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Abstract Since over-nutrition accelerates the development
of obesity, progression to type 2 diabetes, and the
associated co-morbidity and mortality, there has been a
keen interest in therapeutic interventions targeting mecha-
nisms that may curb appetite, increase energy expenditure
or at least attenuate insulin resistance. Over the past decade,
numerous peri-mitochondrial targets in the de novo lipid
synthesis pathway have been linked to an increase in
energy expenditure and the drug development industry has
pursued the gene products involved as candidates to
develop drugs against. The basis of this link, and
specifically the premise that lowering tissue and cellular
malonyl-CoA can increase energy expenditure, is scruti-
nised here. The argument presented is that fuel switching as
effected by changes in cellular malonyl-CoA concentrations
will not trigger the mitochondria to increase energy
expenditure because: (1) an increase in beta-oxidation by
lowering respiratory exchange ratio (indicative of the
metabolic fuel consumed) does not equal an increase in
energy expenditure (how rapidly fuel is consumed); (2) the
ATP:oxygen ratios (i.e. ATP energy made:oxygen required
for the reaction) are similar when metabolising lipids (2.8)
vs glucose (3.0); (3) substrate availability (NEFA) does not
drive energy expenditure in vivo; and (4) the availability of
ADP in the mitochondrial matrix determines the rate of
energy expenditure, not the availability of fuel to enter the
mitochondrial matrix. To increase mitochondrial energy
expenditure, work must be done (exercise) and/or the
mitochondrial proton leak must be enhanced, both of which

J. G. Geisler (D<)

Johnson & Johnson Pharmaceutical Research and Development,
L.L.C., Metabolic Disease, Drug Discovery,

Welsh & McKean Roads,

Spring House, PA 19477, USA

e-mail: Jgeislel @its.jnj.com

increase availability of ADP. In fact, despite the historic
taboo of chemical uncoupling, this mechanism validated in
humans is closest on task to increasing whole-body energy
expenditure. Chemical uncoupling mimics the naturally
occurring phenomenon of proton leak, accelerating the
metabolism of glucose and lipids. However, it is completely
non-genomic (i.e. the target is a location, not a gene product)
and is not associated with addiction or mood alterations
common to satiety agents. A significant hurdle for drug
development is to discover a safe mitochondrial uncoupler
and to formulate it potentially as a pro-drug and/or oral pump,
to avoid the issue of overdosing experienced in the 1930s. The
potential therapeutic impact of such a compound for an over-
nutritioned patient population could be profound. If effective,
the mitochondrial uncoupler mechanism could resolve many
of the associated diseases such as type 2 diabetes, hyperten-
sion, obesity, depression, sleep apnoea, non-alcoholic steato-
hepatitis, insulin resistance and hyperlipidaemia, therefore
becoming a ‘disease-modifying therapy’.
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Abbreviations
ACC Acetyl-coenzyme A carboxylase

BAT Brown adipose tissue
BMR Basal metabolic rate
CPT1A Carnitine palmitoyltransferase-1A

KO Knockout
P:O ATP:oxygen

RER Respiratory exchange ratio
UCPI1 Uncoupling protein 1
VO, Volume of oxygen consumed
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The premise

In the last decade, seminal papers have been published in
which gene deletion of targets peripheral to the mitochon-
dria resulted in increased beta-oxidation and weight loss.
For example, stearoyl-coenzyme A desaturase 1 null
mutation was reported to protect against adiposity and
increased fatty acid oxidation [1]. Subsequently, it was
understood that this gene also had an essential role within
the dermis and the animals were hypothermic at room
temperature [2]. Similarly, diacylglycerol O-acyltransferse-
2 has a role in providing a skin barrier [3]. These enzymes,
as well as acetyl-coenzyme A carboxylase (ACC) 1 and 2
[4], fatty acid synthetase [5] and mitochondrial glycerol-3-
phosphate acyltransferase-1 [6], are key enzymes in the de
novo synthesis of triacylglycerol. Of central interest are
ACCI and 2, since they directly generate malonyl-CoA,
which plays a dual role in the liver [4]. Malonyl-CoA
donates the first two carbons for de novo synthesis of
palmitate and binds to carnitine palmitoyltransferase-1la
(CPT1A) as an allosteric inhibitor of fatty acid transport
into the mitochondrial matrix. This second role interested
pharmacologists because it was believed that lowering
cellular malonyl-CoA would result in increased beta-
oxidation of lipids and increased energy expenditure in
the mitochondria. Why did we believe this hypothesis?
First, malonyl-CoA allosterically inhibits CPT1A. Second,
malonyl-CoA levels drop in the fasted state and subse-
quently beta-oxidation of fatty acids begins. Third, the
knockout (KO) of 4cc2 (also known as Acach) resulted in
increased energy expenditure as measured by the volume of
oxygen consumed V0, [7, 8]. It has also been shown that
inhibition of the downstream genes Scdl and Dgat2 also
lowers Accl (also known as Acaca) and Acc2 expression by
a feedback mechanism [9-11]. These results supported drug
research targeted approaches to lower malonyl-CoA.
However, there are several problems with this premise,
including the unusual phenotype of Acc2 KO mice. First, it
is unlikely that lowering malonyl-CoA’s allosteric inhibi-
tion of CPTIA in the fed state will result in enhanced
oxidation of lipids, with concomitant weight reductions and
improved insulin sensitivity. Second, the first 4cc2 KO
animals did not show a switching of fuels (i.e. change in
respiratory exchange ratio [RER]), but rather an increase in
V0,, which was not predicted by bioenergetics or evident
with a dual Accl and Acc2 inhibitor in rats [12]. Recently,
the Acc2 KO model was independently generated and
resulted in an opposite phenotype [13]. The regenerated
Acc2 KO animals had lower malonyl-CoA levels, lower
RER and increased fatty acid oxidation, but there was no
change in VO,, adiposity and body weight, or more
importantly no improvements in glycaemic control during
a glucose tolerance test on a low- or high-fat diet [13]. The
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premise that purely switching metabolism from glucose to
lipid oxidation by lowering malonyl-CoA will result in
increased energy expenditure and be useful in treatment of
metabolic disease is clearly unsupported. In fact, it may
exacerbate the phenotype.

Further down the de novo lipid synthesis pathway,
interesting observations have been made in the phenotype
of mitochondrial Gpat! (also known as Gpam) KO mice on
a high-fat diet [14]. Glycerol-3-phosphate acyltransferase-1
catalyses the initial and rate-limiting step for addition of the
first long-chain acyl-CoA on to the glycerol-3-phosphate
backbone to partition lipids towards synthesis of triacyl-
glycerol and away from degradative pathways. The long-
term consequence of placing the KO phenotype on a high-
fat diet was increased insulin resistance. Gpat/ KO mice
had increased hepatic acyl-carnitines, a measurement of the
abundance of partially processed fatty acids leaving the
mitochondria and diffusing into the plasma compartment.
The conclusion drawn from the Gpatl KO studies was that
‘the amount of acyl-CoA exceeded the capacity of the
mitochondrial oxidation pathway’ [14]. The effect may be
real, but the conclusion is inaccurate. Instead, it is possible
that lowering malonyl-CoA without an increase in energy
expenditure was the cause of increased acyl-CoA levels. It
is unlikely that the mitochondrial machinery was over-
whelmed by an excess of lipids to metabolise. It is, rather,
more likely that the mitochondria could not metabolise
more lipids because ATP levels were sufficient and ADP
levels insufficient. Indeed, if these mice had been exercis-
ing or administered a mitochondrial uncoupler such as 2,4-
dinitrophenol, it is possible that the mitochondria would
have metabolised the back-log of acyl-CoAs, thus restoring
sufficient levels of ADP.

Energy expenditure is dependent on ADP availability
and not substrate availability

A widely held but false presumption that seems to act as a
dividing line between the mitochondrial bioenergetic and
the diabetes/obesity communities is that increasing sub-
strate into the mitochondria will increase energy expendi-
ture. In contrast to experiments on isolated mitochondria or
in vitro studies [15], the infusion of lipids in humans did
not change energy expenditure [16], but did increase insulin
resistance [17]. If the allosteric block (malonyl-CoA) is
removed from CPT1A, fatty acids will enter the mitochon-
dria, but do not become oxidised until energy is needed.
The ability to get into the mitochondria is a necessary
condition, but not in itself sufficient for the oxidation of
lipids. The metabolism of lipids is dependent on the
availability of ADP [18], not on whether fatty acids can
get into the mitochondria. If most of the ADP is locked up
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as ATP, the condition typically found in the fed state, then
intra-mitochondrial lipids will not be used. Mitochondrial
toxicity or insulin resistance may arise if all normal functions
(e.g. oxidative phosphorylation, electron transport, citric acid
cycle) are to continue against a background of lipid
overabundance [14]. Although oxidation of NEFA can be
induced reproducibly in vitro [15], there is no evidence that
increasing substrate in vivo will increase energy expenditure.
Increasing substrate in humans has been shown to increase
insulin resistance and fat storage [17, 19]. The function of
CPTI1A is not to block or modulate the rate of fatty acid
oxidation, but rather to regulate lipid substrate availability
into the inner mitochondrial matrix, thus governing against
an overabundance of intra-mitochondrial fatty acids. The use
of an in vitro beta-oxidation assay to select targets and
compounds in order to suggest that the same effect occurs in
vivo can potentially lead to incorrect conclusions. Evidence
of increased energy expenditure must be demonstrated
experimentally (e.g. VO,, tracers) in an intact animal.

The phenomenon of adaptive increases in energy
expenditure in response to energy intake and weight gain
is evident in rodents [20], but perhaps to a considerable less
degree in humans. It has been clearly demonstrated in a
head-to-head comparison of the Ucpl KO mouse with a
wild-type mouse during which both were fed a high-fat diet
and housed at thermoneutrality, i.e. ~30°C (82°F), when
non-shivering thermogenesis is turned off. Both animals
gained considerable weight relative to when housed at room
temperature (25°C) [21], but at ~30°C the wild-type mouse
gained far less weight than its Ucp! KO counterpart [22].
At this temperature, the sympathetic nervous system should
not stimulate proton leak via uncoupling protein 1 (UCP1)
in a fully ‘clothed mouse’ [23] and yet a compensatory
effect of resistance to weight gain due to the high energy
diet was still observed [24]. It is unlikely that such a
mechanism will provide a meaningful impact in humans
consuming high-fat diets (i.e. a diet-induced increase in
activity and/or thermogenesis), since (1) the mechanism
appears to be mediated by UCP1, (2) brown adipose tissue
(BAT) mass is considerably lower and (3), more impor-
tantly, we have a pandemic of obesity.

Fuel switching does not increase energy expenditure

A second possible misconception is that switching fuels
will increase oxidation and this in turn will increase energy
expenditure. When malonyl-CoA is reduced, the NADH/
FADH, needed to drive the electron transport chain and
subsequently oxidative phosphorylation is forced to be
derived from NEFA by beta-oxidation and from the remaining
acetyl-CoAs by the citric acid cycle vs metabolism of glucose
(Fig. 1). However, regardless of whether the source of
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Fig. 1 Metabolism of glucose and lipids is the source of the proton
gradient (Aziyy+). NADH and FADH, derived from the metabolism of
glucose and lipids provide the protons used to maintain the proton
gradient across the mitochondrial matrix

NADH/FADH, is from glucose or lipid, the ATP:oxygen
(P:0) ratio (ratio of ATP produced to the amount of oxygen
required and consumed for the reaction) remains roughly
equivalent (Fig. 2). The metabolism of 1 mole of glucose
consumes 12 moles of oxygen and yields 36 moles of ATP.
Therefore, the P:O ratio for glucose is 36/12=3. Metabolism
of 1 mole of palmitate requires 45.7 moles of O, (16/0.7x2)
and yields 129 moles of ATP. Therefore, the P:O ratio is 129/
45.7=2.8 [25]. This implies that no more energy is gained or
lost simply by switching fuel, and therefore the mitochon-
dria’s energy balance remains equal until the rate of oxygen
consumption changes (energy expenditure). This was clearly
demonstrated in rats administered a dual ACC1 and ACC2
inhibitor or in the recent Acc2 KO model, where RER was
constitutively lowered (as expected), but Y0, consumed
remained unchanged [12, 13]. The reason why V0, was
unaltered is simply that switching fuels does not motivate the
mitochondria to increase energy expenditure. The P:O ratios
are equivalent, and therefore ATP levels or mitochondrial

Glucose Lipids (palmitate)

CgH 05 + 60, > 6CO, + 6H,0 Cy6H3,0, + 230, 16CO, + 16H,0

Yield: 36 ATP Yield: 129 ATP
P/O P/O

36 ATP _3 Fuel switch 129 ATP — 5 g
120 46 0

Fig. 2 ATP:oxygen ratios for different fuels. The ratio of energy yield
(ATP) to oxygen required for glucose vs lipid metabolism are roughly
equal. Palmitate generates more ATP per molecule, but requires more
oxygen to metabolise
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membrane potential remain in balance. It should be noted
that although there is a 6.67% difference between glucose
and palmitate P:O ratio, it appeared insignificant with regard
to providing an advantage in the constitutive fatty acid
oxidation state for body weight, glycaemic control or
adiposity in Acc2 KO animals under high-fat diet conditions.

Animal models with dermis issues

The heat generated from brown fat (via UCP1) in rodents
may also be linked to the possible misinterpretation of the
metabolic phenotypes of mouse mutations and compounds
that have been reported to reduce body weight in rodents.
In rodents, BAT has the capacity to increase energy
expenditure 60% over basal metabolic rate (BMR) through
non-shivering thermogenesis [26]. If the function or heat
retention capacity of mouse skin is compromised by
changing the lipid content, non-shivering thermogenesis is
engaged to maintain core body temperature via the
sympathetic nervous system [2]. This creates the illusion,
on translation to humans when characterising a new target,
that the KO phenotype resulted in increased whole body
energy expenditure and that the protein may be a suitable
target for the development of drugs to treat metabolic
disease. Before claiming increased energy expenditure, it
should be tested whether the KO animals or drug candidates
can reduce body weight at 30°C (thermoneutrality) or when
animal models are crossed on to a Ucp! KO background to
eliminate weight reductions due solely to non-shivering
thermogenesis [22]. Ideally, compounds should be tested in
Ucpl KO animals at 30°C to simultaneously eliminate
shivering, non-shivering and diet-induced thermogenesis [27].
If greater energy expenditure and weight reductions are still
present in the absence of UCP1, then the target or compound
tested may well translate into weight loss in humans.

Breaking the taboo of chemical uncoupling

A significant research effort was undertaken in the 1990s
after publication of a seminal paper connecting the
phenomenon of non-shivering thermogenesis in BAT to
UCP1 [28]. There was a keen interest in developing UCP1
drugs as agonists capable of harnessing the potential of
UCP1 to achieve weight loss via energy expenditure
mechanisms. However, it was quickly realised that UCP1
is restricted to BAT and adult humans appeared to no longer
have this tissue. Only UCP1 has uncoupling properties
[29]. These findings led to a steep decline in research on
drugs targeting energy expenditure mechanisms and efforts
were channelled towards anorectic mechanisms. Recently,
BAT was found in humans along the vertebra and shown to
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be induced upon exposure to cold, presumably also by the
sympathetic nervous system [30, 31]. Expectations of
significant weight loss mediated by human BAT should be
treated with some caution if the intention is to use the
existing tissue or to expand upon the mass of this tissue.
One reason for such caution is that humans have propor-
tionally less BAT per body weight than rodents. Current
positron emission tomography-computed tomography
(PET-CT) scans estimate BAT mass in humans to total
~13 g (0.02% of body weight for a person weighing 70 kg)
[32], whereas mouse BAT mass is ~400 mg for 40 g body
weight (1%) (J.G. Geisler, unpublished results). Therefore,
humans have approximately 50-fold less BAT than mice.
More importantly, since humans are thermoneutral [22], it
is unlikely that UCP1 could be triggered to uncouple and
provide meaningful weight loss at room temperature.
Although there are some 30,000 genes in the genome
[33], the most effective means of increasing energy
expenditure in humans may be non-genomic (i.e. indepen-
dent of a gene or protein target), namely chemical
uncoupling (i.e. location of the mitochondrial matrix would
be the target). There has been renewed interest in chemical
uncoupling due to a better understanding of mitochondrial
function [24, 34] and the challenges of anorectic agents that
target reward pathways [35, 36]. Chemical uncouplers
mimic the function of UCPI and the naturally occurring
proton leak, which accounts for ~20 to 25% of the energy
lost in liver and ~50% of that lost in muscle, i.e. roughly
25% of total BMR [37, 38]. Instead of a protein channel for
the proton to enter through (e.g. UCP1), the molecule acts
as its own proton transporter into the matrix from the
cytosol. As a mechanism for effecting weight loss, chemical
uncouplers are precisely on task for causing the mitochon-
dria to increase energy expenditure and achieve this by
metabolising glucose and NEFA in the process (Fig. 1). The
mechanism works as follows. A weakly acidic uncoupler
holds a proton that dissociates upon entering the basic
environment within the mitochondrial matrix. As a proton
has been lost, the molecule leaves the matrix as an anion
and, upon returning to the acidic cytosolic environment,
becomes reprotonated to a cation, upon which it again
returns to the matrix to drop off another proton (Fig. 3). The
cumulative effect of such a cycle is a reduction of the
mitochondrial membrane potential and a lowering of the
proton-motive-force (Ap) that would be used to allow a
proton to travel through ATP synthase, causing a rotation
and subsequent phosphorylation of ADP [39]. Because of
this, ATP levels drop and the mitochondria instantly
responds to re-establish the gradient by accelerating
utilisation of NADH and FADH,. Oxidation is sustained
in the presence of an uncoupler because the mitochondrial
membrane potential cannot be restored until the drug is
cleared/metabolised. These electron transport system sub-
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Fig. 3 Coupling vs uncoupling. Maintaining the proton gradient
across the mitochondrial matrix and cytosol involves the pumping of
protons out of the matrix via cytochromes I, III and IV. a The coupling
of a proton transfer to the synthesis of ATP is a result of a proton
returning through ATP synthase, causing a rotation and subsequent
phosphorylation of ADP, thereby yielding an ATP molecule. b This
mechanism is circumvented in the case of chemical uncoupling (i.e.
entry of protons without phosphorylation to produce ATP). The proton
transfer into the matrix is on a carrier, a weak acid molecule (e.g. 2,4-
dinitrophenol or carbonyl cyanide p-trifluoromethoxyphenylhydrazone).
When the weak acid (cation) enters the basic environment of the
matrix, a proton is dissociated and the molecule, now an anion, returns
to the cytosol to become reprotonated into a cation and start the cycle
over again. All mitochondrial systems remain functional, but are
accelerated

strates come from two sources, the metabolism of glucose
and that of lipids. Energy expenditure is increased as
monitored by an increase in oxygen consumed; however,
the RER is roughly unchanged and therefore a mixed fuel is
consumed. This mechanism motivates the mitochondria
towards anti-obesity and anti-diabetes because the proton
electrochemical gradient (Auy+) is out of balance. This is
fundamentally different from malonyl-CoA-lowering
mechanisms (Fig. 4). It is important to note that for this
mechanism to be efficient, it is critical that all components
of the electron transport system, including ATP synthase,
remain completely functional. A pure chemical uncoupler
is not an inhibitor, but an enhancer of respiration.

B Uncoupling
H* (DNP, FCCP)

l Unbalanced
|Balanced

AY,, /ATP level
RER

Time

Fig. 4 Dynamics of energy compensation with chemical uncoupling
in the fed state. Administration of a chemical uncoupler causes a drop
in the mitochondrial membrane potential (AW ,,,) and ATP levels (blue
line). The cell responds by increasing the rate of oxygen consumption
('O, [pink line] or energy expenditure) to generate more NADH and
FADH, as a source of protons (when oxidised back to NAD" and
FAD) as a mechanism to re-establish the electrochemical gradient
(Auigy+). Since NADH and FADH, come from the metabolism of
glucose and lipids, the RER (orange line) is primarily unchanged
(high doses shift RER towards lipids). In the presence of a chemical
uncoupler, energy expenditure is constitutively enhanced since the
AW, is out of balance

Drug safety is a primary concern for the development of
chemical uncoupling as a therapeutic approach for meta-
bolic disease. Historical data from the 1930s demonstrate
the abuse potential for uncoupler-based weight-loss agents,
although 2,4-dinitrophenol was not addictive [40]. Beyond
the benefits of weight loss ‘predominantly from the hips
and abdomen’ [40], uncouplers reduce reactive oxygen
species [41], a phenomenon that has been associated with
improved infarct volume during ischaemia [42], longevity
and ageing [43]. Although chemical uncoupling was proven
to achieve weight loss in humans during the 1930s, the
science of pharmacology and the challenges of drug
development have changed dramatically over the past
80 years. It would need to be demonstrated that all vital
functions are uncompromised with chemical uncoupling, in
particular the heart in a setting of increased BMR. Another
potential risk of chemical uncoupling is increases in core
body temperature at high doses, although at lower doses the
heat is usually dissipated with no change in temperature
[44, 45]. Cataracts have been reported in some patients
treated with 2,4-dinitrophenol, but this was not replicated in
more recent animal models [46] and may be a property of
2,4-dinitrophenol vs general uncouplers. A key question is
to what degree does energy expenditure have to be
increased to achieve meaningful weight loss? According
to calculations from a study conducted in 1935, a 10%
increase in BMR resulted in weight loss of ~0.3 to 0.45 kg/
week [44]. If the calculations are accurate and a less
aggressive approach was taken today, then a 5% increase in
BMR should result in half that weight loss, but still provide
annual weight reductions of 10% or ~12 kg (26 1b) for
patients with BMI over 30 kg/m?. Interestingly, there were,
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to the author’s knowledge, no reports of a compensatory
increase in food consumption due to the increase in energy
expenditure in patients treated with 2,4-dinitrophenol in the
1930s [40, 44, 45]. In a recent study, 2,4-dinitrophenol was
provided to mice for their entire adult lifespan and daily
food consumption remained unchanged. However, a signif-
icant reduction in body weight was observed, as well as
reduced serum glucose, insulin and triacylglycerol, relative
to the untreated group [43]. Over the past 10 years,
numerous patents have been published by Novo Nordisk
indicating that the company has investigated chemical
uncoupling [47, 48]. To make such an approach pharma-
ceutically possible, the therapeutic index has to be
considerably improved over 2,4-dinitrophenol. Drugs that
have the potential to make patients look or feel good are
susceptible to abuse. 2,4-Dinitrophenol lacked weight loss-
diminishing effects at higher doses, and patients tended to
overdose. A modern chemical uncoupler may therefore
need to be formulated with a delivery method (e.g. oral
pump, pro-drug) that curtails overdosing. The positive and
negative long-term consequences of increasing energy
expenditure are unknown, but this could be addressed as a
component of the drug approval process.

Wasting energy: a unifying theory to tackle
over-nutritional phenotypes

The term ‘over-nutritional phenotype’ refers to the
expressed or displayed effect when energy intake exceeds
the tolerated threshold of an individual’s combined genetic
composition and level of physical activity, shown as an
increased incidence of insulin resistance, obesity, type 2
diabetes, cancer, sleep apnoea, depression, inflammation,
cardiovascular disease, hypertension, non-alcoholic fatty
liver disease, etc. [49—60]. It is critical to understand that
even with the most unfortunate genetic composition that
predisposes an individual to metabolic disease [61], such as
the well documented US Pima Indians with the world’s
highest prevalence of type 2 diabetes (38%), that physical
activity (energy expenditure) and diet can have a profound
effect on upon prevention. As an example, the lesser known
Pima Indian tribe in Mexico has a 7% prevalence of type 2
diabetes, fivefold lower than the US tribe. However, the
Mexican Pima Indians are much leaner (~30 kg lower body
weight), chiefly due to greater physical activity (even in
leisure time) and a low-fat diet including complex carbohy-
drates [62]. Comparative polymorphic analysis suggests
that although the US and Mexican tribes are no longer
identical, they share a closely held gene pool and that the
difference in their phenotype is unlikely to be accounted for
by a substantial genetic drift. For the remaining population
that find it difficult or impossible to modify diet and
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increase physical activity, wasting energy (the loss of
potential substrates for ‘useful work”) may be a fundamental
mechanism to target over-nutritioned phenotypes (Fig. 5)
and should be fully explored. Consider, for example, the
energy that is lost by heat via chemical uncoupling vs
making ATP or the loss of potential energy through urinary
glucose excretion effected by sodium glucose transporter 2
inhibition [63]. These mechanisms create an unbalanced
equation in favour of weight loss, without directly targeting
pathways controlling mood and satiety. What other ‘futile’
cycles can be used to change the energy balance? One
possibility, perhaps, is the reduction of fatty acid absorption
in the intestine or the increase of fatty acid excretion in the
urine, making fatty acids thus unavailable as an energy
source or as signalling molecules. These ideas, centred on
the notion of ‘wasting energy’, as well as a paradigm shift
from the historic focus on searching for risk alleles towards
a considerably increased emphasis on searching for protec-
tive alleles [64], could provide new therapeutic opportuni-
ties to treat the over-nutritioned.

Satiety and energy expenditure hold the key to reversing
the pandemic of over-nutritional phenotypes as a funda-
mental cure of symptoms manifested as obesity, diabetes,
hypertension, cardiovascular disease, non-alcoholic steato-
hepatitis, cancer, depression, etc. Given the potential issues
with drugs that result in satiety through attenuation of
‘reward’ pathways, e.g. increased incidence of depression
and suicide with rimonabant, targeting energy expenditure
may take centre-stage for the treatment of over-nutritional
phenotypes. Importantly, for individuals beyond preven-
tion, even moderate weight loss of ~8 kg (17 lbs) had a
profound impact on type 2 diabetics [65], yet most patients
find sustaining weight reduction difficult. In animal models

X
% Balanced \ Unbalanced
o
=
< \/

Time

Fig. 5 Unifying theory: waste energy. There is no easy way to resolve
an over-nutritional phenotype. However, it is clear that either energy-
in must be reduced or energy-out increased to reduce body weight.
From an energy-out perspective, wasting energy by some mechanism
is essential to take the body metabolically out of balance. A compound
that wastes energy (X) could, for example, do this by increasing
urinary excretion of fuels (glucose, NEFA), releasing energy as heat,
blocking intestinal absorption of potential fuels or by some as yet
unknown mechanism. Whole-body energy-out has to be greater than
energy-in and sustainable. The goal is to open the box for all possible
disease-modifying therapies to realistically resolve the pandemic of
over-nutritioned phenotypes. Blue line, energy (ATP level)
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in which VOZ was shown to be increased this effect was
repeatedly found to be ‘disease modifying’ [43, 66—69].
Insulin resistance, increased body weight, adiposity, steatosis,
and elevated plasma lipids and cholesterol can be resolved by
chronic increases in VO, suggesting a positive effect upon
increasing energy expenditure. The significant hurdle in the
search for novel drugs in this field is the identification of a
mitochondrial uncoupler that is safe. However, given the
potential benefits to patients and considering the pandemic
of the over-nutritioned population, the endeavour is worth
the effort.
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