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Abstract
Aims/hypothesis Adiponectin and leptin are negatively and
positively correlated with human obesity respectively, and
have both been shown to regulate energy metabolism in
skeletal muscle. However, little is known about their
signalling and functional crosstalk. Here we investigated
the effects of leptin on metabolic actions of (1) globular
adiponectin (gAd) and (2) full-length adiponectin (fAd) in
L6 cells.
Methods Glucose uptake was measured upon gAd and fAd
treatment after incubation with different doses (0.3, 0.6, 3,
6, 60 nmol/l) of leptin for 6, 12 and 24 h. We also measured
adiponectin receptor (ADIPOR) expression and stimulation
of downstream signalling by gAd and fAd using co-
immunoprecipitation and western blotting following leptin
pretreatment, as well as analysis of fatty acid uptake and
oxidation using radiolabelled tracers.
Results Leptin attenuated the stimulation of glucose uptake
by gAd and fAd in a dose- and time-dependent manner, a
finding correlated with decreased levels of ADIPOR1 and
ADIPOR2. gAd and fAd increased palmitate uptake via

activation of AMP protein kinase (T172), enhanced expres-
sion of the fatty acid transporter CD36, phosphorylated
acetyl-CoA carboxylase (S79) and enhanced palmitate
oxidation, all of which were attenuated by leptin pretreat-
ment. Adiponectin can also enhance insulin sensitivity via
direct signalling crosstalk; here we show that enhanced
insulin-stimulated IRS-1 (Y612) and Akt (T308) phosphor-
ylation in response to fAd was attenuated by leptin. APPL1
was recently identified as a critical mediator of adiponectin
action in skeletal muscle. We demonstrated that leptin
attenuated binding of APPL1 to LKB1, a downstream target
leading to AMPK phosphorylation.
Conclusions/interpretation The direct metabolic and
insulin-sensitising effects of adiponectin were attenuated
in the presence of leptin.
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Abbreviations
ACC Acetyl-CoA carboxylase
ADIPOR Adiponectin receptor
AICAR 5-Amino-4-imidazole carboxamide riboside
AMEM Alpha modification Eagle’s medium
AMPK AMP protein kinase
APPL1 Adapter protein containing a pleckstrin homol-

ogy domain, phosphotyrosine binding (PTB)
domain and leucine zipper motif

fAd Full-length adiponectin
FATP Fatty acid transport protein
gAd Globular adiponectin
HEK Human embryonic kidney
LKB1 Protein serine/threonine kinase
siRNA Small interfering RNA
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Introduction

The prevalence of obesity has become a major health
concern due to association with many complications such
as type 2 diabetes and cardiovascular disease [1, 2]. One
potential underlying mechanism is altered endocrine effects
of adipose-derived hormones [3]. Due to its anti-diabetic,
anti-atherogenic, anti-inflammatory and cardioprotective
functions [4, 5], adiponectin has attracted great interest
since being identified. The metabolic effects of adiponectin,
both direct and via insulin sensitisation, have been
identified in skeletal muscle and liver by several groups
[6, 7]. Moreover, the synergistic effect of adiponectin and
insulin on glucose uptake in L6 muscle cells was reported
by our group [7]. It has also been demonstrated that
adiponectin modulates carbohydrate and lipid metabolism
in muscle primarily through stimulation of AMP protein
kinase (AMPK) and peroxisome proliferator-activated
receptor alpha [8]. More recently, Liu’s group have shown
that adiponectin and insulin signalling crosstalk via a
mechanism involving the LKB1/AMPK/tuberous sclerosis
1/2 pathway [9].

In circulation, adiponectin exists as multimers, namely
low molecular weight trimers, middle molecular weight
hexamers and high molecular weight oligomers [10]. The
formation of these distinct structures is physiologically
significant since oligomers have been observed to be
capable of mediating distinct cellular effects [11]. Adipo-
nectin can also be proteolytically cleaved to yield the
globular C-terminal domain of adiponectin, which mediates
potent metabolic effects in skeletal muscle [7, 12].

Adiponectin mediates its effects through at least two
receptor isoforms, adiponectin receptor (ADIPOR)1 and
ADIPOR2 [8]. Decreased levels of ADIPORs were observed
in many, but not all, studies involving obese and diabetic
patients as well as animal models [13, 14]; these decreases
can often be corrected by exercise [15]. ADIPORs were
recently shown to interact with a novel adapter protein
containing a pleckstrin homology domain, phosphotyrosine
binding (PTB) domain and leucine zipper motif (APPL1).
This binding mediated adiponectin effects in muscle and
endothelial cells, and, importantly, was identified as a major
point of crosstalk with insulin signalling [16–18].

Hyperleptinaemia is a characteristic feature in human
obesity. Several recent studies have alluded to the potential
crosstalk between physiological actions of leptin and
adiponectin [19, 20]. Leptin is known to regulate a wide
range of intracellular signalling pathways [21]; however the
potential crosstalk between leptin and adiponectin signal-
ling is unclear. To date, three recent studies examining cell
cycle regulation and cell proliferation have demonstrated
that adiponectin and leptin can crosstalk [22–24]. The
objective of this study was to characterise the effect of

chronic leptin pretreatment on subsequent adiponectin
signalling and consequently on metabolic function in rat
skeletal muscle cells.

Methods

Materials [9,10-3H]Palmitic acid and 2-deoxy-D-[3H]glu-
cose were purchased from Amersham (Baie d'Urfé, QC,
Canada). Recombinant murine leptin and compound C
were purchased from Calbiochem (San Diego, CA, USA).
Insulin (Humulin) was obtained from Eli Lilly (Toronto,
ON, Canada). TRIzol reagent and Platinum SYBR Green
qPCR SuperMix UDG Kit were obtained from Invitrogen
Life Technologies (Burlington, ON, Canada). Anti-APPL1
antibody was produced in-house by immunisation of rabbits
as previously described [16]. Horseradish peroxidase-linked
anti-rabbit antibody, phospho-specific antibodies for rabbit
AMPK (Thr 172), ACC (Ser 79), Akt (Thr 308), Akt and
β-actin were purchased from Cell Signaling (Beverly, MA,
USA). Fatty acid transport protein (FATP)1, FATP4,
AMPKα1, AMPKα2, CD36, IRS-1 and LKB1 antibodies
were obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Phospho-specific antibody for IRS-1(Tyr612)
was obtained from BioSource (Camarillo, CA, USA).
ADIPOR1 and ADIPOR2 antibodies were obtained from
IBL (Takasaki, Japan). All other chemicals were purchased
from Sigma-Aldrich Canada (Oakville, ON, Canada). All
cell culture components were purchased from Wisent (St-
Bruno, QC, Canada).

Production of recombinant gAd and fAd Recombinant
globular adiponectin (gAd) was produced by subcloning
murine gAd cDNA (a kind gift from P. Scherer, Department
of Cell Biology, Bronx, Albert Einstein College of
Medicine, Bronx, NY, USA) into the pTrisEx expression
vector (Novagen, Gibbstown, NJ, USA) as described
previously [25]. A human embryonic kidney (HEK) cell
line stably expressing recombinant full-length multimers of
adiponectin (fAd) was generated as previously described
[26]. HEK cells were cultured in DMEM containing 10%
(vol./vol.) FBS and allowed to secrete adiponectin into
serum-free alpha modification Eagle’s medium (AMEM)
for 24 h. The conditioned medium was concentrated using
stirred ultrafiltration cell system (Millipore, Billerica, MA,
USA) with ultrafiltration membrane (NMWL 30 kDa;
Millipore). Conditioned medium containing adiponectin
was then diluted to 100 mg/l in serum-free AMEM and
stored at −80°C. Control conditioned medium was made
using HEK cell line transfected with vector without
adiponectin sequence. Glucose uptake was performed to
test biological activity of fAd and gAd. The concentrations
and treatment time of fAd and gAd used in this study were
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based on preliminary studies and various publications by
ourselves and others [7, 25].

Cell culture Rat L6 skeletal muscle cells were grown in
AMEM containing 10% (vol./vol.) FBS under 5% CO2 at
37°C. For experimental procedures, myoblasts were cul-
tured in 2% FBS AMEM for 5 to 7 days for differentiation
of myotubes.

Analysis of Adipor1 and -2 expression L6 myotubes were
incubated with leptin (60 nmol/l) for 24 h, then RNA was
isolated. Adipor1, Adipor2 and β-actin expression levels
were measured using platinum SYBR Green qPCR Super-
Mix UDG Kit. Primer sequences for the genes were:
Adipor1: forward 5′-GCTGGCCTTTATGCTGCTCG-3′,
reverse 5′-TCTAGGCCGTAACGGAATTC-3′; Adipor2: for-
ward 5′-CCCTCTGCAAGAGAAAGTGG-3′, reverse 5′-
TAGCCAGCCTATCTGCCCTA-3′; β-actin: forward
5′-CTGTGCCCATCTATGAGGGT-3′, reverse 5′-CTCTCA
GCTTGGTGGTGAA-3′. The annealing temperature for
Adipor1 and Adipor2 was 60°C, that for β-actin was 65°C;
40 cycles were performed.

Measurement of glucose uptake L6 myotubes were incu-
bated for 24 h with different concentrations of leptin (0.3,
0.6, 3, 6, 60 nmol/l). For time-course experiments, cells
were incubated with 6 nmol/l leptin for 6, 12 and 24 h.
Cells were then treated for 2 h with 5 mg/l fAd or gAd in
the presence of leptin. After treatment, uptake of 2-deoxy-
D-[3H]glucose was determined as described previously [7].
Briefly, cells were incubated for 5 min at room temperature
in transport solution. Cells were then lysed and transferred
to scintillation vials for 3H radioactivity counting. Values
were expressed in pmol min−1 (mg protein)−1 (see results
section) and expressed in graphs as fold of basal pmol
min−1 (mg protein)−1.

Measurement of fatty acid uptake Cells were grown in 24-
well plates. Leptin was added to appropriate wells to a final
concentration of 60 nmol/l and wells were incubated for 24 h.
Cells were serum-starved for 4 h and then treated with fAd
(5 μg/ml) or gAd (5 μg/ml) in the presence or absence of
AMPK inhibitor compound C (20 μmol/l). [9,10-3H]Palmitic
acid was measured as previously described [7, 27]. Briefly,
cells were washed and treated for 1 min with transport
solution (140 mmol/l NaCl, 20 mmol/l HEPES-Na,
2.5 mmol/l MgSO4, 1 mmol/l CaCl2, 5 mmol/l KCl, 20
µmol/l sodium palmitate, 18.5 MBq/l [9,10-3H]palmitic acid,
pH 7.4). Cells were lysed with 1 mol/l KOH. Lysates were
transferred to vials containing scintillation fluid for radioac-
tive counting and used for protein determination. Values
were expressed in pmol min−1 (mg protein)−1 and shown in
graphs as fold of basal pmol min−1 (mg protein)−1.

Measurement of fatty acid oxidation Myotubes were
cultivated in 12-well plates and incubated in the presence
of leptin (60 nmol/l) for 24 h. fAd and gAd (5 μg/ml each)
were added to cells under normal and leptin pretreatment
conditions. 5-Amino-4-imidazole carboxamide riboside
(AICAR) was added to a final concentration of 2 mmol/l
as positive control. After 6 h incubation in AMEM
containing 0.1 mmol/l palmitate (9,10-[3H]palmitate,
37 MBq/l) and 2% (wt/wt) BSA, palmitate oxidation was
assessed by measuring 3H2O produced in the incubation
medium as described previously [28]. Medium was collect-
ed into Eppendorf tubes. Then 10% (vol./vol.) trichloro-
acetic acid was added to each tube and tubes were
centrifuged for 10 min at 14,999g at 4°C. The supernatant
fraction was collected into capless Eppendorf tubes. These
tubes were placed in vials containing equal volumes of
distilled water and incubated overnight in a 50°C water
bath. After incubation, 5 ml of scintillation liquid was
added to each vial for radioactive counting; 1 mol/l KOH
was added to prepare lysates and determine protein
concentration. As previously published using this method,
values are expressed in cpm/mg protein [28].

Small interfering RNA to knockdown expression of AMPKα
L6 cells were cultured in 24-well tissue culture plates and
transfected for 24 h with 50 nmol/l AMPKα1 (also known
as PRKAA1) and 50 nmol/l AMPKα2 (also known as
PRKAA2), or with scrambled small interfering RNA
(siRNA) (Silencer Negative Control 1 siRNA; Ambion,
Austin, TX, USA) as previously described [29]. siRNA
sequences for AMPKα1 and AMPKα2 were: AMPKα1
GCAUAUGCUGCAGGUAGAU; AMPKα2, CGUCAUU
GAUGAUGAGGCU (Ambion).

Western blot analysis L6 myotubes were cultured in six-
well plates and incubated with leptin (60 nmol/l) for 24 h.
Cells were serum-starved for 4 h before stimulation with
gAd (5µg/ml) or fAd (5µg/ml). Cell lysates were resolved
by SDS-PAGE and transferred to a nitrocellulose membrane.

Co-immunoprecipitation Cells were incubated with leptin
(60 nmol/l) for 24 h and treated with gAd (5µg/ml) or fAd
(5µg/ml). After treatment, cells were lysed with RIPA
buffer (1% (vol./vol.) NP40, 0.5% (wt/wt) SDC, 0.1% (wt/
wt) SDS in PBS buffer, pH7.4) complemented with
protease inhibitor mixture on ice. Non-soluble material
was discarded after centrifugation (16,249g for 5 min at
4°C) and the supernatant fraction was incubated overnight
with 1µg of mouse monoclonal LKB1 antibody. Then
protein A sepharose beads (GE Healthcare Bio-Sciences,
Baie d'Urfé, QC, Canada) were added and incubated for
3 h. After incubation, the beads were pelleted and washed.
Beads were resuspended in SDS sample buffer, supple-
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mented with 10% (vol./vol.) β-mercaptoethanol, then
boiled for 5 min and subjected to western blot analysis
using polyclonal antibody against APPL1.

Statistical analysis Data are expressed as mean values±
SEM with number of repeats (n) stated in each case.
Statistical analysis was undertaken using two-way ANOVA
or the paired Student's t test where appropriate. Differences
between groups were considered statistically significant at
p<0.05.

Results

Prevention of fAd- and gAd-stimulated glucose uptake by
leptin in a time- and dose-dependent manner We evaluated
the effect of varying leptin concentrations (0.3, 0.6, 3, 6,
60 nmol/l) and pretreatment times (6, 12, 24 h) on the
ability of fAd or gAd to stimulate 2-deoxy-D-[3H]glucose
uptake. The concentrations of leptin were chosen, on the
basis of published literature by our own and other groups,
as those used to elicit physiological effects in cultured cells
[30, 31]. Basal glucose uptake levels remained unchanged
by all leptin concentrations (Fig. 1a, b). Both fAd (5 μg/ml,
2 h) and gAd (5 μg/ml, 2 h) elicited a statistically
significant increase in glucose uptake under normal, 0.3
and 0.6 nmol/l leptin treatment conditions (Fig. 1a, b). Our
data revealed that pretreatment of cells with leptin for 24 h
inhibited fAd- or gAd-stimulated 2-deoxy-D-[3H]glucose
uptake in a dose-dependent manner (Fig. 1a, b). A
significant inhibitory effect was observed at 3, 6 and
60 nmol/l for fAd and gAd. When cells were incubated in
6 nmol/l leptin for 12 and 24 h, the stimulation of glucose
uptake by fAd and gAd was prevented, whereas 6 h
pretreatment with the same dose of leptin had no inhibitory
effect (Fig. 1c, d).

Changes of AdipoR1 and AdipoR2 expression in response
to leptin We performed real-time quantitative PCR and
western blotting to determine whether leptin (60 nmol/l,
24 h) regulated mRNA and protein levels of the ADIPOR
isoforms. It was observed that leptin treatment reduced both
mRNA expression and protein levels of ADIPOR1 and
ADIPOR2 compared with normal growth conditions
(Fig. 1e–h). Adipor1 mRNA expression (Fig. 1e) decreased
by ~45%, whereas an approximate 50% reduction was
observed for Adipor2 mRNA expression (Fig. 1g). Protein
levels of each isoform decreased by about 60% (Fig. 1f, h).

Effect of fAd and gAd on fatty acid uptake and regulation
by leptin To examine long-chain fatty acid uptake in L6
cells, we measured [9,10-3H]palmitate uptake. This study
demonstrated that both fAd and gAd (5 μg/ml, 6 h)

significantly increased palmitate uptake (Fig. 2a, b).
Pretreatment of cells with leptin (60 nmol/l, 24 h) did not
alter basal fatty acid uptake levels, but did prevent the
increase in palmitate uptake stimulated by fAd or gAd
(Fig. 2a, b). Levels of several fatty acid transporters,
including FATP1, FATP4 and CD36, were examined in
response to fAd or gAd (5 μg/ml, 6 h). CD36 levels
significantly increased after fAd or gAd treatment under
normal, but not under leptin treatment conditions (Fig. 2c,
d). No change of FATP1 and FATP4 levels was found in
response to fAd and gAd (data not shown).

Regulation of AMPK by fAd and gAd and role in
stimulation of fatty acid uptake To clarify the regulation
of AMPK by fAd and gAd, as well as the subsequent role
of AMPK in mediating the increased fatty acid uptake, we
introduced siRNA to reduce AMPKα expression and used
compound C, a pharmacological inhibitor, to block AMPK
activity. As shown in Fig. 3a, b, compound C clearly
abrogated the ability of fAd and gAd (5 μg/ml, 6 h) to
stimulate palmitate uptake. Use of siRNA lowered
AMPKα1 and -2 expression by 70% (Fig. 3c) compared
with cells transfected with a scrambled siRNA sequence;
under these conditions stimulation of fatty acid uptake by
fAd was attenuated (Fig. 3d). Indeed, fAd and gAd (5 μg/
ml, 5 min and 15 min) were found to increase phosphor-
ylation of AMPK under normal conditions but not after
leptin treatment (60 nmol/l, 24 h) (Fig. 3e, f). AICAR has
been showed to increase phosphorylation of AMPK
through mimicking effects of AMP by its derivative 5-
aminoimidazole-4-carboxamide-ribotide (AICAribotide;
ZMP) [32, 33]. The phosphorylation of AMPK stimulated
by AICAR was not affected by leptin treatment (Fig. 3g).
We did not detect any significant effect of leptin (60 nmol/l,
24 h) on total levels of AMPKα1 and AMPKα2.
Phosphorylation of AMPK was not significantly altered
by leptin treatment under these conditions (data not shown).

Regulation of fatty acid oxidation by fAd and gAd in the
absence or presence of leptin Fatty acid oxidation was also
examined in the absence or presence of leptin (60 nmol/l,
24 h). Under normal conditions, fAd and gAd (5 μg/ml,
6 h) stimulated palmitate oxidation, with AICAR (2 mmol/
l, 6 h) used as a positive control in this assay (Fig. 4a, b).
The ability of fAd and gAd to enhance palmitate oxidation
was abolished by pretreatment of cells with leptin (Fig. 4a, b).
Of note, leptin alone (60 nmol/l, 24 h) induced a slight
decrease in levels of palmitate oxidation in L6 cells.
Phosphorylation of ACC was also measured under similar
conditions and an increased phosphorylation of ACC (Ser79),
which correlates with decreased activity of this enzyme, was
observed in response to fAd and gAd (5 μg/ml, 5 min and
15 min) (Fig. 4c, d). However, no significant difference was
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detected when cells were treated with leptin (Fig. 4c, d).
Total ACC levels were unaltered by leptin (data not shown).

Effect of leptin on insulin-sensitising effects of fAd and
crosstalk between adiponectin and insulin signalling L6
myotubes were pretreated with fAd (5μg/ml, 15 min) then
treated with insulin (10 nmol/l, 5 min). As expected, insulin
stimulated phosphorylation of IRS-1 (Tyr612) and Akt
(Thr308), while no stimulation was observed in response to
fAd alone (Fig. 5a). Importantly, the insulin-stimulated
phosphorylation of IRS-1 and Akt was markedly enhanced
in L6 cells pretreated with fAd (Fig. 5a). The adiponectin-
enhanced insulin signalling was blunted by leptin treatment
(60 nmol/l, 24 h) with the levels of IRS-1 and Akt
phosphorylation returning to those induced in the presence
of insulin alone (Fig. 5a). Using immunoprecipitation of
LKB1 and western blotting for APPL1, we also found that
fAd (5μg/ml, 5 min and 10 min) stimulated the interaction

of LKB1 with APPL1 (Fig. 5b) and that this interaction was
abolished by leptin pretreatment (60 nmol/l, 24 h). LKB1
expression was not altered by leptin (±adiponectin) under
the conditions used in these experiments (data not shown).

Discussion

Leptin and adiponectin are both important for the mainte-
nance of appropriate insulin sensitivity and overall energy
balance [3, 4, 34]. Changes in skeletal muscle insulin action
play a central role in the development of metabolic changes
in the metabolic syndrome, while, of particular relevance to
this study, both leptin and adiponectin have been exten-
sively documented to regulate basal and insulin-stimulated
carbohydrate and fatty acid metabolism in skeletal muscle
[35]. However, very little is known about their potential
interaction in regulating metabolism in this tissue. In this
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Fig. 1 Effects of leptin on
stimulation of glucose uptake by
fAd and gAd, and by ADIPOR
expression. Glucose uptake was
measured after cells were incu-
bated with (a) fAd (5 μg/ml;
black squares) or (b) gAd (5 μg/
ml; black squares) for 2 h under
normal conditions and after lep-
tin pretreatment (0.3, 0.6, 3, 6,
60 nmol/l, 24 h). We also ex-
amined glucose uptake in re-
sponse to fAd (c) or gAd (d)
after cells were incubated with
leptin (6 nmol/l) for different
time courses (6, 12, 24 h). White
circles, control. Expression of
ADIPOR1 (e, f) and ADIPOR2
(g, h) was analysed by real-time
quantitative PCR and western
blotting under normal and leptin
treatment (60 nmol/l, 24 h)
conditions. Representative west-
ern blots are shown, with quan-
titative data (f, g). Values for
real-time quantitative PCR and
western blotting are expressed
relative to β-actin as means±
SEM of n≥4. *p<0.05 with
respect to control. †p<0.05 with
respect to adiponectin alone (i.e.
no leptin pretreatment)
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study, we investigated whether high leptin levels, a
condition commonly seen in human obesity, affected the
ability of adiponectin to exert its metabolic effects in
skeletal muscle cells.

We have revealed that high leptin concentrations exert a
direct negative effect on insulin-stimulated glucose uptake in
cultured L6 skeletal muscle cells [36, 37], suggesting that
hyperleptinaemia could contribute to the development of
insulin resistance. However, previous work demonstrated
that leptin exposure did not alter insulin-stimulated glucose
uptake in isolated rodent skeletal muscle, while enhanced
insulin-stimulated glucose uptake was observed in high-fat
fed rats with long term leptin administration [38–41]. A
difference in leptin concentration and time of exposure to
leptin could account for these observations. Here, we
examined the effect of chronic leptin treatment on
adiponectin-stimulated glucose uptake. Consistent with
previous results from ourselves and others [7, 12, 25], we
found that gAd and fAd increased glucose uptake in L6
skeletal muscle cells after 2 h treatment. Importantly, we
demonstrate for the first time that this response was
attenuated in the presence of leptin in a dose- and time-
dependent manner. A statistically significant inhibitory effect
was found at 3 nmol/l leptin and above. Although absolute

leptin levels vary among normal and obese individuals,
3 nmol/l plasma leptin is in keeping with levels observed in
obese individuals [42, 43]. The time-course experiment
revealed that a prolonged pretreatment time (longer than
12 h) is necessary for leptin to exert an inhibitory effect.

Thus, to investigate potential underlying mechanisms,
we first examined changes in levels of ADIPORs, of which
two isoforms, ADIPOR1 and ADIPOR2, exist in skeletal
muscle. ADIPOR1 and ADIPOR2 differ with respect to
tissue distribution and affinity for adiponectin forms, with
ADIPOR1 exhibiting a higher binding affinity for gAd and
ADIPOR2 for fAd [8]. We have also previously docu-
mented that L6 cells express ADIPOR1 in a 6:1 ratio
compared with ADIPOR2 [25]. We found that mRNA and
protein levels of ADIPOR1 and ADIPOR2 were decreased
after exposure of cells to leptin. The most simple
interpretation of this observation is that there would be a
corresponding reduction in the availability of these recep-
tors to bind adiponectin and a subsequent decline in gAd-
and fAd-stimulated effects. Many, but not all, studies in
animal models [44] and humans [13, 14] have also
suggested an important role for alterations in ADIPORs in
the pathogenesis of insulin resistance and diabetes. Of
particular interest, Adipor1−/− mice showed increased

0

50

100

150

200

250

300

Con gAd Con gAd
0

50

100

150

200

250

Con fAd Con fAd

+Leptin

P
a

lm
it
a

te
 u

p
ta

k
e

* *

+Leptin

(p
m

o
l 
m

in
–

1
 [

m
g

 p
ro

te
in

]–
1
)

P
a

lm
it
a

te
 u

p
ta

k
e

(p
m

o
l 
m

in
–

1
 [

m
g

 p
ro

te
in

]–
1
)

C
D

3
6
 e

x
p
re

s
s
io

n

(f
o
ld

 o
f 
c
o
n
tr

o
l)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 *

fAd 6 hCon fAd 6 hCon

+Leptin

C
D

3
6
 e

x
p
re

s
s
io

n

(f
o
ld

 o
f 
c
o
n
tr

o
l)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

gAd 6 hCon gAd 6 hCon

+Leptin

*

Untreated +Leptin

CD36

β-Actin

fAd – 6 h – 6 h

CD36

Untreated +Leptin

β-Actin

gAd – 6 h – 6 h

a b

c d
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adiposity associated with decreased glucose tolerance and
energy expenditure, whereas Adipor2−/− mice were lean and
resistant to high-fat diet-induced obesity [44]. In human
studies, Steinberg’s group has shown that skeletal muscle
from obese or obese type 2 diabetic patients showed
decreased sensitivity to gAd, yet ADIPOR1 levels were
higher, suggesting that aspects downstream of the receptor
may inhibit adiponectin action [13]. In contrast to our
current study, others also found that leptin (2.5 μg/ml, 6 h)
stimulated ADIPOR1 expression in myotubes derived from
lean healthy individuals, but not in those derived from
obese or obese diabetic patients [45]. Finally, exercise is a
well-known effective therapeutic approach for treatment of
diabetes, with current literature suggesting that although
exercise does not tend to alter circulating adiponectin
levels, there may be a correlation with increased skeletal
muscle ADIPOR in exercised animals or humans [15].
Leptin, therefore, clearly has a capacity to regulate
ADIPOR expression and under certain circumstances this
may be of physiological importance.

A number of studies have indicated diminished fatty acid
oxidation in skeletal muscle of obese and type 2 diabetic
patients [46, 47]. The impaired capability of skeletal muscle
to appropriately oxidise fatty acids may be associated with
development of insulin resistance. Leptin has been shown
to acutely stimulate fatty acid oxidation in C2C12 cells and
primary human skeletal muscle cells [48, 49]. Here, we

found that chronic leptin treatment had no effect on the
basal fatty acid oxidation rate, which is consistent with a
previous publication demonstrating no change of fatty acid
oxidation in resting soleus muscle in response to chronic
leptin administration [41]. Adiponectin has also been
shown to mediate insulin-sensitising effects and one
potential mechanism is the enhancement of skeletal muscle
fatty acid uptake and oxidation, thus avoiding deleterious
lipotoxicity [50]. We have previously shown that adipo-
nectin stimulated fatty acid uptake in skeletal muscle cells
[25]. Here, we provide evidence that the mechanism of
increased fatty acid uptake after 6 h fAd or gAd treatment
may involve increased expression of CD36. Furthermore,
and as expected, we show that fAd and gAd phosphorylate
AMPK at 5 and 15 min. For the first time, we also show
that fAd- and gAd-stimulated fatty acid uptake is mediated
via AMPK. Similar observations on the important role of
AMPK in fatty acid transporter expression have been
reported in cardiac myocytes and mouse skeletal muscle
[51, 52]. Importantly, all of the above were attenuated when
cells were pretreated with leptin. Although transient
activation of AMPK was induced by leptin in skeletal
muscle in vitro, there was no significant change in
phosphorylation or total levels of AMPK after cells were
treated with leptin for 24 h, indicating that lack of
adiponectin action under these conditions was not simply
due to an already elevated level of AMPK phosphorylation.

0

1,000

2,000

3,000

4,000

5,000

6,000

Con gAd Con gAd AICAR

a b

+Leptin

P
a

lm
it
a

te
 o

x
id

a
ti
o

n

(C
P

M
A

/m
g

 o
f 

p
ro

te
in

)

P
a

lm
it
a

te
 o

x
id

a
ti
o

n

(C
P

M
A

/m
g

 o
f 

p
ro

te
in

)

0

1,000

2,000

3,000

4,000

5,000

Con fAd Con fAd AICAR

*
*

*

*

c
A

C
C

 p
h

o
s
p

h
o

ry
la

ti
o

n

(f
o

ld
 o

f 
c
o

n
tr

o
l)

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

fAd 5 min fAd 15 min fAd 5 min fAd 15 min

*
*

A
C

C
 p

h
o

s
p

h
o

ry
la

ti
o

n

(f
o

ld
 o

f 
c
o

n
tr

o
l)

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

2
2.2

Con

+Leptin

+Leptin

Con gAd 5 min gAd 15 min gAd 5 min gAd 15 minCon Con

*
*

+Leptin

p-Ser79ACC

Untreated

β-Actin

fAd – 5 min 15 min – 5 min 15 min

p-Ser79ACC

β-Actin

gAd – 5 min 15 min – 5 min 15 min

+Leptin Untreated +Leptin

d

Fig. 4 Regulation of effects
of fAd and gAd on fatty acid
oxidation and on ACC phos-
phorylation by leptin. We ex-
amined palmitate oxidation in
response to fAd (a) or gAd (b)
(5 μg/ml, 6 h) with or without
leptin pretreatment (60 nmol/l,
24 h). AICAR (2 mmol/l, 6 h)
was used as positive control in
this assay. c, d The degree of
phosphorylation of ACC was
measured after 5 and 15 min
incubation with 5 μg/ml fAd or
gAd respectively in control and
leptin-treated (60 nmol/l, 24 h)
cells. Representative western
blots are shown, with quantitative
data in bar graphs, as means±
SEM of at least three independent
experiments. *p<0.05 with
respect to control. CPMA,
radioactivity counts per min

Diabetologia (2009) 52:2190–2200 2197



Furthermore, AICAR-stimulated phosphorylation of
AMPK was not affected by leptin at concentrations and
times that inhibit adiponectin action, indicating the inhib-
itory effect of leptin on adiponectin is not non-specific and
occurs upstream of AMPK. Our results also indicate that
gAd and fAd stimulated ACC phosphorylation, causing
inhibition of this enzyme and subsequent increases in
palmitate oxidation, all of which were attenuated by leptin.
Thus, it is clear from our in vitro studies that the normally
beneficial effects of adiponectin leading to enhanced fatty

acid uptake and oxidation are lost in the presence of high
leptin levels and that this is conceivably of great patho-
physiological significance in the development of insulin
resistance in individuals with hyperleptinaemia and normal
skeletal muscle leptin sensitivity.

Recent evidence has also indicated that adiponectin can
improve insulin sensitivity via acute effects involving
intracellular signalling pathway crosstalk. Initial studies
identified APPL1 as a novel binding partner of AdipoRs in
response to adiponectin stimulation and established a role
for this protein in mediating nitric oxide production in
endothelial cells [16] or in crosstalk with insulin signalling
in C2C12 muscle cells [17]. Subsequent work demonstrated
that the APPL1/LKB1/AMPK axis plays a vital role in
mediating the insulin-sensitising effects of adiponectin [9],
and most recently it was shown that APPL1 can release Akt
trapped in a cytosolic localisation by its inhibitor TRB3,
thereby promoting Akt activation by insulin [18]. Here, we
demonstrate a significant synergistic effect on stimulation
of IRS-1 (Y612) and Akt (T308) when cells were pretreated
with fAd for 15 min followed by 5 min insulin treatment.
Interestingly, pretreatment of cells with high leptin levels
attenuated the insulin-sensitising function of fAd. Since we
have shown that leptin attenuated adiponectin-stimulated
AMPK phosphorylation and it has been shown that
adiponectin sensitises insulin signalling via an LKB1/
AMPK-dependent mechanism [9], we propose that blunting
of adiponectin-stimulated AMPK phosphoryation by leptin
and the synergistic effects of adiponectin on insulin
signalling occur through inhibition of LKB1/AMPK acti-
vation. Therefore, we employed a co-immunoprecipitation
approach to study the interaction of LKB1 with several
signalling molecules potentially involved in adiponectin–
insulin crosstalk. We saw that under normal conditions fAd
increased binding of LKB1 to the upstream regulator
APPL1 and that this interaction was blunted by the
presence of leptin. Our data suggest that leptin inhibits
AMPK stimulation by adiponectin probably via inhibited
interaction between LKB1 and APPL1.

In summary, although it is well established that
circulating adiponectin levels, particularly high molecular
weight adiponectin, decrease in obesity, there is currently
an increasing awareness of the potential development of
adiponectin resistance in individuals exhibiting features of
the metabolic syndrome [53]. Taken together, our data
demonstrate that prolonged treatment of skeletal muscle
cells with elevated leptin concentrations reduced adiponec-
tin signalling and metabolic effects in skeletal muscle cells.
Hence, our study indicates crosstalk between leptin and
adiponectin signalling and action, and suggests that hyper-
leptinaemia may be an important contributory factor
leading to adiponectin resistance in skeletal muscle, thus
exacerbating the disturbed metabolic milieu.
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