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Abstract
Aims/hypothesis Little of the genetic basis for type 2
diabetes has been explained, despite numerous genetic
linkage studies and the discovery of multiple genes in
genome-wide association (GWA) studies. To begin to resolve
the genetic component of this disease, we searched for sites
at which genetic results had been corroborated in different
studies, in the expectation that replication among studies
should direct us to the genomic locations of causative genes
with more confidence than the results of individual studies.
Methods We have mapped the physical location of results
from 83 linkage reports (for type 2 diabetes and diabetes
precursor quantitative traits [QTs, e.g. plasma insulin
levels]) and recent large GWA reports (for type 2 diabetes)
onto the same human genome sequence to identify
replicated results in diabetes genetic ‘hot spots’.
Results Genetic linkage has been found at least ten times at
18 different locations, and at least five times in 56 locations.
All replication clusters contained study populations from
more than one ethnic background and most contained results
for both diabetes and QTs. There is no close relationship

between the GWA results and linkage clusters, and the nine
best replication clusters have no nearby GWA result.
Conclusions/interpretation Many of the genes for type 2
diabetes remain unidentified. This analysis identifies the
broad location of yet to be identified genes on 6q, 1q, 18p,
2q, 20q, 17pq, 8p, 19q and 9q. The discrepancy between
the linkage and GWA studies may be explained by the
presence of multiple, uncommon, mildly deleterious poly-
morphisms scattered throughout the regulatory and coding
regions of genes for type 2 diabetes.

Keywords Allelic heterogeneity . Cluster analysis . Genetic
association . Genetic linkage . Genome-wide association
study .MODY. Quantitative trait . Replication .

Single nucleotide polymorphisms . Type 2 diabetes

Abbreviations
GWA Genome-wide association
LOD Logarithm of odds
QT Quantitative trait
SNP Single nucleotide polymorphism

Introduction

Type 2 diabetes is a chronic metabolic disease affecting the
lives of millions and creating major healthcare problems
worldwide. The huge personal and financial costs, together
with good evidence for a genetic component of the disease,
have justified a substantial investment into the search for
novel type 2 diabetes genes [1–83]. Linkage studies have
shown limited success to date in identifying causative genes.
Genome-wide association (GWA) studies have identified
multiple novel, apparently causative genes, but the contri-
bution of these to disease risk and predictive value is small
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[84, 85]. Pathway-specific candidate gene searches have also
had little success. Therefore, most of the genetic contribution
to type 2 diabetes remains unknown and the pressure for
solutions to the disease remains intense. The environmental
contributions to type 2 diabetes may partly be explained by a
gene–environmental interaction whereby a particular environ-
ment triggers the disease in those with an underlying genetic
predisposition. The search for diabetes disease genes is there-
fore as critical as the current efforts to modify the environ-
mental and lifestyle factors that contribute to the disease.

Family-based studies of the genetic determinants of type 2
diabetes and related precursor quantitative traits (QTs, e.g.
plasma insulin and glucose levels) [1–83] and GWA studies
have now provided an abundance of evidence for potentially
causative genes. These results have been drawn together onto
a single map of the human genome sequence [86]. The goal
is to look for genomic locations where the presence of a
potential underlying type 2 diabetes gene has been attested to
repeatedly—diabetes genetic ‘hot spots’. Such replication
increases our confidence of the presence of an underlying
gene. While GWA studies look for diabetes genes using a
different approach to linkage analysis, the ultimate goal is the
same—to find the genetic determinants of the disease.
Therefore, the results of linkage and association must
eventually match each other. The current analysis identifies
multiple linkage locations that differ from those found in the
recent GWA studies [87–89], and suggests the location of
additional major type 2 diabetes susceptibility genes.

Methods

Linkage studies of type 2 diabetes and related QTs were
identified though Medline or other literature searches. In total,
52 genetic linkage projects reported in 83 publications were
included in our analysis. Participants originated from multiple
ethnic backgrounds. We were aware of some overlap in study
populations, mainly the Genetics of NIDDM (GENNID)
study [18, 22, 23, 25, 31, 44], but also other studies [4, 17,
30, 59]. The number of individual results removed because of
this to avoid redundancy was small. Pima Indian QT studies
from clinical research [65] or field studies [33] were treated
separately. For studies that updated their analyses we have
endeavoured to use the most recent results.

The X chromosome is excluded because of limited results.
There were 450 different genetic marker names representing
439 loci (11 markers had two aliases). The physical location of
the marker reported for the linkage peak or the 2 point score,
was identified on build 36.1 of the Human Genome from
UCSC Genome Bioinformatics (http://genome.ucsc.edu/,
accessed July 2008) [86]. Where the linkage location fell
between several markers, the p-terminal marker was used.
Inclusion of results is based on logarithm of odds (LOD)

score, not p value. Linkage peaks for clarity have been plotted
as a single point/line. To be included the marker name needed
to be explicitly provided in the publication (for study [78] the
marker names were provided by the senior investigator).

To avoid mapping multiple results from the same linkage
signal, linkage results were sorted by study population and
phenotype and then ranked by descending LOD score. Any
result with a lower LOD score for the same population/
phenotype within 30 Mb in either direction of the signal
was deleted. A physical distance of 30 Mb is approximately
33 cM. Using the Kosambi map function, this corresponds
to a recombination fraction of 0.29 (maximum is 0.5) [90].
Some studies had both subgroup and combined group
analyses. Since the aim of this study was to identify
replicated findings, we preferentially used the subgroups
(e.g. for the Finland–United States Investigation of NIDDM
Genetics [FUSION], select FUSION1 and FUSION2 and
delete FUSION1+2 [73, 78] if co-located).

The following simplified phenotypes were created prior to
filtering: (1) diabetes (diabetes, diabetes and impaired glucose
tolerance combined, diabetes age of onset), (2) glucose
(fasting glucose, OGTT glucose levels, HbA1c), (3) insulin
(any insulin, proinsulin, C-peptide, some bivariate results),
(4) acute insulin response (AIR), (5) minimal model insulin
sensitivity (Si), (6) minimal model glucose effectiveness (Sg),
and (7) euglycaemic–hyperinsulinaemic clamp (glucose
infusion rate, M value). Phenotypes constructed from two
categories were filtered against the results in both categories.
While obesity also contributes to type 2 diabetes susceptibil-
ity, it is a distinct genetic disorder that is not always
associated with the disease, and was therefore not included.

For several studies we converted p values to LOD scores
using the assumption that LOD × 2loge10 has a χ2

distribution [91]. We assumed a two-sided test for [1],
according to the authors instructions, and a one-sided test
for [43, 46] (i.e. p value doubled before further calculation).
This may introduce some error, but the location estimates
are not influenced by the calculation. A number of authors
supplied additional data for their studies on request, but we
did not systematically request data from all authors.

The SAS statistical package, version 9.1 (SAS Institute,
Cary, NC, USA) was used for the analyses. Linkage results
for any particular underlying gene are expected to lie close
to the genomic location of the gene. Since these results may
be scattered locally, rather than falling in exactly the same
spot, and to make the identification of any potential clusters
of replicated results as objective as possible, the refined
results were analysed using MODECLUS (method 1), a
SAS statistical clustering procedure. It is not possible to
assign a significance value to an individual cluster. The
initial seeding radius for clusters provided to MODECLUS
was 12 Mb, but lower if there were results not unambig-
uously assigned to a cluster. Large seeds will put all
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observations into one large cluster, which is clearly
unhelpful. Three markers fell in the same cluster as a
related result (but >30 Mb away). These were deleted from
further analyses after the goodness-of-fit tests. The
goodness-of-fit tests evaluated the distribution of location
results against a uniform distribution (Anderson–Darling
statistic).

A quality score was developed and applied to each
cluster. Clusters were first ranked by three properties: the
sum of all the LOD scores, the density of the cluster
(number of studies per 10 Mb of genome), and the number
of studies in the cluster with an LOD score of ≥3.0. The
sum of these ranks was used to calculate a final ranking,
which we use as a quality score (the 15 best are in Table 1).

Calculations The significance of the relationship between
the GWA results and clusters was calculated as: P kð Þ ¼
n!= k! n� kð Þ!½ �f gpk 1� pð Þ n�kð Þ, where n is the number of

trials (i.e. 20 for GWA results), k is the number of hits
(i.e. GWA markers falling into the clusters) and p is the
probability of success in one trial (i.e. amount of genome
covered by clusters). The overall probability is the sum
over k, k+1, k+2…k+20.

The λs value (sibling recurrence risk ratio, which is the
risk to a sibling relative to the general population; Table 3) is
calculated for an additive genetic effect as follows [90, 92]:

p = risk allele frequency, q ¼ 1� pð Þ
g = odds per allele (for two alleles, g2 ¼ 2g � 1ð Þ; one
allele, g1=g; no alleles, g0=1)

Note: Since f0, the disease penetrance in those without the
disease allele, eventually cancels out in these equations,
only the genotype relative risks (odds ratios) are included.

VA ¼ 2pq p g2 � g1ð Þ½ � þ q g1 � g0ð Þ½ �f g2

VD ¼ p2
� �

q2
� �

g2 � 2g1 þ g0ð Þ2
h i

K ¼ p2g2
� �þ 2pqg1ð Þ þ q2

� �

C ¼ VA � 0:5ð Þ þ VD � 0:25ð Þ
Ks ¼ K þ C=Kð Þ
ls ¼ Ks=K

where VA is the additive variance, VD is the dominance
variance, K is the population prevalence of the disease, C is
the genetic covariance between two full siblings (epistatic
effects ignored) and Ks is the sibling recurrence risk.

Results

We identified 560 linkage results, on 22 autosomes,
representing 439 different marker locations that met the
following criteria: an LOD score of ≥1.18 (equivalent to p≤

0.01 in a single-point analysis or the likelihood of about
two such results occurring by chance in a genome-wide
analysis [93]); a marker with a known genomic location;
and each result independent of any other result lying either
within 30 Mb or in the same cluster (Tables 1 and 2, Fig. 1,
Electronic supplementary material [ESM] Figs 1 and 2).
There were 264 linkage results for the type 2 diabetes
phenotype, and 296 linkage results for QTs. The number of
linkage reports according to racial group were: Europeans
266, Native/Mexican American 124, Chinese/Japanese 78,
African 55, Other/mixed/uncertain 37. Among the Euro-
peans there was almost an equal number of results for type
2 diabetes and QTs (124 and 142, respectively), but QT
studies dominated in the Native/Mexican American and
African groups (>70% of results), and type 2 diabetes
analyses predominated among the East Asians (83% of
results). LOD scores of ≥2.2, ≥3.0 and ≥3.6 were present in
188 (34%), 80 (14%) and 41 (7%) of results, respectively
(genome-wide p values ∼0.2, ∼0.05, ∼0.01 [93]). By other
assessments, an LOD of 2.2 is expected to occur by chance
once in every genome-wide scan [91]. Within each major
racial group a similar proportion of results (13–17%) had
LOD scores ≥3.0.

By goodness-of-fit tests against a uniform distribution,
the genomic locations of the linkage results were non-
random in a number of assessments. Testing all results
(chromosomes 1–22) as a continuous block suggested a
non-uniform distribution (p=0.045). Chromosomes 1, 8,
10, 17 and 18 show a non-uniform distribution (p≤0.02), as
do 2, 5 and 6 (p≤0.05), while on chromosomes 3 and 21,
the evidence is only suggestive (p≤0.075). These tests may
be too crude to truly assess clustering and may obscure
finer detail.

Cluster analysis by individual chromosome identified 56
clusters, each containing at least five linkage results. The
selection criterion of five members to define a cluster is
arbitrary but provides a compromise between showing
strong support for a replication locus on the one hand and
discarding too many results of modest evidence for
replication on the other. The 56 clusters contained 471
results (84% of total), had a mean size of 20.3 Mb
(±11.7 Mb), and covered 39.7% of the autosomes
(Tables 1and 2, Fig. 1, ESM Figs 1 and 2). The clusters
contained a mixture of type 2 diabetes and QT results,
except for three small clusters (QT only). There were 89
(16%) results not assigned to a cluster, with type 2 diabetes
and QT equally represented (17% and 15%, respectively).
The mean LOD score was not significantly different
between these orphaned results and clustered results
(ANOVA and Wilcoxon tests). All clusters contained studies
from several different racial groups (Tables 1 and 2).

The clusters were given a quality rank (Tables 1 and 2),
and according to this, the top three clusters were located on
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chromosome 6q (very dense cluster), 1q (larger number of
results and high LOD scores) and 18p (combination of
properties). Linkage clusters were compared with results
from recently published large GWA studies [87–89]
(Table 3, Fig. 1, ESM Figs 1 and 2). There was no close
relationship between the GWA and linkage results. Al-
though 15 out of 20 GWA results were in a cluster or within
5 Mb of the cluster edge (56.1% of autosomal genome), this
relationship was not significant (p=0.067). Only five GWA
results fell within 4 Mb of the mean of a cluster (15.6% of
autosomal genome), and this is also not significant (p=
0.19). The best linkage replication clusters had no associ-
ated GWA result.

Discussion

The search for genetic determinants of type 2 diabetes is yet
to provide the anticipated insights into the cause of the
disease. An abundance of results has not provided a
consistent picture or satisfactory set of causative alterations.

The current compilation of linkage results for type 2
diabetes and its precursors suggests locations for type 2
diabetes susceptibility genes based on clusters of replicated
results. It suggests that there are major genes for type 2
diabetes on 6q, 1q, 18p, 2q, 20q, 17pq, 8p, 19q and 9q, and
possibly elsewhere, that are yet to be identified. Because of
the limitations of available genetic methods and the likely
complexity of the underlying genetic architecture of type 2
diabetes, these genetic locations are currently only broadly
defined but do provide promise of further major gene
identification.

In this study, we combined the results of type 2 diabetes
as a discrete trait and the results of QTs. This is justified
under the assumption that heritable precursors of type 2
diabetes will share the same genetic determinants as type 2
diabetes itself. Diabetes-related QTs are heritable in
multiple ethnic groups (for examples, see [94–96]), and
many also predict the subsequent development of diabetes
(for examples, see [97–99]). In addition, genetic correlation
has been demonstrated between type 2 diabetes and some
QTs [100] and between various QTs [14, 37, 96, 100–102].

Fig. 1 The linkage results for type 2 diabetes and related quantitative
traits for chromosomes 1 and 22. The results for all 22 chromosomes
plus the reference for the source of the data are given in ESM Fig. 1.
The linkage results are plotted as a single line, each line representing a
linkage peak or 2 point score, and positioned by the location of the
genetic marker. Each result is independent of any other result by
population and phenotype, within 30 Mb in either direction, and
independent of any results in the same cluster if the cluster exceeds
30 Mb in size. The y-axis shows the LOD score of the results, with
values ≥6 plotted as 6. The x-axis shows the location of the linkage
result in megabase pairs from the p-terminus (according to http://
genome.ucsc.edu/, accessed July 2008). Diabetes/impaired glucose
tolerance results are in blue, QT results are in green. A thick solid

horizontal bar at the baseline demarcates each cluster. This is coloured
deep purple for the best 15 clusters and pale purple for the remainder.
A solid red arrow at the baseline identifies the location of a GWA SNP
result (Table 3). For chromosome 1 the locations of the GWA results
were adjusted to make the two closely located results visible
separately. A number of linkage results were close to, or in an
identical position to, another result. Therefore, for plotting purposes
only, some results were moved in increments of 0.75 Mb until all
values could be seen. The maximum move was 4.5 Mb (chromosome
6). The cluster range (i.e. Start–end) given in the tables is the actual
position, whereas the plotted value may be adjusted to make the
results visible. ESM Fig. 2 shows the clusters in chromosomes 1, 6, 18
and 22 that contained the most superimposed lines in more detail
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On the other hand, by providing twice the reservoir of data
to analyse, the combination of evidence from both type 2
diabetes and precursor QTs should improve the likelihood
of identifying type 2 diabetes gene locations. Almost all
replication clusters contained both types of results, support-
ing this approach (Tables 1 and 2).

A recent meta-analysis [103] evaluated 23 type 2 diabetes
linkage (but not QT) studies with the aim of determining
gene locations. The genome was divided into bins based on
genetic distance, and LOD scores in each bin were evaluated
using three different scoring schemes. The study identified
24 linkage loci, with three of these loci roughly consistent
across scoring schemes. These three loci corresponded to
one of our clusters, chromosome 4 ∼176 cM/176 Mb,
chromosome 6 ∼125–150 cM/125–150 Mb, and chromo-
some 10 ∼138 cM/119 Mb. The three other results given
special comment by the authors do not correspond to a
cluster in our results. Our study is more qualitative than that
of Guan et al. [103], but does allow for a visual evaluation

of the raw data, is not constrained by selection of bin size or
location (we used cluster analysis instead), and the inclusion
of QT doubles the number of results that can inform the
gene location evaluation.

The individual linkage results show a wide scatter of
locations (Fig. 1, ESM Figs 1 and 2). There are several
potential explanations for this. Firstly, the data may merely
be randomly distributed without any underlying genetic loci
(see goodness-of-fit testing results). Alternatively, the
scatter could reflect the limitations inherent in location
estimates from linkage studies and the density of markers.
Finally, the scatter could reflect the presence of multiple co-
located independent genes.

We expect that both the linkage location estimate and the
LOD score will be subject to error. This location error will
determine the likely size of a cluster of results around a
locus that is creating linkage signals. Genetic loci are
unlinked when the recombination rate at meiosis between
two loci reaches the maximum 50%, a distance of

Table 3 GWA study results for type 2 diabetes

Chromosome Risk SNP Start
position

Risk allele
frequency

Reference Risk per
allele

λs Nearest gene Description

1 rs2641348 120,239,407 0.107 89 1.10 1.001 ADAM30 ADAM metallopeptidase domain 30
preproprotein

1 rs10923931 120,319,482 0.106 89 1.13 1.002 NOTCH2 Notch 2 preproprotein

2 rs7578597 43,586,327 0.902 89 1.15 1.001 THADA Thyroid adenoma associated isoform 1

3 rs1801282 12,368,125 0.870 87 1.14 1.001 PPARG Peroxisome proliferator-activated receptor γ

3 rs4607103 64,686,944 0.761 89 1.09 1.001 ADAMTS9 ADAM metallopeptidase with
thrombospondin type 1

3 rs4402960 186,994,381 0.320 87 1.14 1.004 IGF2BP2 Insulin-like growth factor 2 mRNA
binding

4 rs10010131 6,343,816 0.600 87 1.11 1.002 WFS1 Wolframin

6 rs10946398 20,769,013 0.320 87 1.14 1.004 CDKAL1 CDK5 regulatory subunit-associated protein

7 rs864745 28,147,081 0.501 89 1.10 1.002 JAZF1 Juxtaposed with another zinc finger
protein 1

8 rs13266634 118,253,964 0.690 87 1.15 1.003 SLC30A8 Solute carrier family 30 member 8

9 rs10811661 22,124,094 0.830 87 1.20 1.003 CDKN2A/2B Cyclin-dependent kinase inhibitor 2A/2B

10 rs12779790 12,368,016 0.183 89 1.11 1.002 CDC123/
CAMK1D

Cell division cycle homologue/Ca2+

calmodulin protein kinase

10 rs1111875 94,452,862 0.650 87 1.15 1.004 HHEX/IDE Haematopoietically expressed homeobox/
insulysin

10 rs7901695 114,744,078 0.310 87 1.37 1.019 TCF7L2 Transcription factor 7-like 2

11 rs2237892 2,796,327 0.690 88 1.42 1.015 KCNQ1 Potassium voltage-gated channel KQT-like

11 rs5215 17,365,206 0.350 87 1.14 1.004 KCNJ11 Potassium inwardly-rectifying channel J11

12 rs1153188 53,385,263 0.733 89 1.08 1.001 DCD Dermcidin preproprotein

12 rs7961581 69,949,369 0.269 89 1.09 1.001 TSPAN8/
LGR5

Tetraspanin-8/leucine-rich G-protein
coupled receptor 5

16 rs8050136 52,373,776 0.400 87 1.17 1.005 FTO Fatso

17 rs4430796 33,172,153 0.470 87 1.10 1.002 TCF2 Transcription factor 2

Recently published results of large GWA studies [87–89]. These results are plotted in Fig. 1 and ESM Figs 1 and 2 by the location of the risk SNP.
Each of the genes adjacent to the risk SNP, and that are also in or near a cluster, are listed in Tables 1 and 2. We have used risk allele frequencies
and risk per allele data from one review [87] and two original publications [88, 89]), to calculate the effect on the sibling recurrence risk ratio (λs)
(see Methods, Calculations)
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approximately 100 cM, about 100 Mb [90, 104]. Accurate-
ly defined linkage signals this far apart are not linked,
suggesting an upper limit for replication cluster sizes. The
multipoint linkage peaks observed in genetic analyses are
typically broad, with the width of a peak easily reaching
40 cM or more (see also [105]). This indicates the
uncertainty in the location estimate for the underlying
gene. Confidence intervals for the location of the suscep-
tibility gene have been examined by modelling for affected
sib-pairs [106, 107] and for family studies [108–110].
These intervals are often surprisingly large, i.e. tens of
centimorgans. For a λs of 1.24 (i.e. tenfold larger than that
for TCF7L2 [Table 3]) and 400 sib-pairs, modelling
suggested the standard deviation of the location estimate
to be 13.11 cM, i.e. a 95% confidence interval of 51 cM
(1.96×2×13.11) [106]. Indeed, the chance of finding the
susceptibility gene under the region of maximum allele
sharing is quite small [111]. While the use of a 1 LOD
distance on either side of the linkage peak might provide
tight confidence limits, such limits can be deceptively
narrow and will often completely miss the true location
[107]. Hence, we should reasonably expect a scatter of
results around a susceptibility locus, with a larger scatter
observed when the gene has a small effect or the study
population is small [108–110, 112]. Cluster analysis tries to
take this scatter into account. Studies with larger samples
might serve to better define the susceptibility gene locations
by genuinely narrowing the confidence intervals.

Results with lower LOD scores are included here to
incorporate as much corroborative evidence as possible.
Including lower LOD scores may, however, increase the
scatter of the data and increase the number of false-positive
results. The orphaned (non-clustered) results did not have
lower LOD scores, suggesting that they are not false-
positives and instead reflect random error in the location
estimates. Because of the large number of tests typically
performed in a genome-wide scan, the cutoff values for
genome-wide significance for linkage are stricter than the
point-wise significance limits. An LOD of ≥3.6 (theoreti-
cal) [91] or ≥3.0 (modelling) [93] suggests genome-wide
significance (p<0.05). Linkage results were centred around
LOD scores of ≥3.0 in 40 (71%) of the clusters, and around
LOD scores of ≥3.6 in 27 (48%) of the clusters. Inspection
of the results can help the reader evaluate the linkage
signals in these locations (Tables 1 and 2, Fig. 1, ESM Figs
1 and 2). When defining the correct position of the locus
underlying a cluster, for positional cloning or bioinfor-
matics purposes, it may be beneficial to weight each result.

In the current analysis, we excluded results within
30 Mb in either direction of the selected result if they were
derived from the same study population and phenotype,
because it was necessary to set limits to avoid spurious
replication. This may have excluded a genuine second

linkage signal, lying nearby, although it is doubtful that
signals in such close proximity can be adequately resolved
in most studies. However, it is possible that the wide
clusters represent multiple co-located genes, as seen in
prostate cancer (8q24) [113] and several other diseases. For
the moment, we invoke Occam’s razor in assuming that,
generally, a single cluster represents a single underlying
gene, with the linkage signal picked up over a substantial
length of the genome. The scatter also indicates that
positional cloning efforts based on the location estimates
from a single study alone may not correctly target the
underlying gene.

The mean number of linkage results in a cluster was 8.4,
and it is clear that the linkage signal for each putative
underlying gene is not identified by every study (most, but
not all, studies were genome-wide scans). The absence of a
linkage signal could reflect the different population struc-
tures in the studies, the genetic heterogeneity of type 2
diabetes or the lack of power in individual studies.

If only a subset of type 2 diabetes susceptibility genes
was required for the disease in any individual and the
frequencies of these susceptibility genes were different in
each population, linkage results would be variable. This
might easily arise if hyperglycaemia was a collection of
subtly different phenotypes, each resulting from different
subsets of underlying genes. Heterogeneity for diabetes as a
broad phenotype is already apparent in the distinct features
of type 1 diabetes, type 2 diabetes and MODY/monogenic
diabetes [114]. The non-monogenic form of type 2 diabetes
is likely to feature further levels of heterogeneity. Pheno-
typic heterogeneity may be largely independent of the
ethnic background however, since there was a mixture of
racial groups in all replication clusters (Tables 1 and 2).
Even though association studies [88, 115] suggest that there
will be some differences in the frequency of individual type
2 diabetes genes between ethnic backgrounds, many type 2
diabetes genes may be shared between individuals of
different continents of origin.

Studies with an insufficient number of participants may
also fail to detect a linkage signal for locations where the
genetic effect is weak. Given that >2,500 families may be
needed to detect loci conferring a genotype risk ratio of less
than 2 ([116] compare with Table 3), it is expected that
many studies will not be able to identify the location of
some genes. The lack of support for a particular location in
some studies does not discount the potential importance of
the existing data, but does emphasise the importance of
replication and the need for larger studies.

Fifteen GWA results were in or near a cluster. Given the
size of clusters and the amount of the genome they cover,
we were unable to demonstrate that this was a significant
correlation. The GWA type 2 diabetes loci may be the
source of the adjacent linkage signals in some cases, but
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demonstrating this would require a specific re-analysis of
the linkage data. Our nine best replication clusters are not
associated with a GWA result, and these clusters quite likely
reflect genes with even bigger effects than do the current
GWA candidates. This is because the 20 loci identified by
GWA studies have small λs values (Table 3), with a λs value
in combination of only about 1.08–1.10. The expected λs
value for type 2 diabetes appears to be somewhere between
1.2 and 6 [96, 117–120]. Therefore, we must conclude that
much of the genetic cause of type 2 diabetes remains
unidentified and the GWA results should be seen as
complementing, not replacing, the linkage analyses.

While MODY genes are not considered responsible for
typical type 2 diabetes, five of the nine known MODY
(http://www.ncbi.nlm.nih.gov/omim/, accessed December
2008) genes fall into the following replication clusters:
MODY1/HNF4A (chromosome 20/42.4 Mb); MODY3/
HNF1A (chromosome 12/119.9 Mb); MODY7/KLF11
(chromosome 2/10.1 Mb); MODY8/CEL (chromosome 9/
134.9 Mb); and MODY9/PAX4 (chromosome 7/127.0 Mb).
Since some loci may contain both weak and strong alleles
[121], it remains possible that variants in these genes could
be influencing typical type 2 diabetes[122].

In addition to phenotypic heterogeneity, we should
expect to see allelic heterogeneity in type 2 diabetes. There
are ten million SNPs in the human genome, and in the two
individuals whose whole genomes have been sequenced,
over 3 million SNP differences were detected between each
individual and the reference human genome sequence
[123]. The majority of these SNPs will be rare in the whole
population [124, 125]. Individual genes can harbour
hundreds of genetic variants. As an illustration, the MODY3
gene (HNF1A, the commonest monogenic cause of diabe-
tes) has 200–300 known mutations (missense, nonsense,
splicing defects, insertions and deletions) [126]. Therefore,
we should expect the genetic architecture of typical type 2
diabetes to be much more complex still, and this will make
it harder to identify genetic causes of the disease.

Both association studies and linkage analysis are looking
for new causative genes using different principles [92, 121,
127–129]. Association analysis is considered more power-
ful than linkage analysis [92, 116], though the difference
may have been inflated [128]. In linkage analysis, gene
transmission is assessed one family at a time. If every
family studied is affected by a different rare disease allele
elsewhere in the same gene (allelic heterogeneity), a
linkage signal should still be apparent [92]. Disease
mutations need not be identical, only close enough to a
marker that recombination over one or two generations
rarely separates them in any particular family. A GWA
study, however, would need to either type the same rare
SNP directly in each individual, which is unlikely with
current markers, or to indirectly type one or more rare SNPs

by typing a representative or ‘tag’ SNP [125] on the same
haplotype block. The disease allele and the typed tag SNP
also need to occur at about the same frequency for a study
to identify the relationship between them [127]. The gene
typing arrays currently available are largely based on the
HapMap results [124, 125], which specifically targeted
common SNPs. Investigators made the assumption that
common diseases would be due to common variants [128].
It is not surprising therefore that the current set of GWA
results are associated with SNPs with high-risk allele
frequencies. As a corollary, the future discovery of new
rare disease variants may be difficult using this methodol-
ogy. Current GWA studies may have also missed copy
number variants [130]. Therefore, GWA studies may be
identifying genes that linkage studies have been insuffi-
ciently powered to detect, while linkage studies may be
detecting genes with multiple rare variants within the same
gene, variants rare enough individually to go undetected by
current GWA tools.

Linkage studies have helped in the discovery of mono-
genic forms of type 2 diabetes (MODY), and most of these
have probably now been identified. GWA studies have
identified a number of common genes with low penetrance,
but current methods may soon reach a limit here, too. This
leaves the moderately rare genetic variants with modest
penetrance left to be identified (see box 7 in [129]). Since
one gene could harbour multiple, different, rare, modestly
penetrant variants, we suggest that the most likely interpre-
tation of strong linkage clusters with no associated GWA
result is the presence of variants of this sort. The discovery of
genes for type 2 diabetes now appears to require an increased
catalogue of rare variants or large-scale re-sequencing of
well-defined diabetes linkage ‘hotspots’ [131].
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