (pmol/l) 2.8±0.5 2.4±0.4 17.2±2.9*** 15±3.1

Cholesterol (mmol/l) 1.6±0.1 57±5.7 110±7** 94±12

Triacylglycerols (mmol/l) 1.5±0.2 1.4±0.13 2.5±0.25** 2.1±0.2

Corticosterone (nmol/l) 122±25 295±34** 469±110** 870±121†††

Table 1 Body weight, blood
glucose, plasma insulin, lipid
and corticosterone

Data are mean ± SEM from
seven to eight mice per group

**p<0.01, ***p<0.001 vs
db/+ vehicle
††† p<0.001 vs db/db + vehicle
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Fig. 1 11β-HSD1 and H6PDH
activity and protein levels in
liver microsomes of lean db/+
and obese db/db mice treated
with vehicle or RU486. a 11β-
HSD1 reductase activity was
measured in mouse liver micro-
somes using 11-DHC as
substrate in the presence of
NADPH. Production and rela-
tive quantification of 11β-HSD1
(b) and H6PDH (c) protein was
done relative to the amount of
GAPDH. d H6PDH activity was
measured in liver microsomes
on the basis of NADPH forma-
tion using 2 mmol/l G6P as
substrate in the presence of
NAD. Data are mean ± SEM
from seven to eight mice (per
group). **p<0.01, ***p<0.001
vs db/+ controls; †p<0.05,
††p<0.01 vs db/db controls.
White bars, vehicle; black bars,
RU486
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moles NADPH production per minute per milligram
protein. The protein concentration was measured by the
Bradford assay (Bio-Rad Protein Assay Kit, Bio-Rad,
Hercules, CA, USA).

11β-HSD1 and H6PDH activity in primary hepatocytes
Cells were incubated with 2 nmol/l 11-[3H]DHC with
18 nmol/l unlabelled 11-DHC for 10–30 min [41]. Steroids
were extracted from 1.0 ml of culture medium with ethyl
acetate and separated by TLC. Enzyme activity levels were
determined by counting the radioactivity. For the H6PDH
activity in vitro, protein extracts, 20 μg, from primary
hepatocytes were incubated with 2 mmol/l G6P as substrate
in 100 μl total volume of glycine buffer (pH 10.0) with
0.5 mmol/l NADP as a cofactor. The changes in absorbance
at 340 nm were measured during 25 min at 5 min intervals
[36].

RNA extraction and real-time quantitative PCR analysis
Total RNA was extracted using a single-step extraction
method (RNAzol B, Invitrogen). cDNA synthesis from
2.0 μg RNA was performed using high capacity RNA-to-
cDNA Kit (Applied Biosystems, Carlsbad, CA, USA).

Real-time primers were designed with Primer express
software 2.0 (Applied Biosystems) and are listed in the
Electronic supplementary material (ESM) Table 1. Ampli-
fication of each target cDNA was then performed with
SYBR Green I Master Kits in the ABI Prism 7700 Sequence
Detection System (Applied Biosystems) according to the
protocols recommended by the manufacturer. All reactions
were carried out using the following cycling parameters: 55°C
for 2 min and 95°C for 10 min, following by 40 cycles of
95°C for 15 s and 60°C for 1 min. Threshold cycle (Ct)
readings for each of the unknown samples were then used to
calculate the amount of target genes and were normalised to
the signal of 18S rRNA. Data analysis is based on the ΔCt

method.

G6P uptake measurement Microsomal G6P uptake mea-
surements were performed according to protocols previously
published by Hiraiwa et al. [42]. Briefly, 50–100 μg of
microsomes were incubated in 50 mmol/l sodium cacody-
late buffer containing 250 mmol/l sucrose (pH 6.5) in the
presence of 0.2–1 mmol/l G6P plus [U-14C]G6P (American
Radiolabeled Chemicals, St Louis, MO, USA) at 22°C for
3 min. The reaction was stopped by filtering through a
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Fig. 2 a Quantitative real-time RT-PCR analysis demonstrating the
relative alterations of 11β-Hsd1, H6pd and G6pt mRNA expression in
the livers of db/+ and db/db mice treated with vehicle or RU486.
White bars, db/+; black bars, db/++RU486; hatched bars, db/db; grey
bars, db/db+RU486. b Uptake of [U-14C]G6P into the liver micro-
somes of lean db/+ and db/db mice treated with vehicle or RU486.
White squares, db/+; black squares, db/++RU486; white circles, db/

db; black circles, db/db+RU486. c Expression levels of Pepck and
G6Pase mRNA in the liver of db/+ and db/db mice treated with
vehicle or RU486. White bars, db/+; black bars, db/++RU486;
hatched bars, db/db; grey bars, db/db+RU486. d The effects of RU486
on AUC of plasma glucose level in ITT. Data are mean ± SEM from
seven to eight mice per group. **p<0.01 vs db/+ controls; ††p<0.01
vs db/db controls
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nitrocellulose filter and samples were quickly washed with
an ice-cold buffer containing 50 mmol/l TRIS–HCl, pH 7.4
and 250 mmol/l sucrose. Microsomes were subsequently
permeabilised with 0.2% deoxycholate to abolish intra-
vesicular G6P uptake. The radioactivity associated with
microsomes retained by filters was measured by liquid-
scintillation counting.

Western blot analysis Protein, 25 μg samples from liver
microsomes or 50 μg total cellular proteins from primary
hepatocytes, was analysed by SDS-PAGE as described by
Liu et al. [36]. Membranes were incubated with a polyclonal
anti-11β-HSD1 antibody (1:1,500; Affinity Bioreagents,
Rockford, IL, USA) and mouse anti-human H6PDH anti-
body (1:2,000; Novus Biological, Littleton, CO, USA). The
11β-HSD1 and H6PDH protein signal was quantified with
the use of the Eagle Eye II Quantitation System (Stratagene,
La Jolla, CA, USA).

Statistical analyses All data are expressed as the mean±
SEM. The normality of the distribution of data was
established using the Wilks–Shapiro test, and outcome
measures between groups were compared by Student’s t test.
To compare multiple groups, one-way ANOVA used. If
ANOVA reveals significant differences, then individual
group comparisons were performed by using the New-
man–Keul’s post hoc test. The differences among groups
were considered significant at p<0.05.

Results

Characterisation of H6PDH and G6pt levels in db/db
mice db/db mice had higher body weight and plasma levels
of insulin, corticosterone and blood glucose than matched
littermates (Table 1). Plasma levels of cholesterol and
triacylglycerols in db/db mice were significantly higher
than those in lean mice (Table 1). 11β-HSD1 reductase
activity in liver microsomes of db/db mice was significantly
increased to 47% over that of db/+ controls (p<0.01;
Fig. 1a). Western blot analysis revealed the 11β-HSD1
protein production in the liver of db/db mice was increased
1.7-fold over that of db/+ controls (p<0.01; Fig. 1b).
H6PDH activity and protein production in the liver of db/db
mice were increased 1.57- and 1.9-fold, respectively,
compared with db/+ control mice (p<0.001; Fig. 1 c, d).
Real-time RT-PCR analysis revealed that hepatic 11ß-Hsd1
(also known as Hsd11b1) mRNA levels were increased 2.8-
fold in db/db mice and level was positively correlated with
H6pd mRNA levels (p<0.01), which increased to 1.8-fold
in liver over that of db/+ animals (p<0.01; Fig. 2a).
Similarly, the hepatic G6pt (also known as Slc37a4) mRNA
levels in db/db mice were significantly increased by 1.9-

fold over that of db/+ controls (p<0.01; Fig. 2a). Moreover,
the [U-14C]G6P uptake in hepatic microsomes of db/db
mice was higher than that of db/+ controls (p<0.01;
Fig. 2b). The levels of hepatic Pepck and G6Pase mRNA
in db/db mice were higher than the respective in db/+ mice
(p<0.01; Fig. 2c). AUC analysis showed that the glucose
levels in db/db mice were significantly higher than those in
vehicle-treated db/+ animals (Fig. 2d). In addition, sub-
cutaneous and epididymal adipose 11ß-Hsd1 mRNA levels
were higher than those of lean controls (Fig. 3a, b). More-
over, H6pd mRNA levels were also markedly increased in
subcutaneous fat and in epididymal fat in db/db mice
compared with lean levels (p<0.05), respectively. However,
there was no difference in G6pt mRNA levels in sub-
cutaneous and epididymal fat between db/db mice and lean
controls (Fig. 3a, b).

The effects of RU486 treatment on the phenotypes of type 2
diabetes in db/db mice As shown in Table 1, RU486
compared with vehicle treatment for 3 weeks lowered blood
glucose levels with no significant changes in body weight
and levels of plasma insulin and lipids in db/db mice.
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Fig. 3 Adipose 11β-Hsd1, H6pd and G6pt mRNA expression in (a)
subcutaneous and (b) epididymal fat of lean db/+ and obese db/db
mice treated with vehicle or RU486. Relative expression of mRNA
levels was measured by RT-PCR and normalised to 18S rRNA
expression. *p<0.05, **p<0.01 vs db/+ control; ††p<0.01 vs db/db
controls. White bars, db/+; hatched bars, db/+ + RU486; black bars,
db/db; grey bars, db/db+RU486
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However, plasma corticosterone levels were increased in
db/db mice after RU486 treatment (p<0.001). In contrast,
hepatic 11β-HSD1 reductase activity was reduced 1.6-fold
in RU486-treated db/db mice (Fig. 1a). Western blot
analysis revealed that 11β-HSD1 protein production was
decreased 2.5-fold in RU486-treated db/db mice (p<0.01 vs
db/db controls; Fig. 1b). Similarly, treatment of db/db mice
with RU486 for 3 weeks significantly reduced hepatic
H6PDH activity to 45% that of vehicle-treated db/db mice
(p<0.01; Fig. 1d); this reduction in enzyme activity
occurred in parallel with decreased hepatic H6PDH protein
production in RU486-treated db/db mice (Fig. 1c). Real-
time RT-PCR analysis showed that in db/db mice, RU486
reduced hepatic 11β-Hsd1 and H6pd mRNA expression,
respectively, to the levels of vehicle-treated db/+ mice
(Fig. 2a). In parallel with the decrease in H6pd mRNA
levels, hepatic G6pt mRNA expression was decreased by
twofold in db/db mice after RU486 treatment (Fig. 2a).
Consistent with decreased G6pt expression, RU486 reduced
[U-14C]G6P uptake in the liver microsomes, although it did
not restore G6P uptake levels to those of db/+ controls
(Fig. 2b). Moreover, RU486 also significantly reduced

hepatic Pepck mRNA levels, but did not exert significant
effects on the hepatic G6Pase (also known as G6pc)
mRNA expression in db/db mice (Fig. 2c). The AUC
glucose levels were reduced in db/db mice after RU486
treatment (Fig. 2d). RU486 treatment for 3 weeks also
reduced the G6pt mRNA level with simultaneous reduction
in H6PDH and 11β-HSD1 expression in subcutaneous fat
of db/db mice as compared with controls (Fig. 3a), but did
not alter epididymal fat G6PT, H6PDH and 11β-HSD1
expression (Fig. 3b). However, RU486 did not exert
significant effects on 11β-Hsd1, H6pd and G6pt mRNA
expression in adipose tissues from db/+ mice (Fig. 3a, b).
In addition, a shorter treatment of db/db mice with RU486
for 3 days also significantly reduced the expression of 11ß-
Hsd1, H6pd and G6pt in the liver and improved glucose
levels, but did not change the slope of insulin tolerance
curve (data not shown), indicating that blocking the action
of GC with RU486 leads to changes in gene expression that
are independent of improvement in insulin sensitivity.

H6PDH and G6PT abundance in primary cultures of
hepatocytes To confirm our in vivo observations, we

0

1

2

3

H
6P

D
H

/G
A

PD
H

C 1 × 10−7 1 × 10−6 1 × 10−5

H6PDH
GAPDH

B (mol/l)

a

*
**

**

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C B C BI RU B+ 
RU

RU B+ 
RU

H
6p

dh
 m

R
N

A
/1

8S

c
***

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H
6P

D
H

 a
ct

iv
ity

 
(n

m
ol

 N
A

D
PH

/m
g 

pr
ot

ei
n)

b

***

*** ******

0 1 5 10 20

Time (min)

0

1

2

3

4

5

m
R

N
A

 le
ve

ls
/1

8S

d

***

***

†††
††

†††

***

Fig. 4 Effects of corticosterone and insulin on primary cultures of
db/db mouse hepatocytes. Levels of H6PDH production (a) and
activity (b) in cells treated with corticosterone for 48 h. In (b), white
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investigated the effects of exogenous corticosterone and
insulin on G6PT and H6PDH in primary hepatocytes from
db/db mice. Western blot analysis showed that treatment of
hepatocytes with increasing doses of corticosterone led to a

concentration-dependent induction of H6PDH protein pro-
duction (Fig. 4a). A concentration of corticosterone (1×
10−6 mol/l), similar to that occurring in db/db mice in vivo,
significantly increased NADPH production in the presence
of G6P as a substrate (Fig. 4b). The increase in H6PDH
activity was consistent with real-time RT-PCR analyses,
which showed that corticosterone increased H6pd mRNA
levels 1.6-fold in primary hepatocytes compared with vehicle
(p<0.001; Fig. 4c). In contrast, treatment of hepatocytes with
both corticosterone and RU486 (10−6 mol/l) for 48 h failed
to increase H6PDH activity (Fig. 4b) or H6pdh mRNA
levels (Fig. 4c). Moreover, co-treatment with corticosterone
and RU486 also blocked the corticosterone-induced changes
in 11ß-Hsd1, Pepck and G6Pase mRNA expression (Fig. 4d)
in these intact cells. However, no changes in H6pdh mRNA
expression were observed after 48 h in cells exposed to a
relatively high concentration of insulin (1×10−6 mol/l;
Fig. 4c). Extending our findings on H6PDH activity,
corticosterone-induced expression of G6pt mRNA in primary
hepatocytes was reduced significantly by RU486 (Fig. 5a, b).

The effects of H6PDH siRNA and G6PT inhibitor (CA) on
H6PDH and 11β-HSD1 As shown in Fig. 6, H6PDH protein
and H6pd mRNA levels were markedly reduced in intact
hepatocytes transfected with H6pd siRNA in comparison to
cells transfected with siRNA control, respectively (p<0.001,
Fig. 6a, b). Similarly, in comparison with control levels,
11β-HSD1 reductase activity in primary hepatocytes after
transfection with H6pdh siRNA was decreased by 44% (p<
0.01; Fig. 6c). Furthermore, H6pd siRNA attenuated the
corticosterone-mediated increase in H6PDH protein and 11β-
HSD1 reductase activity in these intact cells in comparison
with control levels (Fig. 6), indicating that suppression of
H6PDH by siRNA exerted effects comparable with those of
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Fig. 6 Suppression of H6pd expression by H6pd siRNA decreased
11β-HSD1 reductase activity and attenuated the effects of corticosterone
on H6PDH and 11β-HSD1 in primary culture of hepatocytes. Cells were
transfected with either H6pd siRNA (si) or negative control siRNA (N)
and cultured with or without corticosterone (b; 1×10−6 mol/l) for 48 h.
a Western blots showing effect of H6pd siRNA inhibition on H6PDH
protein in cells. b H6pd and 11β-Hsd1 mRNAs were measured by real-

time RT-PCR. White bars, H6pd; black bars, 11β-Hsd1. c 11ß-HSD1
reductase activity was expressed as the percentage of [3H]DHC
converted to [3H]corticosterone (b) in medium from hepatocytes. Values
are the mean±SEM from three separate culture preparations. **p<0.01,
***p<0.001 vs negative control; †††p<0.001 vs corticosterone-treated
hepatocytes
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expression in primary cultures of hepatocytes from db/db mice. b
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RU486 on reducing the corticosterone-induced H6PDH
levels and 11ß-HSD1 activity.

The effects of the G6PT inhibitor CA on H6PDH and 11β-
HSD1 are shown in Fig. 7. CA significantly reduced H6PDH
protein production in primary hepatocytes compared with
vehicle treatment for 48 h (Fig. 7a). Consequently, the
mRNA levels of H6pd were decreased by 1.6-fold in these
intact cells after CA treatment (Fig. 7b). In agreement with
reduction of H6PDH, CA treatment also reduced 11β-Hsd1
mRNA expression as compared with that of controls (p<0.01;
Fig. 7b).

Discussion

We found that the phenotype of type 2 diabetes in db/db
mice was associated with the induction of hepatic H6PDH
activity and gene expression. H6PDH activity and protein

expression were elevated in liver microsomes from db/db
mice, and this was accompanied by the induction of hepatic
11ß-HSD1 reductase activity. This elevated production of
hepatic H6PDH corresponded with increased hepatic Pepck
and G6pase mRNA levels, high blood glucose and insulin
resistance, suggesting that elevated hepatic H6PDH levels
may contribute to the development of type 2 diabetes in our
animal model. Induction of hepatic H6pd expression could
increase the generation of the crucial co-factor NADPH and
thus enhance 11ß-HSD1 upregulation of local GC produc-
tion, which would lead to gluconeogenesis linked to the
development of hyperglycaemia in diabetic animals [15, 21].
Moreover, H6pd and 11ß-Hsd1 mRNA levels were also
increased in the adipose fat of db/db mice. Our present
results are consistent with recent reports that adipose H6pd
and 11ß-Hsd1 mRNAwere increased in patients with type 2
diabetes [43]. To our knowledge, hepatic H6PDH has not
been measured in patients with type 2 diabetes. Our
findings are also supported by earlier reports that increased
hepatic 11ß-HSD1 production may contribute to the
pathogenesis of type 2 diabetes in db/db mice [21, 44].

In db/db mice, excess corticosterone production has been
shown to be crucial for the development of hyperglycaemia,
insulin resistance and obesity, and adrenalectomy reverses
these changes [6–8]. In the present study, we observed that
the induction of hepatic H6PDH activity and H6pd gene
expression was associated with the elevated circulating
levels of corticosterone. This was validated using isolated
hepatocytes from db/db mice in which corticosterone
increased H6PDH activity at the transcriptional level.
Increased H6PDH activity could then provide the cofactor
NADPH to 11ß-HSD1, suggesting that GCs could posi-
tively promote their own pre-receptor metabolism through
activation of NADPH availability to 11β-HSD1 reductase
activity. Our results are consistent with those of earlier
reports that cortisone increased H6PDH activity leading to
11ß-HSD1 amplifying cortisol production in rat liver
microsomal fractions [34]. These data support our sugges-
tion that the induction of hepatic H6PDH production may,
in part, result from excess circulating corticosterone action.

It is well known that pharmacological blockade of GR
by RU486 antagonises hypercortisolaemia-related hyper-
glycaemia and insulin resistance in db/db mice as well as in
patients with Cushing’s syndrome [5, 8]. In the present
study, we found that treatment of db/db mice with RU486
markedly reduced production of hepatic H6PDH and 11β-
HSD1 and improved hyperglycaemia and insulin resistance.
Moreover, we observed that RU486 treatment reversed
corticosterone-induced production of H6PDH activity and
NADPH and prevented activation of 11β-HSD1 and
PEPCK production, consistent with a recent study reporting
that the dexamethasone-induced upregulation of H6pd
mRNA can be blocked by RU486 in mouse 3T3-L1
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adipocytes [45]. Moreover, we also observed that suppres-
sion of H6pd by siRNA decreased 11β-HSD1 reductase
activity and showed effects comparable with those of
RU486 on blocking the corticosterone-induced H6PDH
and 11ß-HSD1 in intact hepatocytes. Reduction of hepatic
H6PDH expression by RU486 could decrease the ability of
H6PDH utilising NADP to regenerate NADPH, thereby
limiting the intraluminal NADPH exposure to 11β-HSD1
linked to the reduction of 11β-HSD1 and the improvement
of glycaemic variables. This is in agreement with a recent
study reporting that the role of RU486 in glycaemic
homeostasis is associated with reduction of hepatic 11β-
HSD1 levels in type 2 diabetic mice [46].

In addition, the current study also observed a positive
relationship between hepatic H6PDH activity and G6PT
abundance in db/db mice and db/+ controls. Indeed, earlier
studies showed that H6PDH requires G6P transport to
maintain its metabolic substrate G6P availability within the
ER lumen [30, 47, 48]. We observed that the induction of
H6PDH production is associated with an elevation of G6pt
mRNA levels with increased hepatic intraluminal G6P
uptake. In contrast, decreased hepatic G6PT abundance
after RU486 treatment reduced the intraluminal hepatic
G6P uptake with corresponding suppression of H6PDH
activity. In agreement with the reduction of H6PDH levels,
the current study also showed that the G6PT inhibitor CA,
at doses used in vitro [37, 38], markedly reduced H6PDH
levels and led to the suppression of 11β-HSD1 in intact
mouse hepatocytes, indicating that G6PT is required to
maintain H6PDH levels. Our findings are consistent with
recent studies reporting that G6P availability in the ER
lumen was reduced, leading to decreased H6PDH and 11β-
HSD1 activity in mice with global deletion of G6PT [48].
This is also indirectly supported by a recent study demon-
strating that the G6PT inhibitor S3483 (derived from CA)
decreased G6P-induced H6PDH levels and resulted in the
inhibition of reductase activity of 11β-HSD1 in rat liver
microsomes [33, 49]. These data support our hypothesis
that suppression of G6PT production in hepatocytes may be
an additional mechanism of the RU486-mediated reduction
of H6PDH production. Moreover, we also observed that
RU486 prevented corticosterone-mediated induction of G6PT
production in mouse hepatocytes, suggesting that endogenous
GCs could exert positive effects on G6PT production in liver
that is likely to occur through a GR-mediated mechanism.
These findings are supported by a recent study which showed
that there are three GC response elements present in the
promoter region of the G6pt gene [50]. This is also in
agreement with previous studies showing that the GR
signalling pathway was required for the regulation of 11β-
HSD1 and PEPCK production by GCs [15, 51].

In summary, we showed that increased hepatic H6PDH
activity and G6PT expression may contribute to 11β-HSD1

upregulation of local GC action linked to the development
of type 2 diabetes. We also found that the induction of
hepatic G6PT and H6PDH production may be mediated, at
least in part, through the action of elevated circulating GCs.
The benefits of RU486 in db/db mice may be associated with
the endogenous inactivation of 11β-HSD1 amplifying tissue
GC action through reducing production of H6PDH and
G6PT. These findings raise the possibility that tissue-specific
modulation of H6PDH and G6PT production may be a new
strategy to be coupled with the investigation of 11β-HSD1
as a therapeutic target in the metabolic syndrome.
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