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syndrome: promising potential for diagnosis and prognosis
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Abstract Cardiac disease in diabetes mellitus and in the
metabolic syndrome consists of both vascular and myocar-
dial abnormalities. The latter are characterised predomi-
nantly by diastolic dysfunction, which has been difficult to
evaluate in spite of its prevalence. While traditional
Doppler echocardiographic parameters enable only semi-
quantitative assessment of diastolic function and cannot
reliably distinguish perturbations in loading conditions
from altered diastolic functions, new technologies enable
detailed quantification of global and regional diastolic
function. The most readily available technique for the
quantification of subclinical diastolic dysfunction is tissue
Doppler imaging, which has been integrated into routine
contemporary clinical practice, whereas cine magnetic
resonance imaging (CMR) remains a promising comple-
mentary research tool for investigating the molecular
mechanisms of the disease. Diastolic function is reported
to vary linearly with age in normal persons, decreasing by
0.16 cm/s each year. Diastolic function in diabetes and the
metabolic syndrome is determined by cardiovascular risk
factors that alter myocardial stiffness and myocardial
energy availability/bioenergetics. The latter is corroborated
by the improvement in diastolic function with improvement
in metabolic control of diabetes by specific medical therapy
or lifestyle modification. Accordingly, diastolic dysfunction

reflects the structural and metabolic milieu in the myocar-
dium, and may allow targeted therapeutic interventions to
modulate cardiac metabolism to prevent heart failure in
insulin resistance and diabetes.
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Abbreviations
BNP Brain natriuretic peptide
CAD Coronary artery disease
CMR Cine magnetic resonance imaging
E′ Early diastolic myocardial velocity, derived from

tissue Doppler imaging
E/E′ Ratio of early diastolic velocities of mitral

inflow (Doppler-derived) and myocardial
movement (tissue Doppler imaging-derived)
taken as left ventricular filling pressure

S′ Systolic myocardial velocity, derived from
tissue Doppler imaging

The metabolic syndrome and type 2 diabetes
are associated with myocardial dysfunction

The metabolic syndrome is a cluster of risk factors of
metabolic origin and has a growing prevalence worldwide
[1, 2]. The prototypical patient has non-specific symptoms,
obesity and a sedentary lifestyle, and usually receives
therapy for metabolic syndrome only after systemic
hypertension and/or hyperlipidaemia is diagnosed. However,
patients with the metabolic syndrome are at risk of
multisystem disease and, accordingly, need early diagnosis
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and appropriate therapy before the full syndrome and its
deleterious sequelae become established. Abdominal adi-
posity is commonly associated with insulin resistance and
the development of a number of cardiovascular risk factors,
prominent among which is diabetes mellitus [3, 4]. The most
serious complication is coronary artery disease (CAD),
which often occurs before overt diabetes mellitus is
apparent [5] and when there is only subtle myocardial
dysfunction that is manifest initially in diastole [6, 7].
Because of accumulating evidence for predominantly
diastolic dysfunction in diabetic patients without ischaemic,
valvular and hypertensive disease, a specific diabetic
cardiomyopathy has been proposed [8]. More recently,
increased prevalence of diastolic dysfunction has also been
shown in the metabolic syndrome [9].

Early subclinical diastolic dysfunction has only recently
been recognised and its predictive value for diastolic heart
failure appreciated [10–12], having previously been
regarded as benign [13]. Diastolic dysfunction is the most
prominent characteristic of diabetic cardiomyopathy [7, 14,
15] and heart failure is the most common cause of death
(66%) in patients with type 2 diabetes after their first
myocardial infarction [16]. The traditional echocardio-
graphic and Doppler techniques have proved inconclusive
for the diagnosis of diastolic dysfunction in diabetic
cardiomyopathy and in the metabolic syndrome because
there is no consensus regarding definitive diagnostic
criteria. Furthermore, evidence-based medicine lacks spe-
cific therapy for diastolic dysfunction in general and for
diabetic cardiomyopathy in particular, as the commonly
recommended treatment options for systolic heart failure
have not proved effective [13, 17].

Hence, this review seeks to present an interdisciplinary
approach to diastolic dysfunction in diabetes and the
metabolic syndrome, focusing on the associated problems,
pathophysiology, diagnostic modalities, therapeutic impli-
cations and clinical applications.

Problems

Prevalence, relevance and prognosis of diastolic dysfunction
There is indisputable evidence for the high prevalence of
predominantly diastolic myocardial dysfunction in individuals
aged >65 years. This prevalence is 16% in the general
population and 35% in individuals with the metabolic
syndrome [9, 18]. However, it is 50% in individuals with
prediabetes and overt type 2 diabetes, 60% in patients with
CAD and 70% in patients with both CAD and diabetes [19–
22]. Diastolic myocardial dysfunction with a normal left
ventricular ejection fraction is clinically important because it
accounts for approximately 50% of all hospital admissions for
acute heart failure [12]. For the individual patient, diastolic

dysfunction and diastolic heart failure mean impaired quality
of life induced by the deterioration in exercise capacity that
limits activities of daily living [23]. Patients with the
metabolic syndrome and those with diabetes often present
with exertional dyspnoea and reduced exercise tolerance,
which are due directly to diastolic myocardial dysfunction [9,
22, 24, 25].

Abnormalities of myocardial relaxation, i.e. grade 1
diastolic dysfunction, confer a twofold increase in all-cause
and cardiac mortality [10, 11]. This observation has
increased awareness of diastolic heart failure with a normal
ejection fraction [12, 13]. However, despite the impressive
impact of isolated diastolic dysfunction upon mortality,
there remains a lack of evidence-based treatment regimes
for diastolic dysfunction.

Problems with clinical assessment Diastolic dysfunction
associated with the metabolic syndrome or diabetes is not
always detected early. The delay in diagnosis is due partly
to patient-related factors and partly to medical oversight.
Patients are often ashamed of being overweight, have
difficulty losing weight, and become resigned to their
physical limitations in daily life and reticent about discus-
sing this problem with their medical practitioner. Further-
more, most diabetologists do not routinely assess levels of
physical activity or signs and symptoms of diastolic
dysfunction, such as progressive exertional dyspnoea or
exercise intolerance. Nor are the 6-min walk test [26], peak
myocardial oxygen consumption or brain natriuretic peptide
(BNP) obtained routinely, whereas an electrocardiogram
and chest X-ray are obtained but are only occasionally
helpful for detecting left ventricular hypertrophy or dilata-
tion. Therefore, more sensitive imaging techniques are
required for the early detection of myocardial dysfunction.
While there is no consensus for the definition of diastolic
dysfunction, there have been recent recommendations by
the European Society of Cardiology for the diagnosis of
diastolic heart failure [27]. These comprise three obligatory
conditions: (1) clinical signs and symptoms of congestive
heart failure; (2) normal or only mildly abnormal left
ventricular systolic function; and (3) evidence of diastolic
dysfunction as shown by abnormal left ventricular relaxa-
tion, filling, diastolic distensibility or stiffness in addition to
elevated levels of BNP. An E/E′ ratio [28] (ratio of early
diastolic velocities of mitral inflow derived by Doppler
imaging and of myocardial movement derived by tissue
Doppler imaging) >15 is considered diagnostic of diastolic
dysfunction and an E/E′ ratio <8 as diagnostic of the
absence of diastolic heart failure. The use of Doppler-
derived mitral inflow measures of left ventricular diastolic
function is no longer recommended as a first-line diagnostic
approach. An increased left atrial size (>49 ml/m2) and an
increased left ventricular mass (>122 g/m2 in women and
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>149 g/m2 in men) are considered sufficient evidence of
diastolic dysfunction when the E/E′ ratio is inconclusive.

Pathophysiology of diastolic dysfunction

Diastole is traditionally divided into four phases: (1)
isovolumic relaxation; (2) early diastolic filling, i.e. rapid
filling; (3) diastasis; and (4) late diastolic filling, i.e. atrial
contraction. Two aspects of diastolic function—relaxation
and stiffness—are often considered together, but they
describe different properties of the myocardium. Relaxation
is a dynamic and energy-consuming myocardial process
that begins at the end of contraction and continues
throughout isovolumic relaxation and early diastolic filling.
Impaired relaxation is either delayed or incomplete and may
be due to regional dyssynchrony or to a reduction in energy
supply, as in myocardial hypertrophy or ischaemia. Dia-
stolic stiffness is measured at the end of diastole after filling
has terminated and is determined by the curvilinear
pressure–volume relationship. The slope of the tangent
(dP/dv) of this relationship defines the chamber stiffness at
any given filling pressure. Changes in stiffness may occur
as a result of changes in the composition and material
properties of the myocardium, such as interstitial fibrosis
and left ventricular hypertrophy or both. In the metabolic
syndrome and diabetes mellitus, diastolic dysfunction
results from abnormal myocardial active relaxation and an
increase in passive stiffness due to metabolic derangements
and structural remodelling.

The early diastolic filling period (approximately 100 ms)
in the normal heart sucks 80% of the total filling volume
into the left ventricle by active energy-consuming myocar-
dial extension. Measurement of maximal early diastolic
velocity/function requires high temporal resolution of the
imaging technique, i.e. a frame rate >100 frame/s, as
demonstrated in Fig. 1 [29]. Under-sampling of these
rapidly changing velocities leads to underestimation. The
optimal time resolution (200/s) is provided in all echocar-
diographic M-mode recordings and in pulsed tissue
Doppler imaging.

Factors involved in the development of diabetic myocardial
dysfunction The clustering of cardiovascular risk factors in
the metabolic syndrome induces multiple complex meta-
bolic reactions, most prominent among which are altered
insulin signalling, glyco- and lipotoxicity, increased cyto-
kine activity and intramyocyte and/or interstitial deposition
of triacylglycerol and AGEs, which may all affect myocar-
dial function directly or indirectly [15, 30–34] (Fig. 2). In
addition, these multiple risk factors trigger endothelial
dysfunction in a summative fashion [35]. Among the
effects of endothelial dysfunction are dysregulation of
vascular permeability, inflammatory responses and, most
prominently, vascular remodelling and atherosclerosis in-
volving the coronary and systemic arteries. This response is
mediated by increased vascular tone and associated with
increases in arterial stiffness, blood pressure and pulse
pressure [36, 37]. The increase in afterload in the vascular
system results in the heart working at an elevated level of
resting myocardial oxygen consumption. However, this
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Fig. 1 Dependence of measuring maximal early diastolic velocity E′
on frame rate. The figure is based on a single-colour M-mode tissue
Doppler recording of myocardial velocities. This data set allows
calculation of the effects of lowering sampling frequency or frame
rates for the display of the resulting E velocities in the respective

velocity–time plots. Frequency: (a) 140 Hz, (b) 70 Hz, (c) 35 Hz, (d)
20 Hz. If the frame rate is ≤35/s, relevant underestimation of early
diastolic velocity is induced (J. U. Voigt, University of Leuven,
modified from Kukulski et al. [29])
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increased energy demand is associated with unfavourable
downregulation of myocardial perfusion, impaired intracel-
lular bioenergetics and reduced cardiac efficiency [15, 31,
38, 39]. This situation may be considered an energy
demand/supply mismatch based on metabolically induced
abnormalities inducing stress in cardiomyocytes. Subse-
quently, myocardial hypertrophy, autonomic dysfunction
and left ventricular diastolic dysfunction may develop,
characterising the first stage of diabetic cardiomyopathy
[30]. This stage may remain asymptomatic for a long time
and precedes the onset of systolic dysfunction [6, 9, 24, 40,
41]. In the late stages of diabetes, diastolic dysfunction may
increase further as a result of additional structural abnor-
malities of the myocardium, such as steatosis cardialis,
AGE deposits, interstitial fibrosis and alterations in the
extracellular matrix microvasculature that typify the ad-
vanced stages of diabetic cardiomyopathy [30, 41–44].

Early diastolic function depends on both myocardial
stiffness and energy availability For decades, the patho-
physiological mechanisms of impaired left ventricular
filling have been considered to be mainly a result of
increased myocardial stiffness due to structural changes in
the myocardium. Myocardial stiffness affects mainly late
diastolic function but may also affect relaxation properties.
A recent study based on left ventricular endomyocardial
biopsy samples showed that systolic heart failure in diabetic
patients was due to increased myocardial stiffness that was
mainly associated with AGE deposition and fibrosis.
However, the main contributors to diastolic heart failure
were high cardiomyocyte resting tension and hypertrophy
[41]. Of interest, myocellular hypertrophy in diabetes was
unrelated to pressure overload but associated with elevated

fasting insulin levels, implicating insulin resistance as a
factor contributing to myocyte hypertrophy.

In addition to stiffness, there is also a reversible dynamic
component based on the fact that early diastolic relaxation
and filling are energy-consuming, active processes. Two
well accepted examples of this dynamic component are the
immediate and reversible nature of diastolic dysfunction
during stress testing [45] and during coronary arterial
balloon inflation, which may be regarded as an iatrogenic
model of regional and intermittent impairment of myocar-
dial energy supply in man [46]. This model, with an exact
onset and offset of perfusion blockade, has confirmed the
increased susceptibility of myocardial diastolic function to
energy derangements by the occurrence of diastolic
dysfunction, not only before but also extending far beyond
systolic dysfunction. Limitations in energy supply may
arise not only from deficiencies in circulatory transport and
perfusion but also from the intracellular processes involved
in biochemical energy production and substrate utilisation
[15, 31, 38, 39].

Metabolic abnormalities leading to reduced energy availa-
bility Abnormal insulin signalling and increased production
of reactive oxygen species [32, 33] have recently been
demonstrated in individuals with uncomplicated type 2
diabetes [47]. Many of the possible mechanisms of action
of reactive oxygen species involve the regulation of energy
availability. Indirect effects may involve downregulated
perfusion by induction of endothelial dysfunction [35, 48].
Direct effects on cardiomyocytes result in impaired mito-
chondrial energy production by altered substrate supply and
utilisation [38, 49] and mitochondrial uncoupling, which
reduces cardiac efficiency [50] and alters insulin signalling.

CV risk factors Diabetes mellitus
Metabolic syndrome

Hypertrophy 

diast/syst dysfunction

Autonomic dysfunct.

Pulse pressure 

Arterial stiffness

Vasc. remodelling

O2 consumption

Myocard. perfusion

Cardiac efficiency

Cardiovascular disease
Atherosclerosis Myocard. dysfunction

Insulin resistance (postprandial)
Hyperglycemia

Dyslipidemia

Hypertension

Endothelial 
dysfunction

Ox. stress
Chron. inflamm.

Central obesity

Altered insulin
signalling

Glyco-, lipo-
toxicity

Cytokines
Deposition
AGE, TG

Fig. 2 Scheme showing the
interrelations between the meta-
bolic syndrome and cardiovas-
cular disease via complex
reactions and endothelial dys-
function. These induce vascular
stiffness and increased myocar-
dial oxygen consumption in
spite of downregulated perfu-
sion. This unfavourable constel-
lation results in cardiomyocyte
stress and myocardial diastolic
dysfunction as the first stage of
diabetic cardiomyopathy
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The latter plays a key role in insulin resistance [33],
reduced bioavailability of nitric oxide [51], altered handling
of calcium [52] and mitochondrial damage and dysfunction,
culminating in abnormal cardiac remodelling and ventric-
ular dysfunction [36]. Acknowledging diastolic dysfunction
as an indicator of reduced myocardial energy availability
would provide a better understanding of why augmentation
may be observed with short-term improvement of glycae-
mic control in type 2 diabetes [53] and with acutely
increased myocardial perfusion by C-peptide administration
in young and athletic individuals with type 1 diabetes [54].
There is an increasing number of reports showing that the
extent of hyperglycaemia correlates with diabetic myocar-
dial dysfunction [30, 55, 56], that good metabolic control
reduces the risk of heart failure [57, 58] and that the
improvement in diastolic function correlates with the extent
of improved glucose control [53, 55, 59]. The optimal
glucose-lowering regimen for the protection of patients
with diabetes against diastolic heart failure needs to be
determined in further studies.

Cardiovascular risk factors determine diastolic function Rapid
filling of the left ventricle has been shown to be a sensitive
indicator of all types of myocardial damage, being
susceptible not only to age and ischaemia but also to
virtually all cardiovascular risk factors, including the
metabolic syndrome [9, 19, 45, 60–62]. Concordant with
these findings is the reversibility of impaired diastolic
function, as demonstrated by effective treatment of any of
these risk factors, including a sedentary lifestyle and
obesity [53, 60, 63–66]. Notably, the reversibility of
myocardial abnormalities associated with the metabolic
syndrome and diabetes is welcome news for patients and
their physicians and is in accord with the recent message
from the UK Prospective Diabetes follow-up study, that the
most effective treatment is started early in the course of the
disease [67].

Age dependence of diastolic function differentiates normal
function from dysfunction Myocardial velocity measure-
ments by tissue Doppler imaging clearly demonstrate the
predominant influence of ageing on diastolic function [68,
69], confirming previous reports using different imaging
techniques. There is a steep and linear decline of normal
early diastolic velocity with ageing in normal people, from
16 cm/s at the age of 20 years to 6 cm/s at 80 years. This
decline equals a decrease of 0.16 cm/s (i.e. 1% of the
original value) every year. Accordingly, cut-off values for
normality vs dysfunction should be defined in a linear
regression equation as a function of age [19]. Using pulsed
tissue Doppler imaging, the cut-off level for normal age-
related velocity is calculated as −0.15×age (years) +
18(cm/s). This approach allows individual patients to be

assigned to normality or dysfunction/risk and avoids the
inconsistencies arising from normal values defined for
different age groups. There are no sex-related differences
in the association of diastolic function and age. E′ is also
useful in the detection of impaired left ventricular relaxa-
tion and estimation of filling pressure (E/E′) in patients with
atrial fibrillation [70].

Diagnostics

Echocardiography and Doppler imaging for traditional left
ventricular function assessment The ejection fraction is the
traditional measure of systolic left ventricular function and
has proved to be a strong predictor of clinical outcome in
dilated cardiomyopathy and a variety of cardiac diseases
[71, 72]. The ejection fraction bears a curvilinear relation-
ship with end-diastolic volume and an inverse correlation
with afterload [72]. However, normalisation by end-
diastolic volume makes it insensitive to subclinical myo-
cardial dysfunction in the normal-sized heart or the small
hypertrophied ventricle [73]. The normal-sized heart of
patients with type 2 diabetes and correspondingly over-
weight body habitus frequently results in poor delineation
of the endocardial borders, which are prerequisites for the
quantitative assessment of ejection fraction (Fig. 3, top
panels).

Similarly, the traditional measurements of diastolic
function, the Doppler-derived mitral valve inflow velocity
pattern and its derivatives, have proved difficult to interpret
because of the pseudonormal pattern, that defines grade 2
dysfunction, but may be mistaken for the normal pattern
[74] (Fig. 3c), unless differentiation by the Valsalva
manoeuvre or by assessing pulmonary vein flow is
performed. While the clinical course of diastolic dysfunc-
tion is characterised by decreasing effectiveness of myo-
cardial relaxation and extension associated with increasing
left atrial pressure and size, the respective developments of
pressure and filling cannot be mirrored by the traditional
Doppler parameters. An even more important limitation,
however, is the non-quantitative pattern recognition used
for assessing diastolic function and the changes in the
course of disease and during preventive therapy.

Pulsed tissue Doppler imaging Detection of systolic or
diastolic dysfunction depends on the sensitivity and
specificity of the diagnostic technique used. Tissue Doppler
imaging has demonstrated that the systolic myocardial
velocity S′ is a more sensitive measure of systolic function
than ejection fraction [75] and that the early diastolic
myocardial velocity E′ and E/E′ have the best correlation
with left ventricular relaxation and compliance indexes
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[76]. Tissue Doppler imaging is a robust and reproducible
ultrasound technique [74] employing the low-frequency and
high-amplitude ultrasound signals reflected from the myo-
cardium. Regional left ventricular function is quantified as
the myocardial velocity of long-axis motion in cm/s during
systole (S′), early diastole (E′) and late diastole (A′; Fig. 4)
[74, 76–78]. Left ventricular global function is the average
of these segmental velocities, obtained either at the mitral
annulus or very basal myocardium in the apical four- and
two-chamber views. The limitations of tissue Doppler
imaging include measurement of velocities in apical seg-
ments of the left ventricle because of the angle dependency
inherent in Doppler techniques. A further problem is the
inability to differentiate between actively contracting
muscle and passive movements from tethering between
myocardial segments. Both limitations are relevant in the

evaluation of regional left ventricular function in compli-
cated CAD, which is outside the scope of this review.
Tissue Doppler imaging is well validated, sensitive,
reproducible, user-friendly and readily available [74].
Furthermore, it is economic, in particular, if pulsed tissue
Doppler imaging is being used, which has the additional
advantages of optimal temporal resolution, immediate
image quality control and online velocity quantification
based on fast Fourier transform analysis [45, 74]. Pulsed
tissue Doppler imaging enables non-invasive assessment of
left ventricular filling pressure by the E/E′ ratio [28] and
has been integrated into clinical routine measurements.

Colour Doppler tissue imaging Myocardial velocity mea-
surements can also be obtained using two-dimensional high
frame rate (120 frames/min) colour tissue Doppler imaging

Systole: LV EF

Diastole: Pattern recognition mitral inflow

E
A

Normal Abnormal relaxation Pseudonormal Restrictive

a

c

b

Fig. 3 In the traditional assessment of left ventricular function by two-
dimensional echocardiography, the systolic variable left ventricular
ejection fraction (LV EF) may have poor endocardial border delineation
at end-diastole (a) and end-systole (b) as a limiting factor in obese
patients. Furthermore, it has limited sensitivity in small-sized hearts.

Traditional variables of diastolic function (c) are the patterns of the early
diastolic (E) towards late diastolic (A) Doppler-derived mitral inflow
velocities as depicted with increasingly severe dysfunction from left to
right. Grade 2 dysfunction, i.e. pseudonormal, may be mistaken for the
normal pattern. This pattern recognition is non-quantitative

Fig. 4 Recordings of velocity–
time curves by pulsed tissue
Doppler imaging from the basal
septum and lateral wall, as indi-
cated in the scheme of the apical
four-chamber view measuring
systolic (S′), early diastolic (E′)
and atrial (A′) myocardial veloc-
ity. Global left ventricular func-
tion is calculated as the average of
these regional segmental veloci-
ties. Feasibility is 94% vs 81% in
two-dimensional echocardiogra-
phy (modified from von Bibra et
al. [45]). LA, left atrium; LV, left
ventricle; RA, right atrium; RV,
right ventricle
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and off-line analysis to reconstruct time–velocity curves. It
is important to note that the recording of these velocities is
based on autocorrelation and not on fast Fourier analysis as
in pulsed tissue Doppler imaging. Accordingly, velocities
from colour Doppler imaging are intrinsically lower by 1.8±
1.6 cm/s compared with velocities derived by pulsed tissue
Doppler imaging [29], so that these two techniques should
not be interchanged in sequential studies.

Both tissue Doppler techniques have been used success-
fully to quantify myocardial diastolic and systolic function
at rest [9, 19, 28, 30, 60, 75] and during stress [19, 45, 79]
and have consistently demonstrated impaired diastolic
function in patients with the metabolic syndrome and/or
diabetes mellitus type 1 and type 2. Thus, tissue Doppler
velocity measurements appear to compensate for the
deficiencies of the traditional less precise measures of
diastolic function in these patients, and accordingly provide
the basis for large-scale therapeutic studies in subclinical
and low-grade myocardial disease.

Doppler-based strain and strain rate imaging The theoret-
ical advantage of two-dimensional colour Doppler imaging
is that routine images may be acquired for subsequent off-
line analysis of velocity, strain (change in myocardial
length/resting myocardial length) and strain rate (rate of
change of strain [dS/dt]). Strain and strain rate enable
assessment of regional and global myocardial mechanical
function and appear particularly suitable in CAD and its
complications [80] but they have not been integrated into
routine clinical practice [74]. However, pulsed tissue
Doppler imaging has demonstrated greater sensitivity for
the detection of diastolic dysfunction than strain and strain
rate [81, 82], which is important since diastolic dysfunction
commonly precedes systolic dysfunction, especially in
CAD, the metabolic syndrome and diabetes mellitus [6,
19, 21, 24, 38, 61, 62].

Speckle tracking-based strain and strain rate imaging The
most recent ultrasound development for function assess-
ment, strain and strain rate imaging based on speckle
tracking is currently being evaluated [83]. This technology
uses ultrasound reflectors within the myocardium to
characterise regional myocardium by tracking these reflec-
tors during systolic shortening and relaxation in two and,
potentially, three dimensions. Moreover, this technology is
not constrained spatially by the angle dependency of
Doppler imaging. In addition, speckle tracking allows the
evaluation of left ventricular twist and torsion patterns
during left ventricular contraction, ejection, relaxation and
filling. These patterns are different in systolic heart failure
compared with diastolic heart failure and await further
clarification [84]. The prognostic value of this technology
for the routine assessment of subclinical disease in the

metabolic syndrome is not yet known. A limitation of
speckle tracking in the assessment of diastolic function is
the relatively low frame rate compared with the higher
frame rate of pulsed tissue Doppler imaging. Speckle
tracking is based on two-dimensional echocardiographic
image quality, which may be problematic in overweight
patients with the metabolic syndrome and type 2 diabetes.
In contrast, pulsed tissue Doppler velocity signals are
relatively independent of human tissue attenuation, result-
ing in velocity recordings that can be analysed even in
obese individuals who are difficult to image by two-
dimensional echocardiography [45, 85].

Cine magnetic resonance imaging Cine magnetic reso-
nance imaging (CMR) is the gold standard for the
quantitative assessment of left ventricular mass and
volumes, from which systolic function may be determined
[86]. This non-ionising imaging method has excellent three-
dimensional spatial resolution. As a consequence of the
complex spatial data acquisition in either the gradient echo
or the phase-contrast imaging technique, there are some
limitations in temporal resolution. Most CMR technologies
have a time resolution ≥30 ms; that for fast breath-hold
gradient echo imaging and CMR fluoroscopy resolution is
15–25 ms and that for CMR tissue tagging is ≥20 ms [87].
Gradient echo imaging uses repetitive radiofrequency
pulses gated to the electrocardiogram so that cine images
may be generated during a single breath-hold. Phase-
contrast CMR allows velocity encoding of moving struc-
tures and blood using the spin phase shift as the basic
principle for velocity measurement. Commercially available
quantitative CMR software uses spatial modulation of
magnetisation (SPAMM) tagging to characterise regional
wall motion inhomogeneities [88]. This technique may offer
greater accuracy for the detection of regional systolic
dysfunction analogous to speckle tracking-derived strain and
strain rate. However, it shares with speckle tracking the
disadvantages of lower frame rates (50 frames/s) compared
with pulsed tissue Doppler imaging, which is not ideal for the
assessment of diastolic function. At present, the use of CMR
for the assessment of diastolic function may be considered a
research tool because of its high cost, limited availability and
the need for time-consuming offline data reduction and
analysis associated with non-ideal temporal resolution.

The use of contrast agents such as gadolinium to mark
scarred myocardium, fibrosis or inflammation by delayed
contrast enhancement has been integrated into clinical
routine. Magnetic resonance spectroscopy has the potential
to recognise changes in myocardial bioenergetics and
metabolism, such as increased lipid supply by 1H-magnetic
resonance spectroscopy and altered high-energy phosphate
metabolism assessed by 31P-magnetic resonance spectros-
copy for measuring the phosphocreatine–ATP ratio (PCr/
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ATP). These technologies may open new windows on the
links between altered metabolism and function in the
diabetic heart. First reports demonstrate reduced diastolic
function in well controlled patients with uncomplicated
type 2 and type 1 diabetes compared with age-matched
controls associated with impaired myocardial energy
metabolism [38, 49]. Reduced diastolic function has also
been observed in type 2 diabetic patients with myocardial
steatosis [44] and in middle-aged compared with younger
healthy individuals, but is improved in middle-aged
individuals on long-lasting aerobic training, paralleled by
the PCr/ATP ratio [89].

Summary of imaging techniques Apart from histological
and molecular changes in the diabetic myocardium, which
are not the focus of this review, there is growing evidence
that diastolic and systolic myocardial dysfunction can be
and should be routinely quantified by tissue Doppler
imaging. Low cost, wide availability, superior temporal
resolution and on-line velocity analysis make pulsed tissue
Doppler the imaging modality of choice to investigate the
presence of left ventricular dysfunction in diabetes or the
metabolic syndrome. A specific research advantage of
CMR techniques is the ability to assess changes in tissue
composition as well as alterations in myocardial metabo-
lism by spectroscopy.

Clinical trials

Preventive medicine and diastolic function Evidence-based
medicine has demonstrated improvement of cardiovascular
mortality in individuals with type 2 diabetes mellitus by
glucose-lowering drugs and/or other medical therapy, but
diastolic function has not been measured. Neither are there
any evidence-based studies of patients with diabetes and
diastolic heart failure.

Many of the therapeutic principles in cardiovascular
endpoint studies have been applied in small studies
assessing diastolic function (Table 1). Based on the
presumed importance of repetitive hyperglycaemia as the
basic mechanism underlying diabetic cardiomyopathy, tests
were performed to establish whether improved glycaemic
control, preferably with insulin, would reverse left ventric-
ular dysfunction. This was confirmed in two studies of type
2 and one study of type 1 diabetes [53, 55, 59]. In each of
these studies, there was a significant inverse correlation
between the observed change in diastolic function and the
change in glycaemic control. Furthermore, in the first study,
there was a parallel improvement in myocardial perfusion
[53]. A more recent study [90] of patients with only subtle
evidence of diastolic dysfunction [91] and with normal

levels of glycaemic control and E′ at the beginning of the
study demonstrated unchanged diastolic function after
further lowering of HbA1c. An impact of postprandial
glucose control on diastolic function has been suggested in
a study comparing the effects of intensified conventional
insulin therapy with those of conventional therapy with
premixed insulin after 2 years [56] and also in a randomised
study comparing analogue with human insulins in intensi-
fied conventional insulin regimens [92]. In the insulin
analogue treatment arm, improved postmeal glucose values
were associated with improved diastolic function, in accord
with an earlier study demonstrating improved myocardial
perfusion associated with analogue insulins [93]. The
alternative to pharmacological glucose-lowering therapy is
lifestyle modification, which has also been shown to
improve diastolic myocardial function as a result of
exercise training [94, 95] and restriction of caloric intake
[96]. More recently, impressive beneficial effects have been
reported on cardiac function and on all components of the
metabolic syndrome by a low carbohydrate/high protein
diet with a low glycaemic index in spite of a 70% reduction
in glucose-lowering medication, but not by the traditional
low fat diet [97, 98].

Glycaemic control is not the only contributor to diastolic
dysfunction, as suggested by two detailed studies of
diabetic metabolism during treatment with glitazones. An
extensive CMR study comparing pioglitazone with metfor-
min [99] showed functional improvement in the glitazone
group only but metabolic improvement in both groups, and
did not find any correlation between the change in diastolic
function and increased myocardial glucose uptake or altered
substrate metabolism.

A tissue Doppler imaging crossover study comparing
rosiglitazone with glimepiride demonstrated improved
fasting and postprandial glucose values and diastolic
function for rosiglitazone only. In addition, this study
showed a close relationship between the reduction of
malondialdehyde (a marker of oxidative stress) and im-
provement in diastolic function [47].

With regard to cardiovascular preventive medications,
first reports describe improved diastolic function and or
prognosis with statin therapy [21, 65]. Similarly, improve-
ments in diastolic function have been observed in hyper-
tensive and diabetic patients treated with ACE inhibitors,
calcium antagonists, angiotensin II type 1 (AT1) blockers or
beta blockers [60, 100–102].

Clinical application of imaging

Surrogate variable or direct observation of pathological
myocardial function In order to screen individuals with the
metabolic syndrome or diabetes mellitus for myocardial
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dysfunction, most physicians would prefer a reliable and
effective blood test as a surrogate variable compared with
the more costly diagnosis by echocardiography. There is
increasing evidence that BNP is a sensitive marker of
congestive heart failure and acute coronary syndromes
[103]. However, BNP does not appear to be a sensitive or
specific marker for the early detection of preclinical
myocardial dysfunction, in particular diastolic dysfunction
[104, 105]. The sensitivity of BNP testing was reported
recently as only 63% in diabetic patients with subclinical
myocardial dysfunction [106]. Furthermore, its potential to
monitor therapeutic efficacy appears uncertain, as sug-
gested by the outcome of the Steno-2 Study in 160 patients
with type 2 diabetes mellitus and microalbuminuria. In this
study, multimodal therapy induced significant improvement
in metabolic control and cardiovascular risk factors, but
BNP increased significantly [107]. Thus, the use of BNP
cannot be considered effective for the assessment of
subclinical diastolic dysfunction.

Preventive cardiovascular medicine should ideally use
diagnostic measurements that involve direct observation of
the pathological changes in the myocardium rather than rely
upon identification of epiphenomenal risk factors or
surrogate biomarkers. At present, however, it is premature
to make recommendations about when, how often and
which selection of diabetic patients should be imaged to
assess baseline diastolic function. The clinical picture, in
particular a reduced exercise capacity limiting normal daily
activities, should raise suspicion of undiagnosed diastolic
dysfunction and initiate referral to a cardiologist for
diagnostic ultrasonography. Similarly, a combination of
obesity, insulin resistance, mediocre glycaemic control and
further cardiovascular risk factors or CAD should indicate a
diagnostic assessment for early preventive action. Because
of the current lack of evidence-based therapeutic strategies,
preventive action should focus on addressing the underly-
ing pathophysiological mechanisms of the metabolic
disease by at least recommending lifestyle changes. Regular
physical training/activity and dietary modification lack side
effects and have had a success rate better than that of
preventive drug therapy, at least in CAD patients [108].

Highly sensitive variables are needed for individual patient
management Whereas the clinical endpoints that are used in
evidence-based preventive medicine are often unsuitable for
tailoring individual patient therapy, the quantification of ideal
sensitive and routinely available current variables is required
in order to demonstrate therapeutic efficacy. Many of the large
clinical trials report the significance of small numerical
differences between the control group and the active treatment
arms, but this has little or no clinical relevance for individual
patients. Accordingly, it remains of clinical interest to study
highly sensitive variables, which have the potential to become

significant in small patient numbers, e.g. in eight to 15
observed cases. These variables may yield meaningful
individual differences when compared before and after
therapeutic interventions, as has been shown to be true for
diastolic myocardial velocity quantified by pulsed tissue
Doppler imaging and reported to be suitable for supporting
therapeutic decision-making [47, 53, 54, 100].

Conclusion

The cardiovascular disease associated with the metabolic
syndrome and with diabetes mellitus comprises vascular
and myocardial abnormalities. This myocardial dysfunction
is characterised predominantly by diastolic dysfunction
consisting of relaxation abnormalities that are prevalent
and have prognostic importance. Diastolic dysfunction can
be detected and quantified by pulsed tissue Doppler
imaging as a clinical routine and assigned to normality vs
dysfunction by using the linear inverse relation of individ-
ual age to diastolic function. Diastolic dysfunction is a
direct measure of structural and dynamic, metabolically
induced, pathophysiological processes in the myocardium.
Tissue Doppler imaging has the potential to meet the
present need for a robust tool that can establish therapeutic
efficacy in future preventive studies of insulin resistance,
diabetes and cardiovascular disease and, thus, should be
used to identify (pre-) diabetic individuals with diastolic
dysfunction and to optimise their clinical management.
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