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Abstract
Aims/hypothesis We previously showed that type 2 diabetic
patients are characterised by compromised intrinsic mito-
chondrial function. Here, we examined if exercise training
could increase intrinsic mitochondrial function in diabetic
patients compared with control individuals.
Methods Fifteen male type 2 diabetic patients and 14 male
control individuals matched for age, BMI and

�
VO2max

enrolled in a 12 week exercise intervention programme. Ex
vivo mitochondrial function was assessed by high-
resolution respirometry in permeabilised muscle fibres from
vastus lateralis muscle. Before and after training, insulin-
stimulated glucose disposal was examined during a hyper-
insulinaemic–euglycaemic clamp.
Results Diabetic patients had intrinsically lower ADP-
stimulated state 3 respiration and lower carbonyl cyanide
4-(trifluoro-methoxy)phenylhydrazone (FCCP)-induced
maximal oxidative respiration, both on glutamate and on
glutamate and succinate, and in the presence of palmitoyl-
carnitine (p<0.05). After training, diabetic patients and
control individuals showed increased state 3 respiration on
the previously mentioned substrates (p<0.05); however, an
increase in FCCP-induced maximal oxidative respiration
was observed only in diabetic patients (p<0.05). The

increase in mitochondrial respiration was accompanied by
a 30% increase in mitochondrial content upon training
(p<0.01). After adjustment for mitochondrial density,
state 3 and FCCP-induced maximal oxidative respiration
were similar between groups after training. Improvements
in mitochondrial respiration were paralleled by improve-
ments in insulin-stimulated glucose disposal in diabetic
patients, with a tendency for this in control individuals.
Conclusions/interpretation We confirmed lower intrinsic
mitochondrial function in diabetic patients compared with
control individuals. Diabetic patients increased their mito-
chondrial content to the same extent as control individuals
and had similar intrinsic mitochondrial function, which
occurred parallel with improved insulin sensitivity.
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Abbreviations
AU Arbitrary unit
ETC Electron transport chain
FCCP Carbonyl cyanide 4-(trifluoro-methoxy)

phenylhydrazone
FCCP-P FCCP with the addition of palmitoyl-

carnitine
MG3 Respiration on malate and glutamate
MGS3 Respiration on malate, glutamate and

succinate
MPG3 Respiration on malate and glutamate with

the addition of palmitoyl-carnitine
MPGS3 Respiration on malate, glutamate and

succinate with the addition of
palmitoyl-carnitine

mtDNA Mitochondrial DNA
O4 State O4 respiration

E. Phielix : P. Schrauwen (*)
NUTRIM School for Nutrition, Toxicology and Metabolism,
Department of Human Biology,
Maastricht University Medical Centre,
P.O. Box 616, NL6200 MD Maastricht, the Netherlands
e-mail: P.schrauwen@hb.unimaas.nl

R. Meex : E. Moonen-Kornips :M. K. C. Hesselink
NUTRIM School for Nutrition, Toxicology and Metabolism,
Department of Human Movement Sciences,
Maastricht University Medical Centre,
Maastricht, the Netherlands

Diabetologia (2010) 53:1714–1721
DOI 10.1007/s00125-010-1764-2



O4-P State O4 respiration with the addition of
palmitoyl-carnitine

Ra Rate of glucose appearance
Rd Rate of glucose disposal

Introduction

A low mitochondrial function has been implicated in the
aetiology of insulin resistance and type 2 diabetes [1–4].
Several studies revealed compromised in vivo mitochon-
drial function in type 2 diabetic patients and first-degree
relatives of type 2 diabetic patients [3–6], but it is still
debated whether lower mitochondrial function is caused by
a reduced mitochondrial content [7, 8] or an intrinsically
lower mitochondrial function (i.e. mitochondrial respiration
after adjustment for markers of mitochondrial density) [5, 9,
10]. Recently, we reported lower ex vivo mitochondrial
function along with compromised in vivo mitochondrial
function in type 2 diabetic patients compared with BMI-
and age-matched overweight controls [5]. No difference in
mitochondrial content between groups was observed. As a
consequence, after normalisation for mitochondrial density,
the ex vivo measurements on permeabilised muscle fibres
revealed lower intrinsic mitochondrial function in type 2
diabetic patients. Using multiple substrates, we concluded
that compromised mitochondrial function resides at the
level of the phosphorylation system, as ADP-stimulated
respiration of complex I and II and maximal carbonyl
cyanide 4-(trifluoro-methoxy)phenylhydrazone (FCCP)-
stimulated oxidative capacity was substantially lower in
type 2 diabetic patients.

The beneficial effects of exercise training on metabolic
risk factors, i.e. an increase in

�
VO2max and insulin

sensitivity, are well documented (reviewed by Zanuso et
al. [11]). These exercise-induced metabolic improvements
are also observed in individuals characterised by a
sedentary lifestyle, as in type 2 diabetic patients, first-
degree relatives of diabetic patients and obese control
individuals [12–14]. It is well known that in healthy
individuals exercise training stimulates mitochondrial bio-
genesis, indicated by an overall increase of markers for
mitochondrial mass, like mitochondrial DNA (mtDNA)
copy number and citrate synthase activity [14, 15]. It is,
however, not known if diabetic patients, who are charac-
terised by mitochondrial dysfunction, are also able to
restore intrinsic mitochondrial function upon exercise
training. Therefore, in this study we performed ex vivo
mitochondrial measurements in muscle fibres of a subgroup
of type 2 diabetic patients and control individuals who
participated in a 12 week progressive supervised combined
endurance and resistance training intervention programme,

as published elsewhere [16]. We used high-resolution
respirometry in permeabilised muscle fibres, using multiple
substrate combinations, to examine intrinsic mitochondrial
function before and after the training programme.

Methods

In this study, 15 male type 2 diabetic patients and 14
normoglycaemic control individuals were included, all
matched for age, BMI and

�
VO2max (age: 59.5±1.2 and

58.2±1.1 years; BMI: 30.0±0.9 and 30.2±0.9 kg/m2;�
VO2max: 28.2±1.4 and 29.2±1.2 ml kg−1 min−1; p>0.05
for all variables). Patients had well-controlled type 2
diabetes (HbA1c 7.1±0.2%) for at least 1 year before
participation. All patients were on metformin only or used
metformin in combination with sulfonylurea. Glucose-
lowering medication was continued throughout the study
except for the week preceding the actual tests and sampling
of the biopsy. Participants were recruited via advertisements
in local newspapers and gave their written informed
consent. Before participation in the study, a medical history
and physical examination was performed and a resting
electrocardiogram was taken. Control individuals under-
went a 2 h OGTT according to World Health Organization
criteria and were excluded from participation if the test
indicated a prediabetic state. Volunteers suffering from
uncontrolled hypertension, cardiovascular disease or liver
dysfunction, as well as control individuals using medication
known to interfere with glucose metabolism, were excluded
from participation.

Hydrostatic weighing to determine body composition
and an incremental maximal aerobic cycling test to measure
maximal oxygen consumption was performed before the
exercise intervention. The incremental maximal cycling test
was performed every 6 weeks, to measure participants’
physical fitness and to adjust training loads accordingly.
This study was performed in a subgroup of a training
intervention study that has been published elsewhere [16].

Hyperinsulinaemic–euglycaemic clamp Before the exercise
training programme, peripheral insulin sensitivity was
measured using a 3 h hyperinsulinaemic–euglycaemic
clamp (40 mU m−2 min−1), according to DeFronzo et al.
[17], combined with primed continuous infusion of
[6,6-2H2]glucose kinetics to measure rates of glucose
disposal (Rd) and appearance (Ra), as previously described
in detail elsewhere [5]. Participants arrived at 07:30 hours
at the university after an overnight fast and baseline blood
samples were drawn to measure glucose, insulin and NEFA
followed by the start of the [6,6-2H2]glucose infusion.
Insulin-stimulated blood samples were taken during the last
30 min of the clamp. Indirect calorimetry measurements
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were performed during baseline and insulin-stimulated
conditions to measure carbohydrate and lipid oxidation
and to calculate non-oxidative glucose disposal. Diabetic
patients discontinued their glucose-lowering medication
1 week prior to the clamp, but restarted the use of
medication after the test days. Muscle biopsies were taken
before the clamp from the vastus lateralis muscle, under
local anaesthesia (2% wt/vol. lidocaine) according the
technique of Bergström et al. [18]. Following the exercise
training programme, a second hyperinsulinaemic–euglycae-
mic clamp and muscle biopsy was performed, and again
glucose-lowering medication was discontinued 1 week
prior to this test day. The final exercise bout of the training
programme was performed at least 2 days before the clamp.

Exercise training programme Participants enrolled in a
supervised combined endurance and resistance exercise
training programme of 12 weeks. Endurance training
consisted of ergometer cycling performed twice a week
for 30 min at 55% of the predetermined maximal workload
(Wmax) and resistance exercise consisted of one series of
eight repetitions at 55% of their maximal voluntary
contraction and two series of eight repetitions at 75%
weekly, focusing on the large muscle groups. After 6 weeks,
Wmax was re-measured, after which the training workload
was adjusted. The same was done for the maximal
voluntary contraction, which was re-measured every
4 weeks [16].

Plasma assays Blood was collected in tubes containing
EDTA and immediately centrifuged. Plasma was frozen in
liquid nitrogen and stored at −80°C until assayed. Plasma
NEFA, glucose and insulin concentrations, as well as
isotopic enrichment of plasma glucose, were determined
as previously described [5]. Plasma insulin concentrations
were expressed as pmol/l [19].

Mitochondrial density mtDNA copy number was deter-
mined in whole muscle as a measure of mitochondrial
density, as previously described [5], and expressed as
arbitrary units (AUs).

High-resolution respirometry Ex vivo mitochondrial func-
tion was measured using high-resolution respirometry in a
two-chamber oxygraph (Oroboros Instruments, Innsbruck,
Austria) before and after the 12 week exercise training
programme in permeabilised muscle fibres taken prior to
each clamp. Detailed procedures for muscle fibre handling
and respirometry measurements have been previously
described [5]. In short, directly after the muscle biopsy
was taken, ∼15 mg of the muscle tissue was directly placed
in a conservation medium (BIOPS; Oroboros Instruments).
In a Petri dish, muscle fibres were separated using small

needles and the muscle membrane was permeabilised with
saponin (stock solution at 5 mg/ml in BIOPS) according to
Veksler et al. [20]. Subsequently to several washing steps
with respiration medium (MiR05; Oroboros Instruments) to
ensure removal of saponin, ∼4 mg wet weight of fibre was
transferred into the oxygraph and respiratory measurements
were performed at 37°C. The ex vivo mitochondrial
respiration, or oxygen flux, was expressed as pmol
mg−1 s−1, and after normalisation with respect to mtDNA
content as (pmol mg−1 s−1)/(mtDNA copy number×106).
With the addition of several substrates, different states were
reached to analyse mitochondrial function. State 3 respira-
tion reflects ADP-stimulated respiration on glutamate
(MG3) or on addition of glutamate and succinate (MGS3).
Following MGS3, FCCP was titrated to determine maximal
mitochondrial oxidative capacity, termed as state uncoupled
(state u). In a separate trace, oligomycin was added after
MGS3 to inhibit ATP synthase (state O4 respiration [O4]).
Every protocol was applied with or without the addition of
palmitoyl-carnitine (referred to as MPG3, MPGS3, O4-P
and FCCP-P).

Statistics Data are reported as means ± SE. Statistical
analysis were performed using the statistical computer
program SPSS 16.0 for Mac OS X. Differences between
groups before and after the exercise training were statisti-
cally tested with an independent Student’s t test. Differ-
ences upon the exercise-training programme within groups
were calculated with an ANOVA for repeated measure-
ments. Differences were considered significant at p<0.05.

Results

Participant characteristics Groups were matched for age,
BMI and maximal aerobic capacity. Changes in BMI, body
weight and maximal aerobic capacity upon exercise training
are shown in Table 1. Fasting plasma glucose concen-
trations were higher in diabetic patients (who were off
medication at the time of sampling) compared with control
individuals before training (8.9±0.5 vs 5.9±0.1 mmol/l;
p<0.05) and after training (8.8±0.4 vs 5.4±0.1 mmol/l;
p<0.05). Fasting plasma glucose levels did not change after
exercise in diabetic patients, but were significantly lower in
control individuals (p<0.05). Fasting plasma insulin and
NEFA concentrations did not differ between diabetic patients
and control individuals before training (insulin: 93.0±6.0 vs
120.6±19.8 pmol/l; NEFA: 520±29 vs 494±30 μmol/l) and
after training (insulin: 85.8±5.4 vs 103.8±7.4 pmol/l;
NEFA: 502±39 vs 429±6 μmol/l). Training resulted in a
significant decline in fasting plasma insulin levels in diabetic
patients and control individuals (p<0.05 and p<0.01,
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respectively). Training did not affect fasting plasma NEFA
levels in diabetic patients; however, NEFA tended to
decrease in control individuals (p=0.06).

Insulin-mediated glucose disposal Clamped plasma glucose
concentrations were not different between type 2 diabetic
patients and control individuals before the exercise training
(5.7±0.2 vs 5.7±0.1 mmol/l) and after training (5.6±0.2 vs
5.3±0.1 mmol/l). Insulin sensitivity was expressed as the
change in insulin-stimulated Rd (ΔRd). Insulin-mediated
glucose disposal was significantly lower in diabetic patients
compared with control individuals before training (ΔRd:
8.1±1.4 vs 16.0±2.3 μmol kg−1 min−1; p<0.01), and
increased significantly after exercise training in diabetic
patients to 12.0±1.9 μmol kg−1 min−1 (p<0.05) with a
tendency for increase in control individuals (ΔRd

18.2±2.5 μmol kg−1 min−1; p=0.09). One control individual
appeared to be a non-responder and showed an actual
decrease in insulin sensitivity upon exercise training.
Exclusion of this control individual resulted in a significant
improvement in insulin sensitivity after training vs before
training for the control group (ΔRd from 16.0±2.6 to
18.7±2.6 μmol kg−1 min−1; p<0.05). The exclusion of the
non-responder did not result in changes in non-normalised or
normalised mitochondrial function between groups. There-
fore, this individual was not excluded from the total analysis.

After training, insulin-mediated glucose disposal in
type 2 diabetic patients remained significantly lower
compared with control individuals (p<0.05). The insulin-
stimulated change in Ra (ΔRa) was significant lower in
type 2 diabetic patients compared with control individuals
(ΔRa 9.1±1.3 vs 18.6±2.8 μmol kg−1 min−1; p<0.05).
The ΔRa upon exercise training increased to 12.3±1.5
(p<0.05) in diabetic patients and to 21.2±3.0 μmol kg−1

min−1 (p<0.05) in control individuals, with ΔRa remain-
ing significantly lower in diabetic patients compared with
control individuals.

Mitochondrial density Mitochondrial density measured as
mtDNA copy number was not different between diabetic
patients and control individuals before training (2.0±0.14×106

vs 1.8±0.12×106 AU). After training, mtDNA copy number
increased significantly to 2.7±0.14×106 AU in diabetic
patients (p<0.01) and to 2.7±0.13×106 AU (p<0.01) in
control individuals. After training, mtDNA copy number was
not significantly different between control individuals and
diabetic patients.

Ex vivo mitochondrial respirometry before training Before
training, respiratory values were different between diabetic
patients and control individuals. State 3 respiration on MG3
and on MGS3 was significantly lower in diabetic patients
compared with control individuals (MG3: 17.2±1.4 vs
22.5±2.0 pmol mg−1 s−1, p<0.05 and MGS3: 28.1±2.0 vs
33.8±2.0 pmol mg−1 s−1, p=0.05). No differences were
found for O4 on oligomycin between groups (13.3±0.8 vs
14.9±1.2 pmol mg−1 s−1). Maximal respiratory capacity
(FCCP-driven state u) in the presence of glutamate and
succinate was significantly lower in diabetic patients com-
pared with control individuals (41.2±2.8 vs 53.3±3.1 pmol
mg−1 s−1; p<0.05). When palmitoyl-carnitine was added as
a substrate, state 3 respiration on a combination of palmitoyl-
carnitine, glutamate and succinate (MPGS3) tended to be
lower in diabetic patients compared with control individuals
(31.2±2.1 vs 39.1±3.9 pmol mg−1 s−1; p=0.08). O4 after the
addition of oligomycin on MPGS3 was not different between
diabetic patients and control individuals (20.4±1.2 vs
22.2±1.8 pmol mg−1 s−1). The maximal respiratory capacity
(FCCP-driven state u) in the presence of palmitoyl-carnitine,
glutamate and succinate was significantly lower in diabetic
patients compared with control individuals (44.8±3.1 vs
55.8±3.1 pmol mg−1 s−1; p<0.05).

When respiratory values were normalised to mtDNA
copy number, significant differences between groups for
MG3 (p<0.05), MGS3 (p<0.05) and maximal respiratory

Table 1 Changes in variables after training compared with before training

Variable Before training After training

Controls Diabetic Controls p value Diabetic p value

Age (years) 58.2±1.1 59.5±1.2 – – – –

Body weight (kg) 97.3±3.1 94.3±3.5 95.9±3.2 0.06a 93.4±3.6 0.11b

BMI (kg/m2) 30.2±0.9 30.0±0.9 29.8±0.9 0.08a 29.6±1.0 0.06b�
VO2max (ml kg−1 min−1) 29.2±1.2 28.2±1.4 30.8±1.7 0.11c 32.0±1.4 <0.01d

Data are means ± SE
a p value shows a tendency towards a decrease after vs before training in control individuals
b p value shows a tendency towards a decrease after vs before training in diabetic patients
c p value shows a tendency towards an increase after vs before training in control individuals
d p value shows a significant increase after vs before training in diabetic patients
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capacity (FCCP-driven state u) (p<0.05) remained, with a
tendency towards lower O4 for diabetic patients compared
with control individuals (p=0.09) (Fig. 1a). Also, on
palmitoyl-carnitine, respiratory values for MPG3 (p=0.06),
MPGS3 (p<0.05) and maximal respiratory capacity
(FCCP-driven state u) on MPGS3 remained significantly
lower in diabetic patients compared with control individ-
uals when normalised for mitochondrial content (p<0.05)
(Fig. 1b).

Ex vivo mitochondrial respirometry: effect of training After
12 weeks of exercise training, state 3 respiration on MG3
increased by 34% in diabetic patients (p<0.01) and
respiration on MGS3 increased by 33% (p<0.01). Also,
state 4 respiration and maximal respiratory capacity (FCCP-
driven state u) levels increased by 28% (p<0.01) and 33%
(p<0.01), respectively. Similarly, upon the addition of
palmitoyl-carnitine, MPG3 showed an exercise-induced
increase of 30% (p<0.01) and MPGS3 of 28% (p<0.01).
O4 on MPGS3 significantly increased after training by 21%
(p<0.05) and FCCP-induced maximal respiration increased

by 27% (p<0.05). However, when respiration values were
normalised to mtDNA copy number, significant differences
reported for all states before and after training in diabetic
patients no longer persisted (Fig. 2a,b), illustrating that the
major part of the improvement in mitochondrial function
was because of an increase in mitochondrial content.

Also, in control individuals, training improved state 3
respiration on MG3 by 26% (p<0.05) and state 3 respiration
on MGS3 increased by 28% (p<0.01). O4 respiration on
MGS3 increased by 32% (p<0.01) after training; however,
FCCP-driven maximal respiratory capacity in the presence
of glutamate and succinate was similar before and after
training. Similarly, upon the addition of palmitoyl-carnitine,
MPG3 increased upon exercise training by 38% (p<0.01),
MPGS3 by 34% (p<0.01) and O4 upon MPGS3 increased
by 17% (p<0.05). FCCP-driven maximal respiratory capac-
ity measured in the presence of palmitoyl-carnitine, gluta-
mate and succinate increased by 24% upon exercise training;
however, this increase was not significant. Again, as in
diabetic patients, the increase in mitochondrial respiration
(with or without the addition of palmitoyl-carnitine) upon
training was mainly accounted for by an increase in
mitochondrial density, as no significant increase in intrinsic
mitochondrial respiration was observed after adjustment for
mtDNA copy number upon exercise training (Fig. 2a,b).

Before and after training, no correlations were found
between ex vivo mitochondrial function and insulin-
stimulated glucose disposal. Also, when ex vivo mitochon-
drial function was normalised for mitochondrial content, no
correlations with markers of insulin sensitivity were found.
Furthermore, body mass did not correlate with mitochon-
drial function.

�
VO2max did correlate with non-normalised

state 3 respiration on MPGS (p<0.01) and tended to
correlate with normalised state 3 on MPGS when data
before and after training were included.

�
VO2max did not,

however, correlate with state 3 respiration during baseline
measurements or after training.

Discussion

In the current study, type 2 diabetic patients and control
individuals participated in a 12 week combined resistance
and endurance exercise training programme to study the
effects on mitochondrial function. In this group of
individuals, who were carefully matched for age, BMI
and aerobic capacity, we confirmed our previous finding [5]
of lower intrinsic mitochondrial function in type 2 diabetic
patients compared with control individuals on glutamate
and succinate and also in the presence of palmitoyl-
carnitine. Furthermore, we showed that the 12 week
exercise training intervention increased mitochondrial con-
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Fig. 1 Intrinsic mitochondrial respiration ([pmol mg−1 s−1]/[mtDNA
copy number×106]) in 17 control individuals (white bars) vs 15 diabetic
patients (black bars) before training. a In glutamate and succinate.
Means ± SE. *p<0.05; †p=0.09. b In glutamate and succinate with the
addition of palmitoyl-carnitine. Means ± SE. *p<0.05; †p=0.06. M,
malate alone; MP, malate with palmitoyl-carnitine
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tent to a similar extent in diabetic patients as in control
individuals, with a concomitant improvement of oxidative
capacity as determined with ex vivo respiratory measure-
ments in muscle biopsies taken from the vastus lateralis
muscle. These improvements were paralleled by improved
insulin-stimulated glucose disposal in type 2 diabetic
patients and control individuals.

So far, exercise intervention studies in diabetic patients
have reported an increase in mitochondrial content deter-
mined as increased mitochondrial enzyme activity (such as
citrate synthase and NADH oxidase activity), mitochondrial
DNA copy number or using electron microscopy [14, 21].
These studies, however, did not examine pretraining values
of mitochondrial function relative to healthy controls. Thus
it remained unclear if and to what extent improvements in
mitochondrial function could be achieved by exercise
training in patients with type 2 diabetes. The type 2 diabetic

patients enrolled in this exercise intervention programme
were recently reported to have lower in vivo mitochondrial
function compared with control individuals, which was
restored upon exercise training [16]. In vivo mitochondrial
function is determined by mitochondrial content, intrinsic
mitochondrial function and blood perfusion. Therefore, ex
vivo determination of mitochondrial function before and
after training is of particular interest, as it allows analysis of
intrinsic mitochondrial capacity under a variety of sub-
strates to reveal which mechanism at the mitochondrial
level may underlie the improvement of in vivo mitochon-
drial function upon training.

ADP-stimulated state 3 respiration reflects the oxidative
capacity of the mitochondria to reduce TCA cycle- and
β-oxidation-derived equivalents as NADH and FADH2 by a
convergent electron flow at complex I and II, resulting in
oxidative phosphorylation of ADP into ATP at the level of
ATP synthase. State 3 respiration is under control of
components of the phosphorylation system, such as inor-
ganic phosphate (Pi), adenine nucleotide transporter (ANT)
and ATP synthase. On the other hand, maximal mitochon-
drial oxidative respiration is initiated by titration of the
chemical uncoupler FCCP, thereby bypassing the control of
the phosphorylation system. This therefore reflects the
maximal oxidative capacity of the enzymes of the electron
transport chain (ETC) and also of the upstream dehydro-
genases (such as malate, pyruvate, glutamate and succinate
dehydrogenases). In agreement with earlier results [5], we
showed a ∼25% lower state 3 respiration and a ∼31% lower
FCCP-induced maximal oxidative capacity in type 2 diabetic
patients compared with control individuals, even when
normalised to mitochondrial content. Upon exercise training,
type 2 diabetic patients increased both mitochondrial state 3
respiration and FCCP-induced maximal oxidative capacity
by ∼33%, and this improvement was accompanied by
a ∼27% increase in mitochondrial content. Also, state 3
respiration in control individuals increased by ∼28% with a
concomitant ∼33% rise in mitochondrial content, although
FCCP-induced maximal oxidative capacity did not increase
upon exercise training. Therefore, in both groups the
increase in oxidative capacity was mainly accounted for
by a training-induced increase in mitochondrial content.
Importantly, after exercise training, ADP-stimulated
state 3 and state u respiration were not significantly
different between type 2 diabetic patients and control
individuals, irrespectively of correction for mtDNA copy
number. These improvements in mitochondrial function
occurred in parallel with changes in insulin sensitivity,
although the latter was not restored to control values in
diabetic patients. This suggests that for complete resto-
ration of insulin sensitivity in patients with type 2
diabetes an increase in muscle mitochondrial content
alone is not sufficient.
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Fig. 2 Intrinsic mitochondrial respiration ([pmol mg−1 s−1]/[mtDNA
copy number×106]) for 14 control individuals and 15 diabetic patients
before training and control individuals after training. a In glutamate
and succinate. White and light-grey bars represent control individuals
before and after training, respectively; black and dark-grey bars
represent diabetic patients before and after training, respectively.
Means ± SE. *p<0.05. b In glutamate and succinate with the addition
of palmitoyl-carnitine. Means ± SE. *p<0.05. M, malate alone; MP,
malate with palmitoyl-carnitine
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The exercise training-induced improvements in ex vivo
mitochondrial function were detected in nearly all respiratory
states on glutamate and succinate and also in the presence of
palmitoyl-carnitine. All substrates were added in excess to
ensure that respiratory measurements were not limited by
substrate availability influencing oxygen flux. A similar
increase of the oxidation levels on glutamate and succinate,
and as in the presence of fatty acid-derived substrates, were
seen upon training in both groups, indicating that the exercise
intervention did not lead to a preferential oxidation of fatty
acids or glucose-derived substrates. From these results, it may
be concluded that the increase of the respiratory states after
exercise training in control individuals and type 2 diabetic
patients is based at the level of the ETC or the upstream
dehydrogenases.

However, it should be noted that substrate competition
might differ between the ex vivo condition (in which an
excess of substrates were available) and the in vivo
situation. For instance, the fatty acid-derived substrate
palmitoyl-carnitine used in the ex vivo measurements can
enter the mitochondria independently of the carnitine
shuttle system, in which carnitine palmitoyltransferase 1
(CPT1) is an important regulator. However, it could not be
deduced from this study whether CPT1 or other substrate
transporters in vivo are altered upon exercise training,
influencing substrate competition.

Remarkably, in control individuals only, exercise train-
ing did not enhance FCCP-driven maximal respiratory
capacity, as occurred in type 2 diabetic patients. As a result
of the increase in mitochondrial content, FCCP-driven
maximal respiratory capacity per mitochondrion was
actually lower after training. The exact meaning of this
finding cannot be deduced from the present study, and
future studies are needed to confirm this finding. In both
groups, exercise training stimulated mitochondrial biogen-
esis and enhanced mitochondrial function; however, a
significant increase in insulin sensitivity was seen in
type 2 diabetic patients, with a tendency in control
individuals. From the present study, we cannot deduce if
the training-induced increase in mitochondrial content and
enhanced oxidative function is responsible for the improved
insulin sensitivity as seen in type 2 diabetic patients and
control individuals. However, we found no correlation
between (changes in) insulin sensitivity and mitochon-
drial function, although a parallel increase of both
variables was seen upon exercise training. These results
might suggest that insulin sensitivity and mitochondrial
function are two effects of exercise training that are not
necessarily causally related. In that respect, insulin
sensitivity remained lower upon training in type 2
diabetic patients compared with control individuals. This
may suggest that improved mitochondrial function alone
was not sufficient to restore insulin sensitivity, and that

additional exercise-related factors could be responsible
for the training-increased insulin sensitivity.

In this study, participants underwent a combined
endurance and resistance exercise-training programme as a
combined training strategy would result in greater adverse
events of the metabolic profile as previously reviewed [11].
A combined aerobic and resistance training would improve
oxidative capacity and in addition would enhance muscle
quality (strength and mass) [22]. The absent correlation
between improved insulin sensitivity and mitochondrial
function could be partly caused by the effect of resistance
training, in which increased insulin-sensitive muscle mass
is a well known outcome.

In conclusion, in the present study we confirmed lower
intrinsic mitochondrial function in male type 2 diabetic
patients compared with control individuals matched for
age, BMI and physical activity. Furthermore, we showed
that type 2 diabetic patients increased their mitochondrial
content to a similar extent as control individuals. Ex vivo
mitochondrial function increased upon exercise at the
level of ADP-stimulated oxidative phosphorylation and
also FCCP-driven maximal oxidative capacity, both on
glutamate and on glutamate and succinate and in the
presence of palmitoyl-carnitine. Importantly, type 2
diabetic patients had similar intrinsic mitochondrial
function compared with control individuals, paralleled
by an improvement, but not restoration, of insulin
sensitivity.
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