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Abstract
Aims/hypothesis In adipocytes, triacylglycerol synthesis
depends on the formation of glycerol 3-phosphate, which
originates either from glucose, through glycolysis, or from
lactate, through glyceroneogenesis. However, glucose is
traditionally viewed as the main precursor of the glycerol
backbone and thus, enhanced glucose uptake would be
expected to result in increased triacylglycerol synthesis and
contribute to obesity.
Methods To further explore this issue, we generated a mouse
model with chronically increased glucose uptake in adipose
tissue by expressing Gck, which encodes the glucokinase
enzyme.

Results Here we show that the production of high levels of
glucokinase led to increased adipose tissue glucose uptake
and lactate production, improved glucose tolerance and
higher whole-body and skeletal muscle insulin sensitivity.
There was no parallel increase in glycerol 3-phosphate
synthesis in vivo, fat accumulation or obesity. Moreover, at
high glucose concentrations, in cultured fat cells over-
producing glucokinase, glycerol 3-phosphate synthesis from
pyruvate decreased, while glyceroneogenesis increased in fat
cells overproducing hexokinase II.
Conclusions/interpretations These findings indicate that
the absence of glucokinase inhibition by glucose 6-
phosphate probably led to increased glycolysis and blocked
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glyceroneogenesis in the mouse model. Furthermore, this
study suggests that under physiological conditions, when
blood glucose increases, glyceroneogenesis may prevail
over glycolysis for triacylglycerol formation because of the
inhibition of hexokinase II by glucose 6-phosphate.
Together these results point to the indirect pathway
(glucose to lactate to glycerol 3-phosphate) being key for
fat deposition in adipose tissue.
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Abbreviations
BAT Brown adipose tissue
EC50 Half maximal effective concentration
GFP Green fluorescent protein
GK Glucokinase
HKII Hexokinase II
NMR Nuclear magnetic resonance
PPARγ2 Peroxisome proliferator-activated receptor γ2
PEPCK Phosphoenolpyruvate carboxykinase
RBP-4 Retinol binding protein-4
WAT White adipose tissue

Introduction

Obesity is a growing problem in Western society, and is
associated with type 2 diabetes, insulin resistance, hyperten-
sion and dyslipidaemia. Obesity results from an imbalance
between energy intake and expenditure, leading to increased
energy storage in the form of triacylglycerol in white adipose
tissue (WAT). Adipocytes synthesise triacylglycerol by
esterification of non-esterified fatty acids with glycerol 3-
phosphate; net lipid deposition occurs when the rate of
esterification is higher than the rate of lipolysis. The synthesis
of triacylglycerol depends on the formation of glycerol 3-
phosphate, which may originate either from glucose through
glycolysis, or from lactate and pyruvate through glyceroneo-
genesis [1–3]. Overproduction of the key enzyme of
glyceroneogenesis, phosphoenolpyruvate carboxykinase
(PEPCK), in adipose tissue leads to increased glycerol 3-
phosphate, NEFA re-esterification, adipocyte hypertrophy
and obesity [4]. This is associated with higher susceptibility
to diet-induced insulin resistance and obesity [5]. In
contrast, the ablation of PEPCK in adipose tissue leads to
reduced triacylglycerol deposition and lipodystrophy [6]. In
addition, although there are few studies of the relative
contribution of pyruvate, via glyceroneogenesis, vs glucose,
via glycolysis, to glyceride–glycerol synthesis, it has been
demonstrated that glyceroneogenesis is quantitatively the

predominant source of glycerol in triacylglycerol [7, 8].
However, glucose is still traditionally viewed as the main
precursor of the glycerol backbone.

Glucose transport is considered a key regulatory step in
insulin-stimulated glucose utilisation in adipocytes. In
obesity and type 2 diabetes, insulin resistance leads to
decreased adipose tissue glucose uptake, which parallels the
downregulation of glucose transporter 4 production in
adipose tissue [9–12]. In adipose-specific Glut4 (also
known as Slc2a4) knockout mice, insulin-stimulated glu-
cose transport, glucose disposal and insulin sensitivity in
adipose tissue are impaired [13–15]. Thus, a primary defect
in adipocyte glucose uptake induces insulin resistance in
other insulin-target tissues, probably through a factor
secreted by adipose tissue, such as retinol binding protein-
4 (RBP-4) [13, 14, 16]. Nevertheless, despite a marked
decrease in glucose transport, these mice do not show
differences in adipose mass and adipocyte size [13, 14].
This suggests that lipid synthesis in adipose tissue is not
dependent on insulin-stimulated glucose uptake. However,
increased insulin-stimulated glucose uptake in adipose tissue
from transgenic mice overexpressing Glut4 in adipocytes
leads to higher fat mass, though the main part of the
glucose is metabolised to lactate (70%) [17–19]. In addition
to glucose transport, glucose utilisation also depends on
glucose phosphorylation. In adipocytes, glucose is mainly
phosphorylated by hexokinase II (HKII) which, together
with GLUT4, controls insulin-stimulated glucose utilisa-
tion. Hexokinase II is considered regulatory when glucose
transport is maximally stimulated, through feedback inhi-
bition of the enzyme by glucose 6-phosphate [20–22].

Therefore, we hypothesised that enhanced glucose uptake
and metabolism in adipose tissue would result in increased
triacylglycerol synthesis and contribute to obesity. Thus,
transgenic mice were engineered to increase adipose tissue
glucose phosphorylation by producing the liver enzyme
glucokinase (GK). In contrast to HKII, GK has a high Km for
glucose (5–8 mmol/l) and its activity is not inhibited by
glucose 6-phosphate [23]. We found that in transgenic mice
expressing Gck, increased glucose uptake in adipose tissue
did not lead to higher glycerol 3-phosphate levels and fat
mass, but to an increase in lactate production and to improved
whole-body insulin sensitivity and glucose tolerance.

Methods

Generation of transgenic mice A 3.1 kb XmaI-NotI
fragment containing the rat hepatic Gck cDNA and the
polyadenylation signal of the SV40 virus was introduced
downstream of the Ap2 (also known as Fabp4) promoter at
the XmaI-NotI site in the pAp2 plasmid [24, 25]. The entire
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Ap2–Gck chimeric gene (8.5 kb) was microinjected into
fertilised eggs as described by our group elsewhere [4].
Mice were tested for the presence of the transgene by
Southern blot with a probe radiolabelled with deoxycyti-
dine 5′-[32P]triphosphate (Amersham Pharmacia Biotech,
Piscataway, NJ, USA) by random oligopriming (Amersham).
C57Bl6/SJL mice were fed ad libitum with a standard diet
(Panlab, Barcelona, Spain) and maintained under a light–dark
cycle of 12 h (lights on at 09:00). When stated, mice were
starved for 16–18 h. Isofluorane-anaesthetised mice were
killed by decapitation and samples were taken between 09:00
and 10:00. In the experiments described below, male mice,
aged 4 and 6 months, were used. We used littermates as
controls. Control and transgenic male mice aged 2 months
were kept in individual cages and fed a high-fat diet (TD
88137; Tekland, Madison, WT, USA) or a standard diet for
up to 11 weeks. All experimental procedures involving mice
were approved by the Ethics and Experimental Animal
Committee of the Universitat Autònoma de Barcelona, Spain.

Cell culture and transient transfection of 3T3-L1 adipocytes
and adipocytes isolation 3T3-L1 pre-adipocytes were cul-
tured and differentiated as previously described with some
modification [26] and as detailed in the Electronic
supplementary material (ESM). Transient transfection of
3T3-L1 cells was performed using Lipofectamine 2000
(Invitrogen Life Sciences, Carlsbad, CA, USA) according
to the manufacturer’s instructions with some modifications
as detailed in the ESM. Briefly, differentiated cells were
incubated for 24 h with a mixture of DNA/lipofectamine
(respectively 7 μg and 7 μl per well of six well plates) in
Opti-MEM medium (Invitrogen). Isolation of adipocytes
from epididymal fat pad was performed using a modifica-
tion of the Rodbell’s method [27] as detailed in the ESM.

RNA and protein analysis Total RNA was obtained as
previously described by our group [4]. Northern blot, RT-
PCR using Omniscript Reverse transcriptase kit (Qiagen,
Hilden, Germany) and real-time quantitative PCR using
QuantiTect SYBR Green (Qiagen) and SmartCyclerII II
(Cepheid, Sunnyvale, CA, USA) was performed following
the manufacturers’ instructions and as detailed in the ESM.
The sequences of oligonucleotide primers are given in the
ESM (ESM Table 1). Western blot analysis was performed
using standard procedures with total homogenates of WAT,
skeletal muscle and liver [4]. The antibodies used are
described in the ESM.

Metabolic studies using radiolabelled tracers The in vivo
glucose utilisation index in epididymal WAT was determined
by the intravenous flash injection of deoxy-D-[3H]glucose
(Amersham) as previously described by Franckhauser et al.

[4]. Uptake of deoxy-D-[3H]glucose was measured in isolated
soleus muscles, in 3T3-L1 adipocytes and in isolated-
adipocyte suspension incubated with or without insulin as
previously described [4, 28, 29] and in the ESM. To determine
glucose and pyruvate incorporation into lipids, epididymal fat
pads and 3T3-L1 adipocytes were incubated for 2 h with
either D-[U-14C]glucose or D-[2-14C]pyruvate (PerkinElmer,
Waltham, MA, USA) supplemented with glucose as stated in
the figure legends. Total lipids, fatty acids and glyceride–
glycerol were then isolated as previously described [4]. For in
vivo pyruvate incorporation, mice were given an intraperito-
neal injection of [2-14C]pyruvate and glyceride–glycerol was
extracted. Incorporation of 14C radioactivity was measured
and corrected by specific blood pyruvate 14C clearance.

Body fat content and histological analysis The fat content
of mouse carcasses was measured as previously described
by Salmon and Flatt [30]. Epididymal fat pads were fixed
for 12–24 h in formalin, embedded in paraffin and then
sectioned. Sections were stained with haematoxylin/eosin.
Quantification of adipocyte size in white adipose tissue and
laser-scanning confocal microscopy studies in isolated
adipocytes were performed as described in the ESM.

Lactate synthesis from glucose in transgenic mice To
investigate in vitro lactate production, epididymal fat pads
were incubated in Krebs–Ringer bicarbonate HEPES buffer
with 20 mmol/l glucose, and lactate concentrations were
measured in the incubation medium at the times indicated.
To measure in vivo lactate release, starved mice were given
an intraperitoneal injection of glucose and blood samples
were obtained from the tail vein before and after the injection.
Glucose and lactate concentration were measured in blood
samples and incubation media as described in the ESM. For
the 13C- nuclear magnetic resonance (NMR) experiment,
mice received an intraperitoneal injection of [1-13C]glucose
and NMR was performed in perchloric acid extracts of WAT
as detailed in the ESM.

Intraperitoneal glucose and insulin tolerance tests Glucose
and insulin tolerance tests were performed as previously
described [4] and in the ESM. Conscious mice were given
an intraperitoneal injection of either glucose or insulin and
blood glucose levels were measured from samples obtained
by tail vein bleeding before the injection and afterwards at
the time points indicated.

Metabolite and hormones assays For metabolite assays in
epididymal WAT, gastrocnemius and liver, tissues biopsies
were obtained from anaesthetised mice and frozen. Hor-
mone and metabolite concentrations were determined as
indicated in the ESM.
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Statistical analysis All values are expressed as the means ±
SEMs. The significance of differences between data was
analysed using the Student–Newman–Keuls test. Differences
were considered significant at p<0.05.

Results

Adipose-specific expression of glucokinase led to increased
glucose uptake Two independent transgenic lines (Tg1 and

PolyA SV40Rat Gck cDNAAp2 promoter

Con Tg1 Tg2

WAT

BAT

Liver

Con Tg2 Con Tg2

Liver WAT
G

lu
co

se
 u

pt
ak

e 
(%

 o
f 

co
nt

ro
l)

0

100

200

300

400

TgCon

*

R
el

at
iv

e 
R

N
A

 e
xp

re
ss

io
n

Glut4 Glut1

0

1

2

a

b

c

d

f g h

i j k

e

Fig. 1 Adipose-specific production of glucokinase and in vivo basal
glucose uptake in adipose tissue of Gck-expressing transgenic mice
(Tg) and control mice (Con). a Schematic representation of the Ap2–
Gck chimeric gene. b Expression of the transgene in WAT and BAT.
Representative northern blots from epididymal WAT, interscapular
BAT and liver from control and heterozygous transgenic mice from
line 1 (Tg1) and line 2 (Tg2), hybridised with a Gck probe are shown.
c Protein levels of GK were detected by Western blots of epididymal
WAT and liver from control and heterozygous transgenic mice from
line 2 (Tg2). A representative western blot is shown. d The glucose
utilisation index was measured in epididymal white adipose tissue of
fed control and transgenic mice, as indicated in the text and the ESM.
Results are presented as percentage of basal glucose utilisation in
WAT of control mouse (302.13 pmol[mg protein]−1min−1). The results
are the means ± SEMs from at least four mice for each group. *p<

0.05. e Expression of glucose transporter genes Glut1 (also known as
Slc2a1) and Glut4 in epididymal WAT. The quantification of the level
of expression was performed by real-time quantitative PCR using
SYBR Green as indicated in the text and the ESM. Data were
normalised with 36B4 (also known as Rplp0) values and analysed as
described in the text and the ESM. Results are means ± SEM of data
from three mice for each group. Control mice, white bars; transgenic
mice, black bars. f–k Representative laser-scanning confocal images
in isolated transgenic adipocytes. Co-localisation (h, k) of GK (f) and
HKII (i) with mitochondria (g, j). GK and HKII were marked with
green fluorescent Alexa 488 and mitochondria with orange rosamine
MitoTracker. Nuclei of adipocytes were marked with blue Hoechst
stain solution. Note that hexokinases and mitochondria surround an
empty space corresponding to the unilocular lipid droplet. Scale bar,
11 μm
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Tg2) expressing hepatic Gck under control of the adipose-
specific aP2 promoter were obtained (Fig. 1a). Transgenic
mice showed high levels of Gck mRNA in white adipose
tissue and brown adipose tissue (BAT; Fig. 1b). Further-
more, GK protein was detected in the WAT of Tg2 mice,
whereas no GK was noted in the controls (Fig. 1c). In
addition, the level of GK protein in the WAT of Tg2 mice
was 20% that of the endogenous hepatic GK level. While
skeletal muscle from both control and transgenic mice did

not produce GK (results not shown), liver from both groups
showed a 2.3 kb mRNA transcript (Fig. 1b) resulting from
the expression of the endogenous hepatic Gck gene.
Moreover, similar levels of GK protein were detected in the
livers of both control and transgenic mice, indicating the
adipose specificity of the transgene (Fig. 1c). The transgenic
line with highest Gck expression, Tg2, was used in this study.

In WAT, a significant increase (about 2.5-fold) in the
glucose utilisation index, evaluated by measuring 2-deoxy-

Biochemical variable Fed Starved

Control Transgenic Control Transgenic

Insulin (pmol/l) 126.75±6.95 128.48±24.31 34.73±5.21 39.93±6.95

Adiponectin (μg/ml) 5.24±0.43 5.81±0.65 5.79±0.53 5.47±0.60

Leptin (pmol/l) 287.5±73.1 331.3±110.0 15.0±6.3 8.8±3.8

Serum triacylglycerol (mmol/l) 1.55±0.29 1.29±0.35 1.09±0.09 1.07±0.11

Serum NEFA (mmol/l) 0.9±0.15 1.1±0.08 1.9±0.15 1.8±0.14

Serum glycerol (μmol/l) 293±35 262±21 ND ND

Serum β-hydroxybutyrate (mmol/l) 1.04±0.17 0.79±0.11 ND ND

Liver glucose 6-phosphate (μmol/g) 1.30±0.20 1.13±0.14 0.30±0.08 0.20±0.04

Liver glycogen (μmol glucose/g) 136.7±25.3 112.6±12 1.2±0.7 4.5±0.7*

Liver triacylglycerol (μmol/g) 5.14±0.80 7.20±0.46* 27.54±4.69 21.72±2.86

Table 1 Serum and liver
variables in fed and starved
control and transgenic mice

Results are means ± SEMs from
at least eight mice for each
group
*p<0.05 vs matched control

ND, not determined

B
od

y 
w

ei
gh

t (
g)

0

10

20

30

40

TgCon

TgCon

Fa
t p

ad
 w

ei
gh

t (
g)

0
0.1
0.2
0.3
0.4
0.5
0.6

%
 B

od
y 

fa
t

TgCon
0

2

4

6

8

10

Con

%
 T

ot
al

 c
el

l

10

20

30

Tg

%
 T

ot
al

 c
el

l

10

20

30

<100
500

1,000
2,000

3,000
4,000

5,000
>5,000

Area (µm2)

<100
500

1,000
2,000

3,000
4,000

5,000
>5,000

Area (µm2)

a

b

c

d

e

Fig. 2 Adiposity analysis in transgenic mice expressing Gck (Tg) and
control mice (Con). Body weight (a) and epididymal fat pad weight
(b) from 4-month-old male control mice and heterozygous transgenic
mice. c Body fat content expressed as % body weight was measured
as described in the text and the ESM. Results are means ± SEMs from
six to eight mice for each group. d, e Representative sections stained
with haematoxylin/eosin of epididymal WAT from control mice (d)

and transgenic mice (e) (magnification ×10). Frequency distribution of
adipocyte cell surface area from epididymal white adipose tissue of
control mice (f) (mean=1,024±812 μm2) and heterozygous transgenic
mice (g) (mean=940±743 μm2). Results are means ± SEMs from
3,748 adipocytes from control mice and 5,015 adipocytes from
transgenic mice
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[1-3H]glucose uptake in vivo, was observed in transgenic
mice (Fig. 1d). In addition, production of glucose trans-
porters 1 and 4 in the adipose tissue of transgenic mice was
similar to that in controls (Fig. 1e). This suggests that the
specific increase in adipose tissue glucose uptake in
transgenic mice was due to the presence of GK in WAT.

In order to examine the subcellular localisation of GK, the
percentage of co-localisation of GK with mitochondria was
determined and compared with that of endogenous hexoki-
nase, HKII. To this end, both enzymes were immunodetected
in isolated adipocytes from transgenic mice and visualised by
laser-scanning confocal microscopy (Fig. 1f–k). In transgenic
mice, similar percentages of HKII and GK co-localised with
mitochondria (HKII, 41.05±9.58% vs GK, 39.37±15.88%;
n=12), indicating a similar subcellular distribution.

Glucokinase production in adipose tissue does not increase
adiposity The effect of glucokinase production on lipid

storage in adipose tissue was further examined. Body
weight, epididymal fat pad weight and body fat content
were similar in transgenic and control mice (Fig. 2a–c).
Moreover, the frequency of distribution and mean adipo-
cyte size from control and transgenic mice were similar
(Fig. 2d–g). These findings indicate that the transgenic
mice did not develop adipose tissue hypertrophy and/or
hyperplasia.

Similarly, in agreement with the lack of extra fat
accumulation in transgenic mice, serum levels of adiponectin
and leptin, as well as circulating NEFA, glycerol, triacylgly-
cerol and β-hydroxybutyrate in the transgenic mice were
similar to those in the controls (Table 1).

Increased glucose uptake in adipose tissue does not lead to
increased glycerol 3-phosphate synthesis In ex vivo epi-
didymal WAT from transgenic mice, [14C]glucose conver-
sion into lipids, fatty acids or glyceride–glycerol synthesis
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Fig. 3 Glycerogenesis and glyceroneogenesis in Gck-expressing
transgenic mice (Tg, black bars) and control mice (Con, white bars).
a In vitro D-[U-14C]glucose conversion into lipids, fatty acid and
glyceride–glycerol (glycerogenesis) in epididymal WAT explants from
4-month-old control and transgenic mice. Incubation media were
supplemented with 5 mmol/l non-labelled glucose. b In vitro D-[2-14C]
pyruvate conversion into lipids, fatty acid and glyceride–glycerol
(glyceroneogenesis) in epididymal WAT explants from control and
transgenic mice. Incubation media were not supplemented with non-
labelled glucose. c In vitro D-[2-14C]pyruvate conversion into
glyceride–glycerol (glyceroneogenesis) in epididymal WAT explants
from control and transgenic mice in the presence of non-labelled
glucose. Incubation media were supplemented with 5 mmol/l or
20 mmol/l non-labelled glucose. *p<0.05 vs control, 5 mmol/l
glucose; †p<0.05 vs control, 20 mmol/l glucose; and ‡p<0.05 vs

transgenic, 5 mmol/l glucose. d Pck1, Pparg2 and Lpin1 expression in
epididymal WAT from control and transgenic mice was quantified by
real-time quantitative PCR as described in the text and the ESM. e
Representative western blot of lipin1 protein levels in epididymal
WAT from fed control and transgenic mice. Densitometric quantifica-
tion of Lipin1 protein levels was performed using α-tubulin protein
levels as a loading control. f In vivo D-[2-14C]pyruvate conversion
into glyceride–glycerol in epididymal WAT from control and
transgenic mice. Results of in vivo and WAT explant studies are
means ± SEMs from at least five 4-month-old mice for each group.
Real-time quantitative PCR data were normalised with 36B4 values
and results are means ± SEMs from at least four mice for each group.
Densitometry of western blot results are means ± SEMs from eight 4-
month-old mice for each group. FA, fatty acid; Gly-gly, glyceride–
glycerol. *p<0.05 vs control unless otherwise specified
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(glycerogenesis) in the presence of 5 mmol/l non-labelled
glucose was not altered compared with control mice
(Fig. 3a). Similar results were observed in the presence of
20 mmol/l glucose (data not shown).

The alternative pathway involved in glyceride–glycerol
synthesis, glyceroneogenesis, was also examined. In the
absence of glucose, WAT explants from transgenic mice had
higher rates of pyruvate incorporation into lipid, fatty acids
or glyceride–glycerol (Fig. 3b). In the presence of 5 mmol/l
glucose, [14C]pyruvate incorporation into glyceride–glycerol
was increased in WAT explants producing GK compared
with control WAT (Fig. 3c). At high concentrations of
glucose (20 mmol/l), the pyruvate conversion rate was
further increased in WAT from control mice while it
decreased in WAT from transgenic mice (Fig. 3c). More-
over, the increase in glyceroneogenesis observed in trans-
genic mice was parallel to higher expression of Pepck

(Fig. 3d). However, expression of the main Pepck adipo-
specific transcriptional regulator, peroxisome proliferator-
activated receptor γ2 (PPARγ2) remained unchanged
(Fig. 3d). In contrast, a significant increase in the expression
of both Lipin1 (also known as Lpin1) mRNA and protein, a
factor specifically recruited to the PPARγ2-response element
of the Pepck promoter, was observed in WAT from
transgenic mice (Fig. 3d, e) [31]. However, despite an
increase in both Pepck expression and in the glyceroneo-
genic rate observed in vitro, no change was observed in fat
accumulation in these mice. Thus, labelled pyruvate
incorporation into glyceride–glycerol was measured in vivo
in fed control and transgenic mice. Under these conditions,
the glyceroneogenic rate was similar in control and
transgenic mice (Fig. 3f).

In order to evaluate the effect of glucose on pyruvate
incorporation into lipids and glyceride–glycerol, as well as
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conversion into glyceride–glycerol in differentiated and transiently
transfected 3T3-L1 adipocytes with pCMV-SV40 (null, white bar),
pCMV-mHKII (HK, grey bar) or pCMV-rGK (GK, black bar) with 5
and 20 mmol/l non-labelled glucose. *p<0.05 vs null, 5 mmol/l

glucose; †p<0.05 vs null, 20 mmol/l glucose; ‡p<0.05 vs GK,
5 mmol/l glucose; and §p<0.05 vs HK, 20 mmol/l glucose. e D-
[2-14C]pyruvate conversion into lipids in differentiated and transiently
transfected 3T3-L1 adipocytes with pCMV-SV40 (null, white bar),
pCMV-mHKII (HK, grey bar) or pCMV-rGK (GK, black bar) with
5 mmol/l and 20 mmol/l non-labelled glucose. *p<0.05 vs null,
5 mmol/l glucose; †p<0.05 vs null, 20 mmol/l glucose; ‡p<0.05 vs
HK, 5 mmol/l glucose; and §p<0.05 vs HK, 20 mmol/l glucose.
f Pck1 gene expression in differentiated and transiently transfected
3T3-L1 adipocytes with pCMV-SV40 (null, white bar), pCMV-mHKII
(HK, grey bar) or pCMV-rGK (GK, black bar) was quantified by real-
time quantitative PCR as indicated in the text and the ESM. 3T3-L1
adipocyte results are means ± SEMs of three dishes for each group.
*p<0.05 vs null

Diabetologia (2010) 53:2417–2430 2423



to study the effect of overproduction of the key endogenous
enzyme in glucose phosphorylation, HKII, 3T3-L1 adipo-
cytes were transiently transfected to produce GK, HKII or
green fluorescent protein (GFP) as a control of transfection
(Fig. 4a, b). In cells overexpressing either HkII (also known
as Hk2) or Gck, 2-deoxyglucose uptake was increased
(Fig. 4c). In the presence of 5 mmol/l glucose, [14C]pyruvate
incorporation into glyceride–glycerol and lipids, and Pepck
expression were increased in cells overexpressing Gck or
HkII compared with control cells (Fig. 4d–f). At the high
concentration of glucose (20 mmol/l), the pyruvate conver-
sion rate increased in HkII-expressing cells while the
glyceroneogenic rate was decreased in Gck-expressing
adipocytes (Fig. 4d, e). This suggests that, at high glucose
concentration, the inhibition of HKII activity by glucose 6-
phosphate leads to an increase in glyceroneogenesis,
whereas an increase in glycolytic flux due to GK activation
leads to a decrease in glyceroneogenesis.

Increased glucose uptake in adipose tissue leads to higher
lactate formation The effect of an increase in adipose
glucose uptake on circulating lactate levels was further
examined. Plasma lactate levels were increased in fed but
not starved transgenic mice (Fig. 5a), whereas glucose
levels were not altered (Fig. 5b). Lactate concentrations
increased in starved transgenic and control mice at 30 min
after a glucose injection (Fig. 5a). However, lactate levels
were higher in transgenic mice than in control mice, though
blood glucose levels were lower (Fig. 5b). This is as would
be expected if glucose uptake by adipose tissue had
increased. The fate of glucose in adipose tissue was then
confirmed by 13C-NMR spectroscopy. The main difference
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between the 13C spectra of WAT from transgenic and
control mice were higher levels of [3-13C]lactate in
transgenic extracts, indicating an increase (about twofold)
in [1-13C]glucose conversion to lactate (Fig. 5c). When
adipose tissue explants were incubated in the presence of
glucose, higher levels of lactate accumulated in the
incubation medium of WAT from transgenic mice than in
the medium with WAT from control mice (Fig. 5d). This
occurred in parallel with a decrease in glucose concentra-
tion in the medium (data not shown).

Metabolic changes in the liver of Gck-expressing mice The
effect of the increased circulating lactate concentration on
hepatic metabolism was examined next. No change in
hepatic glucose 6-phosphate content was observed in control
and transgenic mice kept under either fed or starved
conditions (Table 1). However, during starvation, transgenic
mice had higher levels of hepatic glycogen (about fourfold)
than those of controls. In addition, under fed conditions,
transgenic livers had a higher triacylglycerol content (by
about 40%) than controls (Table 1). These results suggest

that lactate released by adipose tissue may have contributed
to glycogen and triacylglycerol synthesis in the liver.

Glucose homeostasis in glucokinase-expressing transgenic
mice It has been suggested that high levels of circulating
lactate observed during obesity may contribute to insulin
resistance [32–37]. However, no difference in serum insulin
concentration was observed in fed or starved transgenic
mice compared with controls (Table 1). An intraperitoneal
glucose tolerance test was also performed. After injecting
glucose at 1 or 2 g per kg body weight, glycaemia reached a
lower level in transgenic mice compared with controls,
indicating higher glucose disposal in the transgenic mice
(Fig. 6a, b). In addition, insulin sensitivity was measured by
insulin tolerance tests at two doses of insulin (0.75 and
0.375 U/kg body weight). Fed control and transgenic mice
showed similar responses to a high dose of insulin (Fig. 6c).
However, when the lower dose of insulin was injected, a
hypoglycaemic response of greater magnitude was observed
in transgenic mice (Fig. 6d). In order to determine whether
glucokinase production led to increased insulin sensitivity
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of adipose tissue, the response in glucose uptake to insulin
dose in isolated adipocytes from control and transgenic
mice was measured. Adipocytes from transgenic mice had
higher rates of glucose uptake in the absence or presence of
increasing doses of insulin (Fig. 7a). However, the half
maximal effective concentration, EC50, was similar in
control and transgenic mice (control EC50 0.32 nmol/l and
transgenic EC50 0.37 nmol/l). Similarly, in adipose tissue,
basal and insulin-stimulated phosphorylation of protein
kinase B/AKT on serine 473 remained unchanged
(Fig. 7b). In addition, translocation of either of the GLUT4
or GLUT1 glucose transporters to the plasma membrane in
response to insulin was not altered in transgenic mice
compared with control mice (Fig. 7c–e).

In agreement with increased whole-body insulin sensi-
tivity, insulin-stimulated glucose uptake was higher in
skeletal muscle from transgenic mice (Fig. 8a). In addition,
a slight increase in basal and insulin-stimulated phosphor-
ylation of AKT was also observed in skeletal muscle from
transgenic mice (Fig. 8b). The decreased expression of
Rbp4 in adipose tissue and the subsequent decrease in RBP-
4 serum levels in transgenic mice may have contributed to
higher insulin sensitivity in these mice (Fig. 8c, d).

Finally, in order to examine whether expression of Gck
in adipose tissue prevents diet-induced insulin resistance,
mice were fed a high-fat diet. Body weight gain, fat pad
weight and histological analysis of WAT revealed similar
fat accumulation between transgenic and control mice
(Fig. 9a–d). In addition, serum levels of triacylglycerol,
leptin and adiponectin remained unchanged between both
groups (Fig. 9e–g). In contrast, circulating insulin levels
tended to be lower in transgenic than in control mice,
although mice remained normoglycaemic (Fig. 9h, i).
Whole-body insulin sensitivity was also measured. In fat-
fed control mice, the hypoglycaemic effect of insulin was
reduced compared with control mice fed a chow diet, while
the insulin response of fat-fed transgenic mice was similar
to the control response (Fig. 9j). This indicates that
transgenic mice, when fed a high-fat diet, became obese
similarly to controls, but remained insulin sensitive.

Discussion

It is generally accepted that lipid storage in adipose tissue
depends mainly on insulin-stimulated glucose uptake to
generate the glycerol 3-phosphate necessary for fatty acid
esterification. In this study we show that expression of Gck
selectively in adipose tissue of transgenic mice leads to
increased glucose uptake in this tissue, but not to glycerol
3-phosphate formation and fat accumulation. Furthermore,
we demonstrated that the increased glucose flux in adipose
tissue led to increased lactate release and higher circulating

lactate levels within the physiological range. Similarly, in
Glut4-overexpressing mice, the majority of glucose was
metabolised to lactate (70%) [17]. This is also consistent
with results obtained in transgenic mice expressing Gck in
skeletal muscle or in the liver, in which serum lactate
concentrations were increased [24, 29]. Moreover, in these
mice, the increase of lactate production by hepatocytes
occurred only at high glucose concentration [24]. Similarly,
transgenic mice expressing Gck in adipose tissue displayed
increased lactate levels only in fed conditions or after a
glucose load. This probably reflects the potent activation of
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Gck by glucose [38]. Therefore, our results are consistent
with a view of adipose tissue as an active producer of
lactate [39]. This is also in line with the results from
microdialysis studies on humans showing a net release of
lactate from adipose tissue after glucose ingestion [40–42].
The paradoxical increase of a gluconeogenic precursor in
the postprandial state may be related to a possible role of
lactate in insulin-dependent inhibition of lipolysis [43] as
well as a liver glycogen or triacylglycerol precursor [44, 45].
In agreement with this, our results suggest that lactate
released by adipose tissue is taken up by the liver, where it
is converted to glycogen and triacylglycerol, without
affecting circulating triacylglycerol and glucose levels.

Moreover, our results suggest that a chronic increase in
circulating lactate levels does not lead to insulin resistance.
It has been suggested that high levels of circulating lactate
observed during obesity contribute to insulin resistance by
decreasing glucose utilisation by skeletal muscle and
enhancing hepatic gluconeogenesis [32–37]. Plasma lactate
is elevated in obese individuals and this increase is higher
when obesity is associated with type 2 diabetes [32]. A
similar increase in plasma lactate is also observed in non-
obese patients with type 2 diabetes [32, 36]. These increases
are in the same range (about 50% increase) as those
observed in our transgenic mice. Nevertheless, in the mice,
whole-body and skeletal muscle insulin sensitivity and
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glucose disposal were increased despite higher plasma
lactate. Thus, our results indicate that high circulating
lactate levels are probably not responsible for insulin
resistance.

In our mice, improved glucose tolerance was probably
due to increased glucose uptake by adipose tissue, and also
to an increase in insulin-stimulated glucose uptake by
skeletal muscle. This suggests that an increase in glucose
uptake by adipose tissue, without any alteration in fat
accumulation, probably led to the secretion of a factor able
to regulate insulin sensitivity in skeletal muscle. However,
in transgenic mice, no change was observed in circulating
levels of hormones affecting glucose homeostasis such as
adiponectin or leptin. Although other adipokines may be
involved in the increased insulin sensitivity, the observed
decrease in adipose tissue expression of Rpb4 and serum
levels of RPB-4, a crucial factor in the pathogenesis of
insulin resistance, may have contributed to higher skeletal
muscle insulin sensitivity. In agreement with this, Glut4-
overexpressing transgenic mice also had decreased Rbp4
expression [16]. However, although the regulation of RBP-
4 production in WAT remains unclear, our results suggest
that it is probably regulated not by lipid accumulation, but
by glucose flux into adipose tissue.

Furthermore, despite increased glucose uptake in adipose
tissue, transgenic mice expressing Gck did not accumulate
more fat. Gck transgenic mice showed neither hypertrophy
nor hyperplasia of adipose cells. In contrast, Glut4-over-
expressing mice had adipocyte hyperplasia [18]. Neverthe-
less, despite the higher glucose incorporation into glycerol
observed in transgenic mice overexpressing Glut4, their
adipocytes did not show increased fat accumulation and
70% of glucose was metabolised to lactate [19]. Similarly,
transgenic mice expressing Gck did not have increased fat
accumulation and had higher lactate release by adipose
tissue. Thus, the main difference between both transgenic
models is the presence of adipose cell hyperplasia, which
occurred only in Glut4 transgenic mice, suggesting that an
increase in glucose uptake by Glut4 overexpression or by
Gck expression may have different effects on immature
adipocyte replication and/or differentiation.

The lack of excess fat accumulation in mice expressing
Gck also highlights the potential dissociation between
glucose uptake and triacylglycerol storage in adipose tissue.
This agrees with the finding that in adipose-specific Glut4
knockout mice, despite a marked decrease in adipose tissue
glucose transport, no alteration in fat storage was observed
[13]. This is also consistent with results obtained using
labelled glucose, which indicate that uptake of glucose
carbon in total body fat is in the order of less than 4% of
glucose given [46]. This agrees with the finding that lactate
and pyruvate may be utilised preferentially to glucose to
produce glycerol for triacylglycerol deposition, and with a

recent study in rats showing that quantitatively higher
amounts of glycerol are gained, in response to sucrose
feeding, from pyruvate/lactate via glyceroneogenesis than
from glucose via glycolysis [7, 8, 47]. This suggests that
glyceroneogenesis and glycolysis occur simultaneously in
adipose tissue in the presence of increased glucose uptake
by this tissue. Thus, a compartmentalisation of these
pathways has been hypothesised, either in the same cell or
in different adipose tissue cell types [7]. However, our data
indicate that in adipose tissue expressing glucokinase, in
which glucose uptake is increased, glyceroneogenesis
decreased at high glucose concentration. Furthermore,
this study suggests that in adipose tissue producing the
enzyme HKII, glyceroneogenesis increased at high glu-
cose due to the inhibition by glucose 6-phosphate. There-
fore, glyceroneogenesis and glycolysis may occur in the
same cell, but not at the same time, and the feedback
inhibition of HKII by glucose 6-phosphate may permit
glyceroneogenesis from lactate to occur after the activa-
tion of glycolysis.

In summary, our results suggest that an uncontrolled
increase in glycolytic flux in adipose tissue leads to lactate
production, rather than to higher glycerol 3-phosphate
synthesis, fat accumulation and obesity. Furthermore, they
suggest that a chronic increase in circulating lactate levels is
not sufficient to lead to insulin resistance and point to the
indirect pathway (glucose to lactate to glycerol 3-phosphate)
as being key for fat deposition in adipose tissue.
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