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Abstract
Aims/hypothesis New genetic variants associated with
susceptibility to type 2 diabetes mellitus have been
discovered in recent genome-wide association (GWA)
studies. The aim of the present study was to examine the
association between these diabetogenic variants and gesta-
tional diabetes mellitus (GDM).
Methods The study included 869 Korean women with GDM
and 345 female and 287 male Korean non-diabetic controls.
We genotyped the single nucleotide polymorphisms (SNPs)
rs7756992 and rs7754840 in CDKAL1; rs564398, rs1333040,

rs10757278 and rs10811661 in theCDKN2A−CDKN2B region;
rs8050136 in FTO; rs1111875, rs5015480 and rs7923837 in
HHEX; rs4402960 in IGF2BP2; and rs13266634 in SLC30A8.
In addition, rs7903146 and rs12255372 in TCF7L2; rs5215 and
rs5219 in KCNJ11; and rs3856806 and rs1801282 in PPARG
were genotyped. The genotype frequencies in the GDM
patients were compared with those in the non-diabetic controls.
Results Compared with controls (men and women com-
bined), GDM was associated with rs7756992 and rs7754840
(OR 1.55, 95% CI 1.34–1.79, p=4.17×10−9) in CDKAL1;
rs10811661 (OR 1.49, 95% CI 1.29–1.72, p=1.05×10−7) in
the CDKN2A−CDKN2B region; rs1111875 (OR 1.27, 95%
CI 1.09–1.49, p=0.003), rs5015480, and rs7923837 in
HHEX; rs4402960 (OR 1.18, 95% CI 1.01–1.38, p=0.03)
in IGF2BP2; rs13266634 (OR 1.24, 95% CI 1.07–1.43,
p=0.005) in SLC30A8; and rs7903146 (OR 1.58, 95% CI
1.03–2.43, p=0.038) in TCF7L2. The risk alleles of the SNPs
rs7756992 and rs7754840 in CDKAL1; rs10811661 in the
CDKN2A–CDKN2B region; and rs1111875, rs5015480 and
rs7923837 in HHEX were associated with significant de-
creases in the insulin AUC during a 100 g OGTT performed
at the time of diagnosis of GDM.
Conclusions/interpretation Some of the type 2 diabetes-
associated genetic variants that were discovered in the recent
GWA studies are also associated with GDM in Koreans.
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KCNJ11 potassium inwardly rectifying channel, sub-
family J, member 11

SNP single nucleotide polymorphism
TCF7L2 transcription factor 7-like 2

Introduction

Gestational diabetes mellitus (GDM)—glucose intolerance
of varying degrees of severity that is first recognised during
pregnancy [1]—affects 2–14% of all pregnancies [2–4].
GDM may have the same genetic background as type 2
diabetes mellitus as there is evidence for the clustering of
type 2 diabetes and impaired glucose tolerance in families
with women with GDM [5] and for a higher prevalence of
type 2 diabetes in mothers of women with GDM [6].
Furthermore, it is well known that women with GDM are at
a greater risk of developing type 2 diabetes later in life
[7–9]. However, knowledge regarding the genetics of GDM
is limited [7, 10]. Several studies have examined candidate
genes in women with and without GDM. Positive associ-
ations were shown for genes encoding glucokinase [11],
calpain-10 [12], sulfonylurea receptor 1 [13], potassium
inwardly rectifying channel, subfamily J, member 11
(KCNJ11) [14], β3 adrenergic receptor [15], plasminogen
activator inhibitor 1 [16] and transcription factor 7-like 2
(TCF7L2) [17, 18]. Except for the effects of TCF7L2 in
Scandinavian women [17], no robust associations of genetic
variants with GDM have been demonstrated.

In addition to those in KCNJ11, PPARG and TCF7L2,
the recent genome-wide association (GWA) studies have
identified new genetic variants with reproducible associa-
tions with susceptibility to type 2 diabetes [19–23], the
majority of which were found in genes that were not even
considered candidates [24]. Furthermore, robust signals
(p<5×10−7) were identified in certain gene regions (i.e. the
HHEX–IDE and CDKN2A–CDKN2B regions) [19–23]. We
recently found that the diabetogenic genetic variants
reported by the large-scale GWA studies in Europids [19–
23] were also associated with the risk of type 2 diabetes in
Asian populations, including Koreans [25].

If GDM and type 2 diabetes share a common genetic
background, the genetic variants determining the risk of
type 2 diabetes may also be associated with GDM. In the
present study, we compared the genotype frequencies of the
single nucleotide polymorphisms (SNPs) in the diabeto-
genic genes in GDM patients with those in non-diabetic
controls.

Methods

Patients with GDM This study included 869 Korean
women diagnosed with GDM at the Samsung Cheil

Hospital (Seoul, Korea) between January 1996 and Febru-
ary 2003. During the study period, 39,190 consecutive
women underwent screening for GDM. We followed a
previously described protocol for the screening and
diagnosis of GDM [3, 26]. In brief, all pregnant women
without a previous diagnosis of glucose intolerance were
screened for GDM between 24 and 28 weeks of gestation
by using the 50 g, 1 h glucose challenge test as recom-
mended by the Third International Workshop-Conference
on GDM [1]. A plasma glucose concentration of 7.2 mmol/l
or more was considered positive for GDM and was followed
by a 100 g OGTT. GDM was diagnosed according to the
criteria of the Third International Workshop-Conference on
GDM [1]. The threshold glucose values were as follows:
fasting ≥5.8 mmol/l, 1 h ≥10.5 mmol/l, 2 h ≥9.2 mmol/l and
3 h ≥8.0 mmol/l.

Gestational age at the time of the screening test was
27.9±2.9 weeks (mean±SD). Plasma glucose concentration
was measured by the glucose oxidase method using an YSI
2300 STAT analyser (Yellow Springs Instrument Company,
Yellow Springs, OH, USA). Serum insulin concentration
was measured using insulin-specific radioimmunoassay
kits (Linco Research, St Louis, MO, USA). Homeostasis
model assessment of insulin resistance (HOMA-IR) was
calculated using the formula developed by Matthews et al.
[27]. GAD antibodies were measured using a radioimmu-
noassay method (RSR, Cardiff, UK).

The clinical characteristics of women with GDM at
6 weeks postpartum are shown in Table 1. Height and body
weight were measured to the nearest 0.1 cm and 0.1 kg,
respectively, with the patient standing barefoot and in light
clothing. BMI was calculated as body weight in kilograms
divided by the square of height in metres. Blood pressure
was measured after the participant had remained seated for
10 min. Measurements were taken twice, 5 min apart. The
frequency of a positive family history of type 2 diabetes in
women in the GDM group was 41.3%. Women who tested
positive for GAD antibodies were excluded from the study.

Non-diabetic controls We recruited 632 non-diabetic con-
trols (345 women, 287 men) who visited Seoul National
University Hospital for a routine health check-up. The
following selection criteria were used: age ≥60 years, no
history of type 2 diabetes, no first-degree relatives with
type 2 diabetes, fasting plasma glucose level <6.1 mmol/l and
HbA1c level <5.8%. Therefore, controls were expected to
be at a very low risk of type 2 diabetes. Table 1 shows the
clinical characteristics of the controls in detail. It was not
confirmed whether the non-diabetic female participants had
experienced pregnancy without GDM. However, the ascer-
tainment bias should be minimal given that the prevalence
of GDM is estimated to be very low in Korea, at a rate of
2.2 cases per 100 pregnant women [3].
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Ethical considerations The Institutional Review Board of
the Clinical Research Institute of Seoul National University
Hospital and the Research and Ethics Committee of the
Samsung Cheil Hospital approved the study protocol, and
informed consent was obtained from each study participant.
The study was carried out in accordance with the principles
of the Declaration of Helsinki as revised in 2000.

Gene and SNP selection SNPs from six novel genetic loci,
which were identified through the recent GWA studies [19–
23] and showed reproducible associations with type 2
diabetes in Europeans, were selected for this study. Specif-
ically, these were rs7756992 and rs7754840 in CDKAL1;
rs564398 and rs10811661 in CDKN2A–CDKN2B; rs8050136
in FTO; rs1111875, rs5015480 and rs7923837 in HHEX;
rs4402960 in IGF2BP2; and rs13266634 in SLC30A8. Two
representative SNPs (rs1333040 and rs10757278) close to
CDKN2A–CDKN2B that were associated with coronary heart
disease and myocardial infarction were also selected [28–30].
In addition, rs7903146 and rs12255372 in TCF7L2 [31];
rs5215 and rs5219 in KCNJ11 [32]; and rs3856806 and
rs1801282 in PPARG [33] were also genotyped.

Genotyping We genotyped 18 SNPs in nine genes from
genomic DNA. An allelic discrimination assay was per-
formed in 5 μl of 1× TaqMan Universal PCR Master Mix
(Applied Biosystems, Foster City, CA, USA) containing
20 ng of genomic DNA and 0.125 μl of 40× Assays-on-
Demand SNP genotyping product (Applied Biosystems),
according to the manufacturer’s instructions. (A list of the
assay ID numbers and public ID numbers for the Assays-
on-Demand SNP genotyping products used in this study is
presented in Electronic supplementary material [ESM]

Table 1.) Next, the plate was placed in a thermal cycler
(PE 9700; Applied Biosystems) and heated for 2 min at 50°C
and 10 min at 95°C, followed by 40 cycles at 95°C for 15 s
and 60°C for 1 min. The TaqMan assay plate was then
transferred to a Prism 7900HT instrument (Applied Bio-
systems) and the fluorescence intensity of each well was
read. The fluorescence data files for each plate were analysed
using Sequence Detection System version 2.1 (Applied
Biosystems). Forty-four blind duplicates and eight blank
samples were used as positive and negative controls,
respectively. The overall genotyping success rate was
99.4% (range 97.4−99.8%; ESM Table 2) and the concor-
dance rate based on blind duplicate comparisons was 99.6%.

Statistical analyses All continuous variables are expressed
as mean±SD. Statistical analyses were conducted using
SPSS for Windows, version 11.0 (SPSS, Chicago, IL,
USA). To determine whether individual polymorphisms
were in Hardy–Weinberg equilibrium, χ2 tests were used.
The result of the test for Hardy–Weinberg equilibrium and
the statistical power for each variant are shown in ESM
Table 2. Since there were no differences in the genotype
frequencies between male and female non-diabetic controls
(ESM Table 3), we initially compared the genotype
frequencies of the 869 GDM patients with those of the
632 controls (i.e. both men and women), which was
considered to be a non-diabetic gene pool. In addition, we
compared the genotype frequencies of the 869 GDM
patients with those of the 345 female controls. Logistic
regression analyses were used for calculating the ORs, 95%
CIs and the corresponding p values with regard to the
number of risk alleles using an additive model. Genotypes
were given codes of 0, 1 and 2, and the OR was expressed

Table 1 Clinical characteristics of the study participants

GDMa (n=869) Non-diabetic controls

All (n=632) Men (n=287) Women (n=345)

Age (years) 32.0±3.9 64.7±3.6 64.9±3.8 64.4±3.3
BMI (kg/m2) 23.1±3.6 23.3±3.0 22.9±2.7 23.9±3.3
Systolic BP (mmHg) 118±13 128±20 128±19 129±20
Diastolic BP (mmHg) 73±9 80±10 81±11 79±11
Fasting plasma glucose (mmol/l) 5.5±1.7 4.9±8.7 5.0±0.5 4.9±0.5
HbA1c (%) NA 5.3±0.3 5.2±0.3 5.3±0.3
Total cholesterol (mmol/l) 5.22±0.85 4.98±0.90 4.83±0.90 5.10±0.88
Triacylglycerol (mmol/l) 3.89±2.68 3.30±1.66 3.22±1.63 3.37±1.68
HDL-cholesterol (mmol/l) 1.37±0.33 1.20±0.33 1.21±0.35 1.20±0.31
LDL-cholesterol (mmol/l) 3.09±0.70 3.12±0.89 2.98±0.91 3.23±0.84
Fasting plasma insulin (pmol/l) 64±32 47±29 43±20 51±35
HOMA-IR 2.6±1.5 1.7±1.1 1.6±0.8 1.9±1.3

Data are presented as mean±SD
aAll values for the GDM group were measured at 6 weeks postpartum
NA, not available

Diabetologia (2009) 52:253–261 255



Table 2 Comparison of genotype frequencies between GDM patients and non-diabetic controls

Gene Locus
(rs number)

Allele
(major/minor)

Genotype GDM Control OR (95% CI) p value
n (%) n (%)

CDKAL1 rs7756992 G/A AA 145 (17.1) 137 (21.7) 1.39 (1.20–1.61) 9.14×10−9

GA 374 (44.0) 325 (51.4)
GG 331 (38.9) 170 (26.9)

rs7754840 C/G GG 171 (19.8) 178 (28.3) 1.55 (1.34–1.79) 4.17×10−9

CG 389 (45.1) 319 (50.6)
CC 303 (35.1) 133 (21.1)

CDKN2A/2B rs564398 T/C TT 653 (75.8) 485 (76.7) 1.03 (0.84–1.27) 0.78
CT 189 (22.0) 132 (20.9)
CC 19 (2.2) 15 (2.4)

rs1333040 T/C TT 378 (43.8) 295 (46.7) 1.11 (0.95–1.30) 0.20
CT 386 (44.7) 275 (43.5)
CC 99 (11.5) 62 (9.8)

rs10757278 A/G AA 238 (28.4) 183 (29.3) 1.05 (0.91–1.22) 0.50
AG 419 (50.1) 318 (50.9)
GG 180 (21.5) 124 (19.8)

rs10811661 T/C CC 137 (15.8) 152 (24.1) 1.49 (1.29–1.72) 1.05×10−7

CT 399 (46.1) 313 (49.5)
TT 330 (38.1) 167 (26.4)

FTO rs8050136 C/A CC 643 (74.4) 486 (77.3) 1.12 (0.90–1.40) 0.30
AC 208 (24.1) 132 (21.0)
AA 13 (1.5) 11 (1.7)

HHEX rs1111875 T/C TT 352 (40.7) 299 (47.5) 1.27 (1.09–1.49) 0.003
CT 413 (47.6) 278 (44.1)
CC 102 (11.8) 53 (8.4)

rs5015480 T/C TT 525 (60.9) 416 (65.8) 1.22 (1.01–1.47) 0.035
CT 300 (34.8) 197 (31.2)
CC 37 (4.3) 19 (3.0)

rs7923837 A/G AA 481 (55.9) 388 (61.7) 1.26 (1.06–1.50) 0.011
AG 329 (38.3) 218 (34.7)
GG 50 (5.8) 23 (3.7)

IGF2BP2 rs4402960 G/T GG 389 (45.4) 313 (49.9) 1.18 (1.01–1.38) 0.034
GT 365 (42.6) 257 (41.0)
TT 103 (12.0) 57 (9.1)

SLC30A8 rs13266634 C/T TT 126 (14.6) 107 (17.1) 1.24 (1.07–1.43) 0.005
CT 372 (43.2) 306 (48.8)
CC 363 (42.2) 214 (34.1)

TCF7L2 rs7903146 C/T CC 803 (95.2) 596 (95.1) 1.58 (1.03–2.43) 0.038
CT 63 (7.3) 31 (4.9)
TT 2 (0.2) 0 (0)

rs12255372 G/T GG 860 (99.2) 628 (99.7) 2.56 (0.53–12.34) 0.24
GT 7 (0.8) 2 (0.3)
TT 0 (0) 0 (0)

KCNJ11 rs5215 A/G AA 308 (35.6) 251 (41.0) 1.11 (0.96–1.28) 0.17
AG 416 (48.1) 260 (42.5)
GG 140 (16.2) 101 (16.5)

rs5219 G/A GG 298 (35.2) 254 (40.4) 1.12 (0.97–1.30) 0.13
AG 407 (48.1) 273 (43.4)
AA 141 (16.7) 102 (16.2)

PPARG rs3856806 C/T TT 28 (3.2) 22 (3.5) 1.09 (0.90–1.32) 0.37
CT 228 (26.3) 178 (28.3)
CC 612 (70.5) 430 (68.3)

rs1801282 C/G GG 1 (0.1) 2 (0.3) 1.27 (0.90–1.79) 0.17
CG 71 (8.2) 63 (10.0)
CC 793 (91.7) 567 (89.7)

p values were not corrected for multiple comparisons
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per difference in the number of risk alleles. For the
comparison of representative SNPs for type 2 diabetes and
GDM in European and Korean populations, the heteroge-
neity of ORs among studies or populations was assessed by
Cochran’s Q statistic, as shown elsewhere [25]. Insulin
resistance was evaluated using the HOMA-IR, and insulin
secretory function was assessed by determination of the
insulin AUC during a 100 g OGTT performed at the time of
diagnosis of GDM. Multivariate linear regressions, adjusted
for age and BMI, were used for comparing insulin
resistance and insulin secretory function in GDM patients
according to genotype. A p value of less than 0.05 was
considered statistically significant.

Results

We compared the genotype frequencies in the 869 GDM
patients with those in the 632 non-diabetic controls (345
women, 287 men) who were expected to be at very low risk
of type 2 diabetes. All SNPs were in Hardy–Weinberg
equilibrium (ESM Table 2). Compared with the 632 controls,
we found that GDM was significantly associated with
rs7756992 (p=9.14×10−9) and rs7754840 (p=4.17×10−9)
in CDKAL1; rs10811661 (p=1.05×10−7) in CDKN2A–
CDKN2B; rs1111875 (p=0.003), rs5015480 (p=0.035), and
rs7923837 (p=0.011) in HHEX; rs4402960 (p=0.034) in
IGF2BP2; rs13266634 (p=0.005) in SLC30A8; and
rs7903146 (p=0.038) in TCF7L2 (Table 2). In this analysis,
three SNPs (rs7756992 and rs7754840 in CDKAL1 and
rs10811661 in CDKN2A–CDKN2B) met the stringent
criterion for robust association (p<5×10−7) [19], and their
ORs ranged from 1.39 to 1.55. When we compared the
genotype frequencies in the GDM patients with those in the
345 female controls, rs7756992 (p=0.001) and rs7754840
(p=1.36×10−5) in CDKAL1; rs10811661 (p=1.42×10–7) in
CDKN2A–CDKN2B; and rs13266634 (p=0.044) in
SLC30A8 showed significant associations with GDM (ESM
Table 4).

Table 3 compares the ORs for the associations between
the variants and GDM in our study with those previously
reported for the associations of these variants with type 2
diabetes in European and Korean populations [20, 22,
23, 25, 47]. There were no significant differences in ORs
between type 2 diabetes and GDM in Koreans. Although the
effects on the risk of diabetes were in the same direction, the
effect sizes of rs7754840 and rs10811661 were slightly
greater for GDM in Koreans than for type 2 diabetes in
Europeans.

Next, we examined the associations between the risk
alleles and insulin resistance (i.e. HOMA-IR) and insulin
secretory capacity (i.e. AUC of insulin during a 100 g
OGTT; Table 4). No SNPs were significantly associated

with HOMA-IR, with the exception of rs7754840 in
CDKAL1 and rs1111875 in HHEX, which showed modest
associations (adjusted p=0.049 and 0.026, respectively).
The risk alleles of the SNPs rs7756992 and rs7754840 in
CDKAL1 and rs10811661 in CDKN2A–CDKN2B, which,
as mentioned above, showed robust associations with
GDM, were associated with a marked decrease in AUC of
insulin during a 100 g OGTT. Interestingly, the risk alleles
of rs1111875, rs5015480 and rs7923837 in HHEX were
also significantly associated with a reduced insulin AUC
(adjusted p=0.0000002, 0.0002, and 0.006, respectively).
In contrast, the risk allele of rs8050136 in the FTO gene
was associated with an increased AUC of insulin (adjusted
p=0.006) but was not associated with HOMA-IR.

Discussion

We found that some of the SNPs recently identified as
genetic determinants of type 2 diabetes by GWA studies
[19–23] were also associated with GDM in Koreans. Three
SNPs in particular (rs7756992 and rs7754840 in CDKAL1
and rs10811661 in CDKN2A–CDKN2B) were very strongly
associated with GDM. These same SNPs were significantly
associated with insulin secretory capacity as assessed by the
insulin AUC during a 100 g OGTT performed at the time of
the diagnosis of GDM. However, they did not show any
robust associations with insulin resistance. Their associa-
tion with pancreatic beta cell function is consistent with the
results obtained in a study on type 2 diabetes in the
Japanese population, which showed that risk alleles at
CDKAL1 (rs7756992) and CDKN2A–CDKN2B (rs10811661)
were associated with impaired beta cell function [34].

It is well known that normal pregnancy is accompanied
by a marked increase in insulin resistance, which may be
the result of both increased maternal adiposity and the
insulin-antagonising effects of several placental hormones
[7]. Therefore, maternal pancreatic beta cell compensation
is crucial for overcoming the insulin resistance provoked by
pregnancy and for maintaining the metabolic balance
during pregnancy. It has recently been shown that prolactin
represses islet menin levels and stimulates beta cell
proliferation during pregnancy in mice. It was found that
the transgenic expression of the gene encoding menin in
maternal beta cells inhibited islet expansion and led to the
development of GDM phenotypes [35]. In human studies,
inadequate compensatory insulin secretion in the face of
increased insulin resistance has consistently been observed
in patients with GDM [36–38]. In this regard, the risk
alleles of rs7756992 and rs7754840 in CDKAL1 and
rs10811661 in CDKN2A–CDKN2B may play crucial roles
in the pathogenesis of GDM through impaired compensa-
tory insulin secretion by pancreatic beta cells.
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CDKAL1 is expressed in human pancreatic islets and
shows considerable homology with CDK5RAP1, a well-
known inhibitor of cyclin-dependent kinase 5 (CDK5)
activation [23]. CDK5 has been suggested to downregulate
insulin expression through the formation of p35/CDK5
complexes [39, 40]. In addition, CDK5 transduces glucose
toxicity signals in pancreatic beta cells [39].

The 5′ sequence upstream of rs10811661 contains
CDKN2B and CDKN2A (encoding p15INK4b and p16INK4a,
respectively) [23]. p16INK4a is known to inhibit CDK4, a
powerful regulator of pancreatic beta cell replication [41–44].

CDKN2B overexpression was found to be related to islet
hypoplasia and diabetes mellitus in murine models [45].
Furthermore, both CDKN2A and CDKN2B are expressed at
high levels in pancreatic islets [23]. It was reported that the
SNPs in this region showed a stronger signal as a haplotype
[23], but we could not find such a trend in our study (ESM
Tables 5 and 6)

In our study, the association of TCF7L2 with GDM was
not as strong as that reported by the Scandinavian study
[17]. This discrepancy may be explained by the difference
in the frequency of the rs7903146 risk allele between the

Table 4 Associations between risk alleles and insulin resistance and insulin secretory function

Parameter Gene rs number Allele
(major/
minor)

Homozygote
of protective
allele

Heterozygote Homozygote
of risk allele

p value
(unadjusted)

p value
(adjusted
for age
and BMI)

HOMA-IR CDKAL1 rs7756992 G/A 3.18±2.17 2.91±1.73 2.81±1.62 0.048 0.07
rs7754840 C/G 3.12±2.08 2.94±1.75 2.75±1.58 0.029 0.049

CDKN2A/
2B

rs564398 T/C 2.96±1.82 2.85±1.65 2.30±1.11 0.15 0.79
rs1333040 T/C 2.95±1.51 2.95±2.07 2.66±1.38 0.29 0.98
rs10757278 A/G 2.95±2.00 2.83±1.75 3.10±1.53 0.51 0.96
rs10811661 T/C 3.14±2.58 2.87±1.64 2.88±1.49 0.26 0.15

FTO rs8050136 C/A 2.90±1.69 2.98±1.97 3.06±2.44 0.53 0.73
HHEX rs1111875 T/C 3.10±1.75 2.81±1.86 2.72±1.41 0.017 0.026

rs5015480 T/C 2.98±1.90 2.80±1.55 2.96±1.63 0.29 0.12
rs7923837 A/G 2.93±1.75 2.88±1.83 2.92±1.46 0.80 0.42

IGF2BP2 rs4402960 G/T 2.94±1.64 2.97±1.93 2.60±1.51 0.23 0.35
SLC30A8 rs13266634 C/T 2.95±1.46 3.02±2.05 2.78±1.53 0.17 0.05
TCF7L2 rs7903146 C/T 2.93±1.77 2.74±1.75 3.57±3.17 0.56 0.63

rs12255372 G/T 2.92±1.77 2.62±1.36 NA 0.66 0.44
KCNJ11 rs5215 A/G 2.94±1.56 3.00±2.04 2.65±1.25 0.25 0.59

rs5219 G/A 2.93±1.57 2.96±2.02 2.65±1.24 0.23 0.53
PPARG rs3856806 C/T 3.27±2.33 2.91±1.74 2.90±1.75 0.50 0.84

rs1801282 C/G 2.52 2.76±1.36 2.93±1.81 0.41 0.37
AUC of insulin during
100 g OGTT at the time
of diagnosis of GDM
(pmol l−1 ×h)

CDKAL1 rs7756992 G/A 1,573±956 1,350±767 1,287±756 0.0012 0.0002
rs7754840 C/G 1,555±926 1,362±774 1,248±743 0.0001 0.00004

CDKN2A/
2B

rs564398 T/C 1,355±800 1,406±828 1,222±585 0.83 0.28
rs1333040 T/C 1,391±797 1,342±822 1,333±738 0.40 0.77
rs10757278 A/G 1,380±736 1,344±801 1,378±924 0.93 0.33
rs10811661 T/C 1,530±991 1,380±782 1,275±727 0.002 0.020

FTO rs8050136 C/A 1,317±772 1,452±788 2,000±1,745 0.002 0.006
HHEX rs1111875 T/C 1,530±897 1,286±732 1,106±600 0.0000001 0.0000002

rs5015480 T/C 1,458±846 1,230±718 1,158±631 0.00005 0.0002
rs7923837 A/G 1,423±833 1,289±771 1,234±652 0.013 0.006

IGF2BP2 rs4402960 G/T 1,378±826 1,346±771 1,373±819 0.78 0.34
SLC30A8 rs13266634 C/T 1,419±758 1,360±883 1,337±728 0.36 0.33
TCF7L2 rs7903146 C/T 1,372±811 1,255±684 984±496 0.21 0.08

rs12255372 G/T 1,361±798 1,361±798 NA 0.39 0.69
KCNJ11 rs5215 A/G 1,378±786 1,354±815 1,347±806 0.67 0.60

rs5219 G/A 1,383±795 1,351±814 1,350±799 0.64 0.55
PPARG rs3856806 C/T 1,270±671 1,369±845 1,364±791 0.78 0.81

rs1801282 C/G 1,701 1,291±626 1,368±816 0.52 0.89

Data are presented as mean±SD
p values were not corrected for multiple comparisons
NA, not available—no participants homozygous for the risk allele
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two studies (risk allele frequency in the control group was
0.238 vs 0.025, respectively), even though the effect size
was similar (OR 1.49, 95% CI 1.28–1.75, p=4.9×10−7 vs
OR 1.58, 95% CI 1.03–2.43, p=0.038, respectively).

Although HHEX was not robustly associated with
GDM, it was strongly associated with insulin secretory
capacity. Interestingly, the protective allele of rs1111875
in HHEX was very modestly associated with increased
insulin resistance (adjusted p=0.026) but very strongly
associated with increased insulin secretory capacity (adjusted
p=0.0000002). This finding suggests that rs1111875 may be
more likely to be one of the genetic factors involved in beta
cell compensatory insulin secretion in the face of insulin
resistance induced by pregnancy. It is known that HHEX is
expressed at high levels in the fetal and adult pancreas [23]
and is crucial for the development of the ventral pancreas
[46]. In Europids [20–23], rs1111875 is found within an
extended region of linkage disequilibrium that contains not
only HHEX but also KIF11 and IDE. Therefore, the
influence of KIF11 and/or IDE cannot be ignored.

Although FTO did not show any significant association
with GDM or insulin resistance, the risk allele of rs8050136
in the FTO gene was found to be associated with an
increased insulin AUC (age- and BMI-adjusted p=0.006).
In addition, the pre-pregnancy BMI did not differ according
to the rs8050136 genotype (data not shown). We suggest
that rs8050136 does not increase the risk of GDM but may
afford protective by increasing insulin secretory capacity, at
least in the Korean population.

We found that the risk allele frequencies of the SNPs in
patients with GDM did not differ from those in patients
with type 2 diabetes in the Korean population (Table 3). In
this regard, some genetic factors (especially, rs7756992 and
rs7754840 in CDKAL1 and rs10811661 in CDKN2A–
CDKN2B) are associated with GDM in particular, as well
as type 2 diabetes in general.

We recently confirmed that these SNPs were associated
with the risk of type 2 diabetes in Koreans, showing similar
effect sizes to those in Europeans, although the risk allele
frequencies of most of these SNPs were different between
populations [25]. The effect sizes of rs7754840 and
rs10811661 were slightly greater in Korean women with
GDM than in Europeans with type 2 diabetes, although the
effects were in the same direction.

This study is subject to certain limitations. We compared
the genotype frequencies in GDM patients with those in
non-pregnant, non-diabetic controls. The results of the
current study may therefore be regarded as a comparison
of genotype frequency among gene pools of patients with
GDM and individuals with a very low risk of type 2
diabetes. A control group consisting of age- and BMI-
matched pregnant women without GDM may be more
suitable for identification of the GDM susceptibility genes.

It was not confirmed whether the non-diabetic female
controls who were enrolled in this study had experienced
pregnancy without GDM. However, the ascertainment bias
should be minimal because the prevalence of GDM is
estimated to be very low (2.2 cases per 100 pregnant women
in Korea) [3]. Our study was underpowered to detect
associations of some of the SNPs with GDM (see ESM
Table 2), probably because of their low frequencies, which
may have resulted in some associations being overlooked.

In conclusion, some of the type 2 diabetes-associated
genetic variants discovered in the recent GWA studies are
also associated with GDM in Koreans. Further studies need
to be conducted to examine whether these risk variants
predict the development of type 2 diabetes later in life.
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