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Abstract
Aims/hypothesis Pancreatic beta cells chronically exposed
to fatty acids may lose specific functions and even undergo
apoptosis. Generally, lipotoxicity is triggered by saturated
fatty acids, whereas unsaturated fatty acids induce lipo-
dysfunction, the latter being characterised by elevated basal
insulin release and impaired glucose responses. The
peroxisome proliferator-activated receptor α (PPARα) has
been proposed to play a protective role in this process,
although the cellular mechanisms involved are unclear.
Methods We modulated PPARα production in INS-1E beta
cells and investigated key metabolic pathways and genes
responsible for metabolism–secretion coupling during a
culture period of 3 days in the presence of 0.4 mmol/l
oleate.
Results In INS-1E cells, the secretory dysfunction primarily
induced by oleate was aggravated by silencing of PPARα.
Conversely, PPARα upregulation preserved glucose-

stimulated insulin secretion, essentially by increasing the
response at a stimulatory concentration of glucose
(15 mmol/l), a protection we also observed in human islets.
The protective effect was associated with restored glucose
oxidation rate and upregulation of the anaplerotic enzyme
pyruvate carboxylase. PPARα overproduction increased
both β-oxidation and fatty acid storage in the form of
neutral triacylglycerol, revealing overall induction of lipid
metabolism. These observations were substantiated by
expression levels of associated genes.
Conclusions/interpretation PPARα protected INS-1E beta
cells from oleate-induced dysfunction, promoting both
preservation of glucose metabolic pathways and fatty acid
turnover.
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Abbreviations
ACC Acetyl-CoA carboxylase
CPT1 Carnitine palmitoyl transferase 1
FAT Fatty acid translocase
PPARα Peroxisome proliferator-activated receptor α
RXR Retinoid X receptor
shRNA Short hairpin RNA

Introduction

During the last few decades, an abundant energy supply
and reduced physical activity have resulted in a dramatic
increase in the incidence of obesity-associated diseases
such as type 2 diabetes [1]. Adipose tissue and circulating
non-esterified fatty acids (NEFA) play a central role in the
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pathogenesis of the insulin resistance associated with
obesity [2]. Excessive lipid accumulation in adipose tissues
causes fatty acid spillover towards peripheral organs. These
include the liver, skeletal muscles and the endocrine
pancreas, providing a lipid environment that could interfere
with their normal physiology and function [3, 4]. Numerous
studies have shown that insulin resistance precedes the
development of hyperglycaemia in people who will
eventually develop beta cell dysfunction and, consequently,
type 2 diabetes [5]. In particular, chronic exposure of
pancreatic beta cells to NEFA can induce desensitisation of
glucose-stimulated insulin secretion [6]. These associated
pathologies call for better understanding of the links
between physiological nutrient states and molecular meta-
bolic sensors in the beta cell.

The peroxisome proliferator-activated receptor α (PPA
Rα) is a nuclear receptor commonly considered to be a
lipid sensor controlling the expression of genes involved in
fat metabolism [7]. PPARα is the molecular target of the
fibrate class of lipid-lowering drugs and is involved in
metabolic adaptations to fasting and high-fat diets in the
liver [8–10]. In Pparα (also known as Ppara)-null mice,
the fasting state induces hyperinsulinaemic hypoglycaemia
[11, 12]. Pancreatic islets isolated from Pparα-null mice
exhibit normal glucose oxidation and enhanced glucose-
induced insulin secretion [13], an effect that might be the
direct consequence of PPARα abrogation or an adaptation
secondary to hepatic changes [11]. PPARα action is not
limited to hepatic tissue and, along with adipose tissue and
muscles, pancreatic beta cells also produce PPARα [14]. In
insulinoma INS-1E cells, PPARα activation increases fatty
acid uptake and mitochondrial oxidation capacity, in
association with enhanced glucose-stimulated insulin
secretion [15].

It is now well established that fatty acids can be toxic to
beta cells. Such lipotoxicity is typically induced by
saturated fatty acids, resulting in apoptosis [16–18]. A less
severe effect of fatty acids on beta cells leads to elevated
basal insulin release accompanied by impaired glucose-
stimulated insulin secretion, a phenomenon we refer to as
lipodysfunction [19, 20]. Recent studies indicate a new role
for PPARα in beta cells, that of protecting against fatty
acid-induced dysfunction [20–22]. In rats, it was observed
that activation of PPARα for 24 h can reverse the insulin
hypersecretion induced by high-fat feeding [23]. In ob/ob
mice, glucose intolerance is aggravated by the absence of
PPARα, correlating with reduced glucose-stimulated insu-
lin secretion in isolated islets [21]. The same study reported
that PPARα agonists protected human islets from palmitate-
induced lipotoxicity [21]. In pregnant rats fed a high-fat
diet, in vivo administration of a PPARα agonist has been
shown to prevent loss of glucose-stimulated insulin
secretion [24]. In another in vivo study, chronic treatment

with a PPARα agonist inhibited the development of
diabetes in the Zucker Diabetic Fatty rat, essentially by
improving the pancreatic insulin response [22]. These
recent reports indicate a direct role for PPARα in the
protection of beta cells against lipid-induced dysfunction.
However, the molecular mechanisms responsible for such
effects have not yet been elucidated.

Current knowledge suggests interactions between the
lipid sensor action of PPARα and the maintenance of beta
cell function, which is primarily glucose-dependent. Here,
PPARα production was genetically modulated (either
induced or repressed) and we investigated changes over a
3-day period in a model of fatty acid-induced beta cell
dysfunction using the monounsaturated fatty acid oleate at a
concentration mimicking pathophysiological situations.

Methods

Cell culture and treatments Clonal insulin-secreting INS-
1E cells (used between passages 50 and 100) were cultured
in a humidified atmosphere containing 5% CO2 in RPMI
1640 supplemented with 10 mmol/l HEPES, 5% (vol./vol.)
FCS, 2 mmol/l glutamine, 100 U/ml penicillin, 100 g/ml
streptomycin, 1 mmol/l sodium pyruvate and 50 µmol/l 2-
mercaptoethanol [25]. Where indicated, cells were trans-
duced with the following adenoviruses: empty construct,
retinoid X receptor α (RXRα) and PPARα for overpro-
duction, and short hairpin RNA (shRNA)-PPARα for
knockdown. Adenoviruses were generated and used as
described previously [15]. INS-1E cells were transduced
with the respective adenoviruses (about 40 plaque-forming
units/cell) for 1 h and further cultured for 1–3 days before
experiments. In the 1 day protocol, cells were additionally
treated with the PPARα-specific ligand WY14643
(30 µmol/l; Sigma-Aldrich, St Louis, MO, USA). Where
indicated, cells were treated with 0.4 mmol/l oleate or
palmitate complexed to BSA.

Preparation of NEFA Stock solutions of fatty acids (oleate
and palmitate; Sigma-Aldrich) bound to BSA were prepared
as follows. The corresponding sodium salt NEFA was
solubilised at 37°C for 16 h under a nitrogen atmosphere in
Krebs–Ringer bicarbonate buffer containing 10 mmol/l
HEPES (pH 7.4) and 12.5% (wt/vol.) fatty acid-free BSA
(Sigma-Aldrich). Solutions were adjusted to pH 7.4 and then
filtered through a 0.2 µm filter. BSA-bound fatty acids were
quantified using a commercial kit and stock solutions were
finally adjusted to 10 mmol/l fatty acids using 1.8 mmol/l fatty
acid-free BSA before storage at −20°C under nitrogen. In our
experiments, the molar ratio of total NEFA to BSAwas 5.6:1.
The calculated concentrations of non-albumin-bound (un-
bound) fatty acids in the medium were derived from this
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molar ratio using the stepwise equilibrium model [26, 27]. On
the basis of a final concentration of NEFA of 0.4 mmol/l,
unbound concentrations of oleic and palmitic acids were
about 0.5 µmol/l and 0.1 µmol/l, respectively. The presence
of 5% FCS in the medium increased total fatty acid
concentration by less than 4% and this contribution was
considered negligible. Overall, the level of 0.5 µmol/l of
unbound oleate was about 50 times higher than physiological
levels of NEFA in human serum [28], i.e. it provided a model
mimicking pathophysiological situations.

Apoptosis measurements INS-1E cells were treated for 1
and 3 days as described above, before fixation in 4%
paraformaldehyde. Cell death was quantified using the
terminal deoxynucleotidyl transferase (TdT)-mediated
dUTP nick end labelling (TUNEL) assay kit according to
the manufacturer’s instructions (Roche Diagnostics, Basel,
Switzerland). Nuclei were stained with 10 µg/ml DAPI
(Sigma-Aldrich). Cells were counted using a Zeiss Axio-
phot microscope and the results are presented as TUNEL-
positive cells as percentages of total INS-1E cells.

Control of PPARα production by immunoblotting PPARα-
downregulated cells were treated for nuclear protein
extraction. In brief, cells were harvested in buffer A
(10mmol/l HEPES, pH7.9, 10mmol/l KCl, 0.1mmol/l EDTA)
and centrifuged at 4°C, 15,000 g. The pellet was disrupted into
buffer B (20 mmol/l HEPES, pH 7.9, 0.4 mol/l NaCl,
1 mmol/l EDTA, 10% glycerol). INS-1E cells transduced with
Pparα/Rxrα-expressing adenoviruses were harvested in RIPA
lysis buffer (50 mmol/l Tris pH 7.2, 150 mmol/l NaCl, 1%
Triton X, 0.1% SDS, 1 mmol/l EDTA, 1% deoxycholic acid,
50 mmol/l NaF, 0.2 mmol/l Na3VO4, 10 µg/ml aprotinin,
10 µg/ml leupeptin, 10 µg/ml pepstatin A, and 1 mmol/
l phenylmethylsulphonyl fluoride). Protein extracts were
separated by SDS-PAGE. Proteins were blotted onto nitrocel-
lulose membrane Hybond-ECL (Amersham Bioscience,
Piscataway, NJ, USA) and probed with antibodies against
PPAR-α (H98 sc9000, Santa Cruz Biotechnology, Santa
Cruz, CA, USA), nucleolin (Santa Cruz) and actin (Chem-
icon-Millipore, Zug, Switzerland). Secondary horseradish
peroxidase-coupled antibody anti-mouse IgG and anti-rabbit
IgG were purchased from Amersham Bioscience. The target
proteins were visualised by chemiluminescence (ECL Super-
Signal West Pico Chemiluminescent; Pierce, Rockford, IL,
USA) and by analysing the blot with the ChemiDoc XRS
System (Bio-Rad, Hercules, CA, USA). Protein-related bands
were quantified with Scion Image for Windows (Scion,
Frederick, MD, USA).

Glucose-stimulated insulin secretion and ATP generation
INS-1E cells were cultured in 24-well plates, transduced with
the indicated adenoviruses and cultured for 1 and 3 days as

described above in the absence or presence of 0.4 mmol/l
oleate. The insulin secretory assay was performed as
described above in KRBH medium [25]. Cellular ATP
concentrations were determined in INS-1E cells treated as
described above. Following 2 h in glucose free culture
medium and 30 min incubation in glucose-free KRBH
buffer, cells were exposed to basal (2.5 mmol/l) and
stimulating (15 mmol/l) glucose concentrations. After
10 min of stimulation, cellular ATP concentrations were
determined using the ATP Bioluminescence Assay Kit
(Roche Diagnostics).

Measurement of β-oxidation rate The lipid oxidation
capacity of INS-1E cells was measured as detailed
previously [15]. Cells were incubated for 4 h in the
presence of 0.1 mmol/l oleate and 3.70 kBq/ml radio-
labelled [14C]oleate (American Radiolabeled Chemicals,
MO, USA). The reaction was stopped with 0.6 mol/l HCl.
After 1 h, the radioactivity absorbed by 3MM filter paper
was measured using scintillation fluid (Lumagel Plus;
Lumac, Groningen, The Netherlands) in a LKB-Wallac
1217 Rackbeta counter (PerkinElmer; Wallac Oy, Turku,
Finland). The β-oxidation rate was expressed as nmol
oxidised oleate (mg protein)−1 h−1.

Quantitative RT-PCR INS-1E cells were cultured in 10 cm
dishes and treated as described in the Results section. Total
RNA was extracted using the NucleoSpin RNA II Kit
(Macherey-Nagel, Düren, Germany) and 2 µg was con-
verted into cDNA [20]. Fatty acid translocase (FAT [also
known as CD36]), carnitine palmitoyl transferase 1 (CPT1),
citrate lyase, malonyl-CoA decarboxylase, and the house-
keeping genes β-actin, transcription initiation factor IIb and
α-tubulin primers were designed using Primer Express
software (Applera Europe, Rotkreuz, Switzerland). Primer
sequences are listed in Table 1 in the Electronic Supple-
mentary Material (ESM). Quantitative real-time PCR was
performed at the Genomics Platform of the NCCR Frontiers
in Genetics (University of Geneva, Geneva, Switzerland).

Cellular triacylglycerol quantification Cells were plated in
10 cm dishes and cultured as described above. After 3 days
of treatment, cells were harvested and lipids were extracted
using the method of Folch et al. [29]. Triacylglycerol was
quantified by measuring glycerol release using a commer-
cial kit (Roche Diagnostics) and normalised to protein
content.

Lipid staining Cells were treated as described above for a
3-day period. In order to visualise the lipid content, cells
were fixed in 4% paraformaldehyde and stained with Oil
Red O (stock solution, 5 g/l dissolved in 60% triethyl
phosphate; working solution, 60:40 Oil Red O stock,
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distilled water) for 1 h. Images were acquired with an
Axiovert 25 microscope (Carl Zeiss, Gottingen, Germany).

Phosphoacetyl-CoA carboxylase INS-1E cells were cul-
tured and treated with PPARα/RXRα-overproducing ade-
novirus and oleate as described above. After 1 day of
treatment, cells were harvested in RIPA buffer. SDS-PAGEs
were run on gradient polyacrylamide gels. Nitrocellulose
membranes were probed with antibodies against total and
phosphoacetyl-CoA carboxylase (pACC) (Cell Signaling
Technology, Danvers, MA, USA) or actin (Chemicon-
Millipore). Target proteins were visualised by chemilumi-
nescence using secondary horseradish peroxidase-coupled
antibodies.

Glucose oxidation After the culture period, cells were
preincubated for 2 h in glucose-free RPMI medium and
for 30 min in 0.1% BSA–KRBH buffer before exposure to
a stimulatory glucose concentration of 15 mmol/l. The rate
of glucose oxidation over a period of 1 h was measured as
described [30]. Radiolabelled CO2 released from cells was
measured using [U-14C]glucose as substrate and 14CO2

production was measured with an LKB-Wallac 1217
Rackbeta counter.

Pyruvate carboxylase levels Expression of pyruvate
carboxylase was assessed by immunoblotting using the
biotin–streptavidin system as described previously [31].
INS-1E cells were transduced with Pparα/Rxrα-expressing
adenoviruses and subsequently cultured as described above.
Mitochondrial protein extracts were separated by SDS-PAGE
on a 10% bis-acrylamide gel. Pyruvate carboxylase was
detected by means of streptavidin horseradish peroxidase-
conjugated antibody (Invitrogen). Biotin conjugated to
pyruvate carboxylase was visualised by chemiluminescence.

Statistical analysis Insulin secretion, glucose oxidation,
triacylglycerol quantification and gene expression were
analysed using the SPSS 15.0 statistical package (SPSS,
Chicago, IL, USA). Specifically, statistical tests were
performed using one-way ANOVA. Pairwise testing with
a post hoc multiple comparison procedure (Fisher’s least
significant difference method) was used. Results were
considered statistically significant at p<0.05.

Results

Effects of fatty acids on cell viability The aim of the present
study was to investigate the role of PPARα in fatty acid-
induced dysfunction, dissociated from potential cytotoxic
effects that promote cell death. Lipotoxicity resulting in
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Fig. 1 Effects of fatty acid exposure and downregulation of PPARα
in INS-1E cells. a Quantification of cell death in INS-1E cells after
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Apoptosis was measured by the TUNEL assay. Values are mean ± SE.
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independent experiments. b INS-1E cells were transduced with
shRNA-Pparα-expressing adenovirus (shPPARα) or empty virus
(control) and subsequently cultured for 3 days. Levels of PPARα
protein were assessed by immunoblotting on INS-1E nuclear extracts.
PPARα protein production was normalised to nucleolin. The
immunoblot is representative of three independent experiments and
quantified bands are averaged in the accompanying bar graph (c). d
INS-1E cells were transduced with shPPARα or empty (control)
adenoviruses and subsequently cultured for 3 days in the absence or
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was measured in INS-1E cells by PPARα knockdown 3 days after
adenoviral transduction. Insulin release was measured at basal
(2.5 mmol/l, white bars) and stimulatory (15 mmol/l, black bars)
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corresponding basal 2.5 mmol/l glucose; †p<0.05 vs control
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apoptosis is typically induced by saturated fatty acids [17,
18], whereas unsaturated fatty acids trigger impairment of
glucose-stimulated insulin secretion [20]. To test cell
viability during a 3-day culture protocol, INS-1E cells were
exposed to either monounsaturated oleic acid or saturated
palmitic acid (both at 0.4 mmol/l) and cell death was
quantified with the TUNEL assay. In the absence of
exogenous fatty acids, cells showed minimal (<5%)
apoptosis (Fig. 1a). Oleate did not induce significant
changes in apoptotic rate. On the contrary, palmitate
induced rapid and sustained apoptosis, which reached
11.4±1.6% after 1 day (3.3-fold vs control, p<0.05) and
13.0±1.7% after 3 days (3.3-fold vs control, p<0.01). In
accordance with a previous report [16], our data show that,
over a 3-day exposure period, oleate, unlike palmitate, does
not alter cell viability. Accordingly, oleate was used for the
rest of the study.

Downregulation of PPARα and lipid-induced dysfunction
Potential protective effects of PPARα were tested by
evaluating the secretory capacity of INS-1E cells in which
PPARα had been knocked down. Figure 1b, c shows
PPARα protein quantification in control cells transduced
with empty adenovirus and cells transduced with shRNA-
Pparα-expressing adenovirus 3 days before analysis. The
immunoblots revealed reduced PPARα levels (−37% on
average, n=3) in the shRNA-PPARα group compared with
the control and normalised to housekeeping gene nucleolin
(NCL) expression. Specificity was confirmed by RT-PCR
with primers targeting different PPAR isoforms (data not
shown). The apoptotic rate was not modified by PPARα
knockdown, either in cells cultured in standard media or in
cells exposed to oleate (ESM Fig. 1).

For secretion experiments, cells were treated with the
adenoviruses mentioned above and cultured in normal
medium supplemented or not with 0.4 mmol/l oleate. On
stimulation with 15 mmol/l glucose, control INS-1E cells
increased their insulin secretion 3.4-fold vs basal release at
2.5 mmol/l glucose (p<0.01; Fig. 1d). Downregulation of
PPARα did not modify the secretory response in cells
cultured in standard medium (2.6-fold vs basal, p<0.05).
As expected, oleate treatment induced an increase in basal
insulin release (+82% vs control, p<0.05) associated with a
blunted secretory response to stimulatory glucose (1.4-fold
vs basal, not significant). Insulin contents were not
modified by the 3 day oleate treatment, as reported
previously [20]. Oleate-treated INS-1E cells in which
PPARα was downregulated totally lost their glucose-
induced secretory response. PPARα downregulation did
not change cellular insulin content either in normal culture
conditions (control, 1.10±0.13 µg/well; shPPARα, 0.82±
0.35 µg/well; not significant) or in oleate-treated cells
(control oleate, 1.20±0.53 µg/well; shPPARα oleate, 0.82±

0.13 µg/well). This set of data shows that endogenous
production of PPARα confers at least partial protection
against oleate-induced INS-1E cell dysfunction.

Upregulation of PPARα and fatty acid oxidation Next,
PPARα was overproduced in association with its hetero-
dimerising receptor, RXR, in INS-1E cells by transduction
with adenoviruses expressing PPARα/RXRα or an empty
construct as a control. The immunoblot (Fig. 2a, b) shows

a b

c

d

PPARα

Nucleolin

Adenovirus

Control PPARα

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

C
on

tr
ol

P
P

A
R

α

P
P

A
R

α 
pr

ot
ei

n 
le

ve
ls

(n
or

m
al

is
ed

 to
 n

uc
le

ol
in

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Control PPARα Oleate PPARα+
oleate

In
su

lin
 s

ec
re

tio
n 

(%
 c

on
te

nt
) 

**

**

** **

**

0.4

0.6

0.8

1.0

1.2

1.4

C
el

lu
la

r 
A

T
P

(µ
m

ol
/m

g 
pr

ot
ei

n)

**
**

Control PPARα Oleate PPARα+
oleate

††

Fig. 2 Upregulation of PPARα and effects on glucose response in
INS-1E cells. INS-1E cells were transduced with empty (control) or
Pparα/Rxrα-expressing (PPARα) adenoviruses and, where indicated,
subsequently cultured for 3 days in the presence of 0.4 mmol/l oleate
before analysis. a PPARα protein levels were assessed by immuno-
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tive of four independent experiments and quantified bands are
averaged in the accompanying bar graph (b). c Insulin release was
measured at basal (2.5 mmol/l, white bars) and stimulatory (15 mmol/
l, black bars) glucose concentrations during a 30 min incubation
period. Values are mean ± SE of six independent experiments. **p<
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an adenovirus-mediated increase in PPARα levels com-
pared with the control (2.2-fold on average, n=4). The
apoptotic rate was not modified in cells overproducing
PPARα, whether cultured in standard medium or in
medium supplemented with fatty acids (ESM Fig. 1). To
verify the functional effects of PPARα overproduction, we
first quantified the β-oxidation rate in cells at day 3 after
transduction. As expected, PPARα overproduction increased
fatty acid oxidation by 32% compared with non-transduced
control cells (12.0±2.9 vs 9.1±2.2 nmol oleate/mg protein,
respectively; p<0.05; n=6). This observation was correlated
with the early change (day 1) induced by PPARα upregu-
lation in the abundance of CPT1, a rate-limiting enzyme for
fatty acid oxidation. Specifically, PPARα overproduction
increased the level of CPT1 transcript 3.7-fold compared
with the control (p<0.02, n=4), demonstrating functional
overproduction of PPARα.

Upregulation of PPARα and lipid-induced dysfunction
Glucose-stimulated insulin secretion was then tested in
cells overexpressing Pparα/Rxrα after 3 days of culture in
the presence of 0.4 mmol/l oleate. Control and PPARα/
RXRα-overproducing cells responded to high glucose
(15 mmol/l) stimulation by increasing insulin secretion
above the basal rate by 4.0-fold (p<0.01) and 3.9-fold (p<
0.01), respectively (Fig. 2c). Oleate treatment blunted
glucose-induced insulin secretion to a non-significant 1.3-
fold response. The secretory response was partially restored
by Pparα/Rxrα overexpression (2.0-fold vs basal, p<0.01).
In particular, insulin release from Pparα/Rxrα-overexpress-
ing cells stimulated with 15 mmol/l glucose was increased
by 85% (p<0.001) compared with the respective oleate
controls (Fig. 2c). Cellular insulin content was not modified
by overexpression of Pparα/Rxrα after 3 days of culture in
the absence or presence of oleate (control, 2.72±0.95 µg/
well; PPARα/RXRα, 2.80±0.66 µg/well; control-oleate,
2.97±0.87 µg/well; PPARα/RXRα-oleate, 2.58±1.5 µg/
well). These data show protective effects of PPARα against
beta cell dysfunction induced by oleate.

Human islets were also used in the same 3 day protocol and
tested for glucose-stimulated insulin secretion (ESM Fig. 2).
The secretory response of control islets to 16.7 mmol/l glucose
was 1.9-fold (p<0.05 vs basal release). Human islets exposed
for 3 days to 0.4 mmol/l oleate exhibited increased basal
insulin release (+99% vs basal control, p<0.05) and did not
respond to stimulatory glucose. Upregulation of PPARα in
oleate-treated islets partially preserved glucose-stimulated
insulin secretion (1.4-fold vs basal release, p<0.05).

ATP is the primary mitochondrial factor linking glucose
metabolism to insulin exocytosis. Cellular ATP levels were
measured at the end of the 3 day culture period after
stimulation with 15 mmol/l glucose (Fig. 2d). In control
cells, PPARα overproduction did not modify cellular ATP

concentrations. In cells previously exposed to oleate for
3 days, ATP levels were reduced by 25% compared with
control (p<0.01). Upregulation of PPARα restored cellular
ATP levels in oleate-treated cells (+21% vs oleate group, p<
0.05), reaching values similar to those in control cells
cultured in media not supplemented with oleate (Fig. 2d).

Glucose responses were also tested as early as 1 day
after oleate exposure plus PPARα upregulation (ESM
Fig. 3). At this early time point, PPARα overproduction
was combined with addition of synthetic PPARα ligand
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(30 µmol/l WY14643). In oleate-treated INS-1E cells, the
secretory response to 15mmol/l glucose was nearly abolished,
in good agreement with previous observations [20]. Cells
treated with oleate and overproducing PPARα exhibited a
restored secretory response evoked by 15 mmol/l glucose
(2.0-fold, p<0.01 vs basal). This correlated with elevated
cellular ATP levels in oleate-treated cells overproducing
PPARα (+42%, p<0.05 vs oleate group).

Cellular lipid quantification Next, we estimated triacylgly-
cerol accumulation in INS-1E cells treated for 3 days.
Staining with Oil Red O (Fig. 3a–d) revealed accumulation
of lipids in cells exposed to oleate. Surprisingly, INS-1E
cells treated with oleate and concomitantly overexpressing
Pparα/Rxrα exhibited stronger lipid staining (Fig. 3d).

The lipid storage shown in Fig. 3a–d was substantiated
by quantitative analysis, as shown in Fig. 3e. Cellular
triacylglycerol concentrations were augmented, as
expected, in oleate treated cells compared with controls
(2.9-fold, p<0.05). PPARα/RXRα overproduction further
increased the storage of cellular triacylglycerol after culture
in the presence of oleate (+70%, p<0.01, PPARα+oleate vs
oleate group).

Expression of cellular fatty acid regulators To investigate
the molecular mechanisms by which oleate and PPARα
induced lipid accumulation over the 3 day period, we
analysed cells at the beginning of the culture period.
Expression of key regulators of fatty acid pathways were
measured at day 1 in cells exposed to 0.4 mmol/l oleate and
with upregulation of PPARα/RXRα combined with
30 µmol/l WY14643 (PPARα/WY), as described above.

Simultaneous treatment with PPARα/WY and oleate
dramatically increased the expression of FAT (57-fold for
PPARα/WY+oleate vs control, p<0.01; 40-fold vs oleate
group, p<0.01), suggesting that oleate, or a metabolite of
oleate, acts as an agonist of PPARα and that activation of
PPARα may lead to substantial enhancement of FAT-
mediated fatty acid uptake (Fig. 4a).

Expression of citrate lyase, the enzyme that initiates fatty
acid synthesis, was reduced by oleate treatment (−31% vs
control group, p<0.05) and unchanged by PPARα upregu-
lation (Fig. 4a). Malonyl-CoA decarboxylase is a regulatory
enzyme that decreases malonyl-CoA levels, thereby reliev-
ing CPT1 inhibition and resulting in activation of fatty acid
oxidation. Oleate exposure increased malonyl-CoA decar-
boxylase abundance (+49% vs control group, p<0.01),
which was further enhanced by PPARα/WY (+15% vs
oleate group, p<0.05).

Potential early modifications of the key step controlling
the de novo synthesis of fatty acids were then tested by
measuring the phosphorylation state of acetyl-CoA carbox-
ylase (ACC). ACC activity is tightly regulated according to

the state of phosphorylation, phosphorylated ACC being
the less active form. As shown in Fig. 4b, c, upregulation of
PPARα markedly increased ACC phosphorylation. Cells
cultured in the presence of oleate exhibited reduced ACC
phosphorylation. Simultaneous PPARα overproduction and
oleate exposure partially restored the ACC phosphorylation
state, indicating reduced potential for de novo synthesis of
fatty acids upon production of PPARα.

These data show that oleate exposure and PPARα
upregulation promote early modifications of fatty acid
pathway regulators, resulting in modification of lipid
partitioning. In particular, PPARα repressed the fatty acid
synthesis pathway, whereas it induced both fatty acid
oxidation and fatty acid storage in the form of neutral
lipids, i.e. triacylglycerols. Of note, elevated levels of the
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Fig. 4 Effects of oleate and PPARα on expression of cellular fatty
acid regulators. INS-1E cells were transduced with empty (control) or
Pparα/Rxrα-expressing (PPARα or Pα) adenoviruses and subse-
quently cultured for 1 day in the absence or presence of PPARα ligand
(30 µmol/l WY14643, WY) and 0.4 mmol/l oleate (Ol) before
analysis. a Effects of PPARα and oleate on expression of FAT (white
bars), malonyl-CoA decarboxylase (shaded bars) and citrate lyase
(black bars). At the end of the culture period, mRNA was extracted
and gene expression quantified by qRT-PCR, normalised to average
expression of three housekeeping genes (β-actin, transcription initiation
factor IIb and α-tubulin). Values (arbitrary units) are mean ± SE;
n=3 independent experiments. *p<0.05, **p<0.01 vs control group;
†p<0.05, ††p<0.01 vs PPARα/WY+oleate group. b Levels of
phosphoacetyl-CoA carboxylase (pACC) and total ACC (Tot ACC)
protein were analysed by immunoblotting at the end of the culture
period and normalised to actin. The immunoblot is representative of
three independent experiments and quantified bands of pACC are
averaged in the accompanying bar graph (c)
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FAT favoured lipid load in PPARα-overproducing cells,
thereby compensating for increased ACC phosphorylation.

Glucose metabolism pathways Preservation of glucose-
stimulated insulin secretion by PPARα suggested the
maintenance of glucose metabolism in conditions of lipid
exposure. Accordingly, we measured glucose oxidation in
INS-1E cells cultured for 1 day with oleate and PPARα/
WY as described above. When cells were cultured in
normal media in the absence of oleate, PPARα overpro-
duction did not modify glucose oxidation (Fig. 5a). As
expected, INS-1E cells treated with oleate exhibited a
reduced glucose oxidation rate compared with control cells
(−33%, p<0.01). PPARα overproduction rescued glucose
catabolism to CO2 in cells cultured with oleate (+33%,
PPARα/WY+oleate vs oleate group, p<0.05), reaching
levels similar to those measured in cells cultured in the
absence of the fatty acids.

Catabolism of glucose to the end-product CO2 requires
efficient coupling between glycolysis and tricarboxylic acid

cycle activity. Pyruvate carboxylase plays a major role in
beta cells [32], ensuring an anaplerotic supply of substrates
for oxidation into the tricarboxylic acid cycle. Oleate
exposure did not modify pyruvate carboxylase levels. On
the contrary, in both control and oleate groups, PPARα
upregulation increased levels of pyruvate carboxylase
(Fig. 5b, c).

Discussion

Several studies have addressed the role of PPARα in
insulin-secreting cells in lipid-induced toxicity and dys-
function, with the emerging message that PPARα may play
a protective role. This consensus lacks any delineation of
the molecular mechanisms induced by PPARα activation in
cells exposed to fatty acids. Here, we investigated key
pathways and genes responsible for metabolism–secretion
coupling in insulin-secreting cells treated with the fatty acid
oleate and subjected to either up- or downregulation of
PPARα. Oleate is not cytotoxic per se as opposed to the
saturated fatty acid palmitate, which triggers apoptosis,
qualifying its action as lipotoxicity (present study and [16,
33]).Therefore, the unsaturated fatty acid oleate induces
beta cell dysfunction, here referred to as lipodysfunction.

Exposure of INS-1E cells to oleate in the culture
medium over a 3-day period impaired normal insulin
secretion, i.e. it increased basal release and blunted the
glucose response. Such oleate-induced dysfunction was
worsened by downregulation of PPARα. Among the
different subtypes belonging to the PPAR nuclear receptor
family, PPARα is relatively abundant in beta cells [34] and
is similarly produced in primary rat islet beta cells and
insulinoma INS-1 cells [35]. Our results indicate that
endogenous PPARα levels exert some protective effects,
although it might not be sufficient when there is a
pathophysiological concentrations of oleate. Therefore, we
tested whether upregulation through ectopic production of
PPARα would improve the protection. We measured the
early changes (1 day) associated with PPARα overproduc-
tion and oleate exposure, leading to chronic modifications
(3 days) characterised by prolonged impairment of the
functions of insulin-secreting cells. PPARα overproduction
restored glucose-stimulated insulin secretion in oleate-
treated cells, an effect correlating with preservation of
glucose metabolism.

Interestingly, previous observations in rat islets described
protective effects of bezafibrate that disappeared after 48 h
of treatment, an effect referred to as ‘excessive stimulation’
by the authors and possibly related to desensitisation [36].
Altogether, these results illustrate the complex equilibrium
between PPARα levels, ligand activity and the duration of
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Fig. 5 Glucose oxidation rate and levels of pyruvate carboxylase.
INS-1E cells were transduced with empty (control) or Pparα/Rxrα-
expressing (PPARα or Pα) adenoviruses and subsequently cultured for
1 day in the absence or presence of PPARα ligand (30 µmol/l WY14643,
WY) and 0.4 mmol/l oleate (Ol) before analysis. a At the end of the
culture period, cells were incubated in buffer containing 15 mmol/l [14C]
glucose and 14CO2 released over 1 h was trapped and quantified. Values
normalised to control are mean ± SE of four independent experiments.
*p<0.05, **p<0.01 vs oleate control. b After the culture period,
pyruvate carboxylase (PC) levels were analysed by immunoblotting of
INS-1E mitochondrial extracts and normalised to actin. The immunoblot
is representative of three independent experiments and quantified bands
are averaged in the accompanying bar graph (c)
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fatty acid exposure. Such complexity integrating metabolic
pathways and the regulation of gene expression explains
some controversial findings [37]. Indeed, the correlation
between PPARα production and beta cell function has been
found to be either negative [38] or positive [14, 15].

The present study reports a protective effect of PPARα
on glucose-stimulated ATP levels and glucose oxidation in
oleate-treated cells, suggesting a role for the nuclear
receptor on glucose metabolism in the presence of fatty
acids. This model was substantiated by the observed
upregulation of pyruvate carboxylase associated with
PPARα overproduction. Pyruvate carboxylase is a key
mitochondrial enzyme, driving carbohydrate metabolites
into the tricarboxylic acid cycle by catalysing the anapler-
otic conversion of pyruvate to oxaloacetate [39]. PPARα
overproduction restored pyruvate carboxylase levels that
had been reduced by oleate treatment. This is in agreement
with previous work showing that rat islets treated with the
PPARα activator bezafibrate for 8 h increased both
glucose-stimulated insulin secretion and pyruvate carbox-
ylase [36, 40].

The cataplerotic pathway linking citrate export to long-
chain acyl-CoA was investigated through the regulatory
phosphorylation state of acetyl-CoA carboxylase. Surpris-
ingly, oleate treatment lowered acetyl-CoA carboxylase
phosphorylation, thereby favouring de novo fatty acid
synthesis. This might compensate for the downregulation
of ACC secondary to fatty acid exposure, as reported
previously in INS-1 cells [19]. PPARα inhibited the
potential activity of acetyl-CoA carboxylase by inducing
its phosphorylation, both in normal and oleate-treated cells.
A link between PPARα and acetyl-CoA carboxylase has
been reported previously in rat hepatocytes, where the
PPARα ligand gemfibrozil induces phosphorylation of
acetyl-CoA carboxylase via AMP-activated protein kinase
(AMPK) [41]. In INS-1 cells, a recent study showed that
the PPARα agonist fenofibrate can rescue palmitate-
induced lipotoxicity through AMPK, although a direct link
between PPARα and acetyl-CoA carboxylase phosphory-
lation was not established [42]. The present data substan-
tiate the previously suspected link between PPARα and
acetyl-CoA carboxylase regulation.

It is interesting to note that PPARα overproduction
favoured both triacylglycerol synthesis and β-oxidation,
along with increased gene expression of FAT. Of note, these
effects on fatty acid transport could secondarily affect
glucose and fatty acid metabolism. Taken as a whole, the
results show that PPARα promoted overall fatty acid
turnover, i.e. transport through the plasma membrane,
esterification to triacylglycerols, and consumption via β-
oxidation. This model is substantiated by the observed
decreased expression of citrate lyase and increased expres-
sion of malonyl-CoA decarboxylase in oleate-treated cells

overproducing PPARα. Triacylglycerol synthesis is a way
to neutralise cellular fatty acids in a storage form and might
have contributed to the protective effects conferred by
PPARα overproduction. This is in agreement with studies
in non-beta cells [43, 44] as well as beta cells [26] showing
that promotion of triacylglycerol accumulation protects
against lipotoxicity.

The insulin secretory response is altered in cells exposed
to oleate. Such beta cell dysfunction induced by fatty acids
correlates with impairment of glucose metabolism, which
normally controls insulin exocytosis. PPARα activation in
oleate-treated INS-1E cells restored glucose-stimulated
insulin secretion by promoting glucose metabolic pathways
and fatty acid storage in the form of neutral lipids.
Therefore, PPARα participates in the balanced control of
both glucose and fatty acid homeostasis. This suggests
interactions with additional regulators, such as transcription
factors, that remain to be identified.
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