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Abstract
Aims/hypothesis The hyperpolarisation-activated cyclic
nucleotide-gated (HCN) channels, discovered initially in
cardiac and neuronal cells, mediate the inward pacemaker
current (If or Ih). Recently, we have demonstrated the
presence of HCN channels in pancreatic beta cells. Here,
we aim to examine the presence and function of HCN
channels in glucagon-secreting alpha cells.
Methods RT-PCR and immunocytochemistry were used to
examine the presence of HCN channels in alpha cells.
Whole-cell patch-clamp, calcium imaging and glucagon
secretion experiments were performed to explore the
function of HCN channels in alpha cells.
Results HCN transcripts and proteins were detected in
alpha-TC6 cells and dispersed rat alpha cells. Patch-clamp
recording showed hyperpolarisation-activated currents in
alpha-TC6 cells, which could be blocked by HCN channel
inhibitor ZD7288. Glucagon secretion RIA studies demon-
strated that at both low and high glucose concentrations

(2 and 20 mmol/l), ZD7288 significantly enhanced glucagon
secretion in alpha-TC6 and IN-R1-G9 cell lines. Conversely,
activation of HCN channels by lamotrigine significantly
suppressed glucagon secretion at the low glucose concen-
tration. Calcium imaging studies showed that blockade of
HCN channels by ZD7288 significantly increased intracel-
lular calcium in alpha-TC6 cells, while lamotrigine or the
Na+ channel blocker tetrodotoxin suppressed the effect of
ZD7288 on intracellular calcium. Furthermore, we found
the HCN channel inhibitors ZD7288 and cilobradine both
significantly increased glucagon secretion from rat islets.
Conclusions/interpretation These results suggest a poten-
tial role for HCN channels in regulation of glucagon
secretion via modulating Ca2+ and Na+ channel activities.
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Abbreviations
[Ca2+]i intracellular Ca2+ concentration
GABA γ-aminobutyric acid
HCN channel hyperpolarisation-activated cyclic

nucleotide-gated channel
I/V current–voltage relationship
KATP channel ATP-sensitive K+ channel
KRB Krebs–Ringer bicarbonate
TTX tetrodotoxin
V1/2 membrane potential of half-maximal

activation

Introduction

Homeostasis of blood glucose is controlled mainly by
insulin and its opposing hormone glucagon. High blood
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glucose stimulates insulin secretion from pancreatic beta
cells but suppresses glucagon secretion from pancreatic
alpha cells. It is known that glucose-induced insulin
secretion occurs via the glucose-sensing pathway, which
involves the closure of ATP-sensitive K+ channels (KATP

channels) with resultant membrane depolarisation, and the
activation of voltage-gated L-type Ca2+ channels and
subsequent Ca2+-dependent exocytosis of insulin from the
beta cells [1]. However, the mechanism regulating glucagon
secretion remains relatively unclear.

Insulin is known as a physiological suppressor of
glucagon secretion [2–4]. There is evidence that substances
including Zn2+ [5], γ-aminobutyric acid (GABA) [6–8]
released from beta cells and somatostatin secreted from
neighbouring delta cells [9] have important roles in the
modulation of glucagon secretion. Thus, it has been
proposed that glucose may induce suppression of glucagon
release by indirect actions via a paracrine mechanism.
Recent studies have suggested that the mechanisms
underlying glucagon regulation may also involve a direct
effect of glucose on alpha cell stimulus–secretion coupling,
in which ion channels play an important role [10, 11].

It is well established that electrical activity in beta cells
mainly depends on activity of KATP channels, L-type Ca2+

channels and delayed rectifying K+ channels [1, 12, 13].
Unlike in beta cells, studies using rodent, human and
guinea pig pancreatic alpha cells have suggested that more
Ca2+ channel subfamilies, i.e. T- and N-type Ca2+ channels
and tetrodotoxin (TTX)-sensitive Na+ channels are also
important in the regulation of alpha cell electrical activity
[11, 13–17]. One important feature of these alpha cell ion
channels is their voltage-dependent inactivation when the
cell membrane is depolarised [14, 17, 18]. Accordingly, a
model for glucagon secretion has been proposed that
highlights the important roles of ion channels in regulating
glucagon secretion. In this model, action potential firing
(and glucagon secretion) in alpha cells occurs only within a
narrow window of the membrane potentials that allows
opening of voltage-dependent Na+ channels and T- or
N-type Ca2+ channels. At low glucose conditions, interme-
diate KATP channel activity maintains alpha cell membrane
potential at the activation threshold for Na+ and T- and
N-type Ca2+ channels, causing a rise in cytosolic Ca2+

concentration and triggering glucagon secretion [10, 11,
13, 14, 16]. However, when the membrane potential is
depolarised (e.g. KATP channels close under high glucose
conditions), this will voltage-inactivate the Na+ and T- and
N-type Ca2+ channels, resulting in the cessation of action
potential firing and suppression of glucagon secretion [10,
11, 14, 18]. On the other hand, when the alpha cell
membrane potential is excessively hyperpolarised (e.g. a
large fraction of KATP channels opening under diazoxide
treatment), the Na+ and Ca2+ channels will switch to a

closed state, thus silencing the alpha cell regenerative
electrical activity and inhibiting glucagon secretion [11].
These studies suggest that the coordination of different ion
channels in alpha cells composes the fine regulatory
mechanism that controls glucagon secretion. Here, we
report that a new ion channel, the hyperpolarisation-
activated cyclic nucleotide-gated (HCN) channel, may play
a role in the control of glucagon secretion in alpha cells.

HCN channels are members of a superfamily of voltage-
gated cation channels that are permeable to both Na+ and
K+ ions and produce a slowly activating inward current.
Unlike most voltage-dependent channels, HCN channels
are activated by membrane hyperpolarisation. HCN chan-
nels were initially identified in cardiac and neuronal cells,
and play a key role in regulation of heart rate and
spontaneous electrical activity of neurons [19–22]. To date,
four mammalian HCN isoforms (HCN1–4) have been
cloned. Studies on isoform distribution showed that while
HCN3 is found primarily in neurons [23, 24], the other three
isoforms are found in heart and brain [23, 25]. The HCN
transcripts are also detected in several other organs,
including skeletal muscle and lung [24]. Recently, we had
discovered that HCN channels are present in pancreatic beta
cells [26]. In the present study, we examined the presence
and function of HCN channels in pancreatic alpha cells.

Methods

Islet isolation and cell culture Pancreatic islets were
isolated from 250–350 g male Wistar rats (Charles River,
Quebec, QC, Canada) by collagenase digestion and
separated by density gradient centrifugation, as described
previously [26]. Intact islets were cultured in RPMI 1640
medium containing 11.1 mmol/l glucose supplemented with
10% (vol./vol.) fetal bovine serum, 10 mmol/l HEPES,
100 U/ml penicillin and 100 μg/ml streptomycin for 24 h
before experiments. Alpha-TC6 cells (a kind gift from
Y. Moriyama, Okayama University, Okayama, Japan) and
IN-R1-G9 cells (a kind gift from P. Brubaker, University of
Toronto, Canada) were maintained in DMEM (Gibco
Invitrogen, Burlington, ON, Canada), containing fetal bovine
serum (10% vol./vol.), 100 U/ml penicillin G sodium,
100 μg/ml streptomycin sulphate and 55 mg/500 ml sodium
pyruvate, at 37°C in an atmosphere of humidified air (95%)
and CO2 (5%). In studies involving serum starvation, serum
was replaced by 0.1% (wt/vol.) BSA in DMEM and
incubated with the cells for 1 h. All animal procedures were
approved by the Animal Care Committees at St Michael’s
Hospital and the University of Toronto.

RT-PCR Total cellular RNA was extracted from cells using
Trizol (Invitrogen) following the manufacturer’s instruc-
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tions. HCN mRNA transcripts were amplified using a one-
step RT-PCR kit (Qiagen, Valencia, CA, USA). Briefly,
100 ng total RNA was used in 25 μl one-step RT-PCR
reactions containing 0.4 mmol/l dNTPs and 0.6 μmol/l of
each primer. Water was used to replace the template for the
negative control. PCR conditions were 50°C for 30 min, and
95°C for 15min, and 35 cycles of 94°C for 30 s, 60°C for 30 s,
and 72°C for 1 min followed by a 10 min extension at 72°C.
The products were separated on a 1% (wt/vol.) agarose gel
and visualised with ethidium bromide. The HCN gene-
specific primers used were as follows: HCN1, sense 5′-
CAGCATGTCTGACCTCTGGA-3′, antisense 5′-TATCTT
CTGGCGCATGTCAG-3′; HCN2, sense 5′-ATGTCCTTC
CACAAACTGCC-3′, antisense 5′-TCCCCTCTCGGATGA
TGTA-3′; HCN3, sense 5′-GTGGAAATCGAGCAGGA
GAG-3′, antisense 5′-GCAGGAAGAAAGTGTCCGAG-3′;
and HCN4, sense 5′-GCGTTTTGAGGTCTTTCAGC-3′,
antisense 5′-TCATGGGATACTCCTCCAGC-3′.

Immunostaining Alpha-TC6 cells and rat islets were dual-
stained for glucagon and HCN channels using a protocol
similar to one used in a previous report [27]. In brief, cells
or islets grown on coverslips were fixed with paraformal-
dehyde (3.7% [wt/vol.] in PBS) and permeabilised with
0.2% (vol./vol.) Triton X-100. After blocking with PBS
containing 5% (vol./vol.) goat serum and 1% (wt/vol.) BSA
for 60 min, an antibody to HCN2 (1:100; Alamone Labs,
Jerusalem, Israel) was added and left overnight at 4°C.
After washing out excessive primary antibodies, cells or
islets were incubated with FITC-conjugated goat anti-rabbit
IgG (1:500; Jackson Immuno Research Laboratories, West
Grove, PA, USA) for 30 min. The second staining was
performed using an antibody to glucagon (1:500; Dako,
Carpinteria, CA, USA) and a Cy3-conjugated secondary
antibody (1:500; Jackson Immuno Research) as described
above. The images were visualised using a Leica TCS 4D
laser confocal fluorescence microscope (Leica, TCS-NT,
Microsystems, Bensheim, Germany).

Electrophysiology Cells were patch-clamped in the con-
ventional whole-cell configuration at room temperature.
The measurements were performed using an EPC-9
amplifier and PULSE software from HEKA Electronik
(Lambrecht, Germany). Patch pipettes were pulled from
1.5 mm thin-walled borosilicate glass tubes using a two-
stage Narishige micropipette puller (Tokyo, Japan) and had
typical resistances of 3–6 MΩ when fire polished and filled
with an intracellular solution containing (mmol/l) 130 KCl;
10 NaCl; 0.5 MgCl2; 1 EGTA; 5 HEPES; 5 MgATP; pH 7.3
with KOH. Extracellular solutions contained (mmol/l) 110
NaCl; 0.5 MgCl2; 1.8 CaCl2; 5 HEPES; 30 KCl; 10 glucose;
pH 7.4 with NaOH. ZD7288 was obtained from Tocris
(Ellisville, MO, USA).

Calcium imaging Experiments were carried out using an
Olympus BX51W1 fluorescent microscope (Olympus
Canada, Markham, ON, Canada). Changes in intracellular
Ca2+ concentrations [Ca2+]i were assessed using Fura-2
AM. Alpha-TC6 cells on coverslips were loaded with
2.5 μmol/l Fura-2 AM for 45 min in incubation buffer at
37°C and 5% CO2–95% air. Then coverslips were
transferred to an open chamber on the microscope stage
for imaging and perfused at 1 ml/min. The incubation and
perfusion buffer contained (mmol/l): 130 NaCl, 5 KCl,
2 CaCl2, 1 MgCl2, 5 NaHCO3, 10 HEPES, pH 7.4. To
depolarise the cells, 30 mmol/l NaCl was replaced with
30 mmol/l KCl. Cells were excited by dual excitation at
340/380 nm and emission was detected by a 510 nm band
pass filter using a 415 nm beam splitter. Experiments were
performed at 36–37°C using a TC-324B Heater Controller
(Warner Instruments, Hamden, CT, USA).

Glucagon secretion Glucagon secretion in the clonal alpha
cells was measured using a glucagon RIA kit (Linco
Research, St Charles, MO, USA) as described previously
[27]. For islet assay, Krebs–Ringer bicarbonate buffer
(KRB) was used containing (mmol/l) 115 NaCl, 5 KCl,
24 NaHCO3, 2.5 CaCl2, 1 MgCl2, 10 HEPES and 2% (wt/vol.)
BSA. Islets were pre-incubated at 37°C for 30 min in KRB
supplemented with 5.6mmol/l glucose and then transferred to
1.5 ml tubes for assay (five islets per sample). The islets were
first incubated in 500 μl KRB with 11 mmol/l glucose for 1 h
at 37°C, and then in 500 μl KRB with 1 mmol/l glucose for
an additional 1 h at 37°C. The supernatant fractions (450 μl)
from each sample were taken at the end of the incubation
period and stored at −20°C until assayed for glucagon. The
islet pellets were lysed with acid ethanol (0.09 mol/l HCl in
75% [vol./vol.] ethanol) for DNA quantification; glucagon
secretion data were normalised by total DNA of each sample.

Statistical analysis All data are presented as means±SEM.
Statistical analysis was done by a Student’s t test or paired
t test or ANOVA using n−1 custom hypotheses tests as
appropriate. Patch-clamp data were analysed with IGOR
Pro3.12 software (Wavemetrics, Lake Oswego, OR, USA)
and the data of fluorescent measurements were processed
using PSI-PLOT (Poly Software International, Salt Lake
City, UT, USA). Significance was assumed at p<0.05.

Results

HCN channels are expressed in glucagon-secreting alpha
cells RT-PCR showed the presence of the transcripts coding
for HCN proteins in glucagon-secreting alpha-TC6 cells
and rat islets (Fig. 1a). Immunostaining predominantly
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detected HCN2 proteins in alpha-TC6 cells and dispersed
rat alpha cells (Fig. 1b). In the control experiments, no
positive staining was observed when omitting the primary
antibodies during the staining procedures (not shown).
Interestingly, we also found that while most glucagon-
positive alpha cells are HCN-positive, a few glucagon-
positive cells were not associated with HCN protein
(Fig. 1b [white arrows indicate the glucagon-positive but
HCN2-negative rat islet cell]), which is also suggestive of a
specific immunostaining.

Electrophysiological properties of HCN channels in alpha-
TC6 cells Cells were clamped from a holding potential of
−40 mV to various hyperpolarising conditioning voltages
(−140 to −50 mV in 10 mV increments) for 3 s followed by
a step to −140 mV (Fig. 2a). The recordings showed that
the hyperpolarising voltages induced inward currents with
slow activation kinetics (Fig. 2b). To construct the steady-
state activation curve of these channels, the tail currents

measured at −140 mV immediately after the conditioning
voltages (indicated by an arrow in Fig. 2b) were normalised
and plotted as a function of the conditioning membrane volt-
ages, then the data were fitted using the Boltzmann equation
[28]. As shown (Fig. 2c), under the conditioning voltages,
the amplitudes of the peak tail current displayed a typical
sigmoidal property [25] and the membrane potential of
half-maximal activation (V1/2) was found to be −102±1 mV
(the slope factor: 7.8±0.1 mV, n=6).

To examine the reversal potential, another protocol was
used. A pre-hyperpolarising pulse to –140 mV was applied
in order to maximally activate HCN channels, and the
membrane was then clamped back to test pulses ranging
from −70 to −20 mV (Fig. 2d). The tail currents were
measured under the test pulses (Fig. 2e) and a current–
voltage (I/V) relationship of the fully activated HCN
channels was made by plotting the tail currents against the
test potentials, and the reversal potential was found to be
−33 mV (Fig. 2f). ZD7288, an HCN channel blocker [29]
was used to verify the specificity of the HCN channel
current in alpha-TC6 cells. As shown, the sustained HCN
channel currents obtained from the cells clamped at
–140 mV were significantly blocked by 50 μmol/l ZD7288
(Fig. 2g, h; the blockade=65.3±6.8%, p<0.01, n=6).
Therefore, these channels possess typical characteristics of
HCN channels as reported [25, 30].

HCN channels modulate glucagon secretion in alpha cell
lines To determine the functional role of HCN channels in
alpha cells, we measured glucagon release by RIA. Our
data showed that high glucose (20 mmol/l) significantly
suppressed glucagon release compared with low glucose
(2 mmol/l) in alpha-TC6 cells (Fig. 3a, p<0.05, n=4).
Treatment with ZD7288 (100 μmol/l, 30min) enhanced gluca-
gon secretion by ~65% (p<0.05, n=4) and ~78% (p<0.05,
n=4) in the presence of either low (2 mmol/l) or high
(20 mmol/l) glucose, respectively (Fig. 3a). Similar results
were observed with IN-R1-G9 cells (Fig. 3b), another well-
established alpha cell line. Conversely, the HCN channel
agonist lamotrigine significantly suppressed glucagon se-
cretion from alpha-TC6 cells at 2 mmol/l glucose (Fig. 3c;
n=4, p<0.05), but had no effect on glucagon secretion in
the presence of 20 mmol/l glucose. Similar results were also
seen with IN-R1-G9 cells (Fig. 3d). These data indicate that
modulation of HCN channel activity alters secretory
function in alpha cells.

Ca2+ and Na+ channels mediate HCN channel function in
alpha-TC6 cells To further establish the mechanism by
which alteration of HCN channel activity modulates
glucagon secretion, we measured [Ca2+]i in response to
HCN channel blocker ZD7288 in alpha-TC6 cells. As
shown, blockade of the HCN channels by ZD7288

Fig. 1 Presence of HCN transcripts and proteins in alpha cells.
a Total RNA from alpha-TC6 cells and rat islets was reverse transcribed
into cDNA and PCR analysis was performed with specific primers for
the HCN1–4 subtypes. In the negative control reaction, the template
was omitted (not shown). b Confocal immunocytochemistry of alpha-
TC6 cells and dispersed rat islet cells using the antibody against the
HCN2 subtype. Scale bar, 10 μm. The white arrows indicate the rat
islet cell that is glucagon-positive but not HCN2. In the negative
control staining, either the primary antibodies were omitted or COS-7
cells were used (not shown). The data shown represent n=3 or 4
independent experiments
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significantly increased [Ca2+]i (Fig. 4a), while lamotrigine
(10 μmol/l) attenuated the action of ZD7288 on [Ca2+]i
(Fig. 4a). As a positive control, application of depolarising
amounts of KCl (30 mmol/l) further enhanced [Ca2+]i.
These findings indicate that the effect of HCN channels on
glucagon secretion in alpha cells is mediated by modulating
[Ca2+]i.

Alpha cells are equipped with Na+ channels that are
critical in the generation of action potential and modulation
of glucagon secretion [11, 14, 31]. Therefore, we sought to
determine if the Na+ channel is involved in the process of
HCN channel-mediated modulation of glucagon secretion in
alpha-TC6 cells. To this end, we determined if blocking the
Na+ channel alters the effect of HCN channels on [Ca2+]i. As
shown, blockade of the Na+ channels by using the specific
blocker TTX (0.3 μmol/l) significantly attenuated the
elevation of [Ca2+]i induced by ZD7288 (Fig. 4b,c;
ZD7288 vs ZD7288+TTX 100% vs 36%, p<0.001, n=3),
suggesting that the HCN channel-induced [Ca2+]i change is
mediated by Na+ channels in alpha cells.

HCN channels modulate glucagon secretion from rat
islets The findings from the clonal alpha cells indicate that
modulation of HCN channel activity alters intracellular Ca2+
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mobilisation and glucagon secretion. To further determine if
these phenomena are of physiological relevance, we
performed glucagon secretion RIA using isolated rat islets.
Our data showed that treatment of ZD7288 (100 μmol/l,
60 min) significantly enhanced glucagon secretion at
1 mmol/l glucose conditions compared with the control
(Fig. 5, 1.44±0.16 vs 0.86±0.19 pg/μg DNA, p<0.05),
whereas ZD7288 had no significant effect on glucagon
secretion under 11 mmol/l glucose (Fig. 5, 0.64±0.06 vs
0.56±0.20 pg/μg DNA, p>0.05). We repeated the same
experiment with another HCN channel blocker, cilobradine,
and found that glucagon secretion was substantially in-

creased at both 1 and 11 mmol/l glucose conditions when
treated with 5 μmol/l cilobradine (Fig. 5, p<0.05 vs control).

Discussion

We first detected the presence of HCN channels in the
alpha-TC6 cell line and rat islet alpha cells. Furthermore,
using the patch-clamp technique, the hyperpolarisation-
activated inward currents were consistently detected in
alpha-TC6 cells. The steady-state voltage activation curve
revealed that V1/2 was −102±1 mV, which is comparable to
those of HCN channels detected in cardiac cells [25] and
neuronal cells [30]. The reversal potential of −33 mV
obtained from the fully activated inward currents in alpha-
TC6 cells suggests that this channel is permeable to both
Na+ and K+ [32], which represents the typical character-
istics of HCN channels as reported in other cell types [25,
30, 33]. Additionally, ZD7288, an HCN channel blocker,
significantly blocked these currents, indicating that the
slow-activating inward currents in alpha cells were indeed
from HCN channels.

The physiological functions of HCN channels in alpha cells
were then examined in this study. We found that blockade of
HCN channels by ZD7288 significantly enhanced glucagon
release from both alpha-TC6 cells and IN-R1-G9 cells. We
have shown in a previous study that ZD7288 directly exerts an
inhibitory effect on exocytosis, in addition to inhibiting HCN
channels [26]. We also found that ZD7288 has no effects on
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voltage-dependent potassium channels, calcium channels and
KATP channels (M. B. Wheeler, unpublished data). Therefore,
the stimulatory effect of HCN channel inhibition by ZD7288
on the glucagon secretion might be underestimated because
of its direct inhibitory effect on exocytosis. Lamotrigine has
been reported as a Na+ channel inhibitor [34], but this drug
activates HCN channels in pyramidal neurons without
affecting Na+ channels [35, 36]. We found that lamotrigine
did not significantly influence Na+ channels in alpha cells at
low concentration (10 μmol/l, data not shown), while
10 μmol/l lamotrigine led to suppression of glucagon
secretion. These results indicate that alterations in HCN
channel activity affect glucagon secretion in alpha cells. To
establish the underlying mechanism, we examined the
intracellular Ca2+ responses in alpha-TC6 cells. As expected,
inhibition of the HCN channels by ZD7288 caused a
significant increase of [Ca2+]i, while activation of HCN
channels by 10 μmol/l lamotrigine attenuated the effects of
ZD7288.

Activation of alpha cell voltage-gated Ca2+ channels and
the resultant glucagon secretion requires the activation of
Na+ channels. Several reports have shown that pharmaco-
logical blockade of Na+ channels inhibits glucagon secre-
tion [11, 14, 18, 31]. Given that we had observed an

augmentation of [Ca2+]i associated with enhanced glucagon
secretion upon inhibition of HCN channels, we hypoth-
esised that Na+ channels might mediate these effects. To
verify this, we have tested the effect of Na+ channel blocker
TTX on ZD7288-induced [Ca2+]i change. Indeed, we found
that TTX could significantly attenuate ZD7288-induced
[Ca2+]i elevation, indicating that the Na+ channel is
downstream of the HCN channel function in alpha cells.

In a more physiological setting, we determined if
changes in HCN channel activity alter glucagon secretion
in rat alpha cells. Consistently, we found that blockage
of HCN by ZD7288 at 1 mmol/l glucose conditions
significantly increased glucagon secretion from the rat
islets, while no significant effect was observed under
11 mmol/l glucose. The lesser effect of ZD7288 on
glucagon secretion at high glucose is probably because of
the hyperpolarisation-activated characteristics of HCN
channels; they are supposed to be less active when the
membranes are depolarised under high glucose concen-
trations. Interestingly, compared with the effect of ZD7288,
we found that cilobradine led to a stronger enhancement of
glucagon secretion at both 1 and 11 mmol/l glucose
conditions. Given that cilobradine is also a voltage-
dependent potassium (KV) channel inhibitor [26] and that,
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Fig. 6 A model showing HCN channel-mediated regulation of
glucagon secretion in alpha cells under normal conditions, or with
ZD7288 or lamotrigine treatments. Schematic representation of the
effects of HCN channels on alpha cell membrane potential and Na+

and N- and T-type Ca2+ channel activities and glucagon secretion.
Alpha cell membrane potential (Vm) change is indicated by the lower
arrow bar. Na+ , N-type Ca2+ and T-type Ca2+ channel activities are
shown by their gating states (closed, open and inactive state) at
different membrane potential levels. The open state area represents the

alpha cell membrane potential ‘window’, where glucagon release is
triggered through the activation of Na+ and Ca2+ channels. When the
alpha cell is too depolarised or too hyperpolarised, the channels then
switch to inactive states or closed states, respectively. Under both
conditions, no action potential can be generated and glucagon secretion
is suppressed. The hatched grey areas represent the ‘actual membrane
potential’ upon involvement of the HCN channels at low (a) and high
(b) glucose concentrations. (see “Discussion” section for details)
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blockade of KV channel causes enhancement of cellular
secretion [12], it is possible that the profound effect of
cilobradine on glucagon secretion is probably via both
HCN channel and KV channel pathways. However, because
of the complicated paracrine interactions among islet alpha,
beta and delta cells, it is difficult to make a precise
interpretation of the results obtained from islet cells.
Nevertheless, the consistent findings that inactivating
HCN channels increases glucagon secretion from clonal
glucagon-secreting cells and isolated rat islets suggest an
important role for HCN channels in modulating glucagon
secretion from alpha cells.

It is interesting that in pancreatic beta cells, HCN channels
do not seem to play a crucial role in modulating insulin
secretion [26]. The difference might be attributed to the
unique biophysical properties of alpha cells. Numerous
studies have demonstrated that: (1) alpha cell KATP channels
are more sensitive to ATP inhibition than those in beta cells;
thus, the KATP channels in alpha cells possess intermediate
activity under low glucose concentrations [3, 11, 31, 37]; (2)
unlike the beta cell Na+ channels, which are activated at a
more negative membrane potential, the alpha cell Na+

channels are active within a physiological range of membrane
potentials [14, 17, 31]; and (3) in addition to the L-type Ca2+

channels that are the most important in modulating [Ca2+]i in
beta cells, the activities of T-type and N-type Ca2+ channels
in alpha cells are critical in the generation of action potentials
and control of glucagon secretion [11, 14, 15, 38]. Based on
these findings, it has been proposed that glucagon secretion
only occurs within a narrow window of intermediate alpha
cell KATP channel activity (e.g. under low glucose con-
ditions), where the membrane potential elicits regenerative
electrical activities through the activation of Na+ and T- and
N-type Ca2+ channels [10, 11, 14].

The present study suggests a potential role for HCN
channels in regulation of glucagon secretion via modulating
the regenerative electrical activities in alpha cells (Fig. 6). It
is likely that under low glucose conditions the inward HCN
currents cause a slight alpha cell depolarisation that leads
to inactivation of a small fraction of the Na+ and T- and
N-type Ca2+ channels, partly suppressing glucagon secretion
(grey hatched in Fig. 6a, upper panel). While with treatment
of ZD7288, the blockade of inward HCN currents causes a
slight membrane hyperpolarisation, this would release more
Na+ and Ca2+ channels from their inactive state, making
them available to be activated, and as a consequence,
increasing alpha cell electrical activity and glucagon
secretion (grey hatched in Fig. 6a, middle panel). Con-
versely, the enhancement of inward HCN currents induced
by lamotrigine further depolarises the membrane to a level
that is out of the effective window, resulting in the
inactivation of Na+ and T- and N-type Ca2+ channels and
the suppression of glucagon secretion (grey hatched in

Fig. 6a, lower panel). Given the hyperpolarisation-activated
characteristics of HCN channels, they would be anticipated
to be less active under high glucose concentrations (i.e.
membrane depolarisation conditions) (grey hatched in
Fig. 6b). Nevertheless, under high glucose concentrations,
inactivation of HCN channels still resulted in an induction
of glucagon secretion.

The physiological relevance of HCN channels in alpha
cells is at present not clear. It is known that paracrine
factors including insulin, zinc and GABA play important
roles in modulating glucose-regulated glucagon secretion
[39]. A recent study suggested that glutamate released from
alpha cells exerts autocrine effects to produce adequate
glucagon release under hypoglycaemic conditions [40].
Given that, physiologically, a negative feedback simulta-
neously occurs during a secretory process, it is possible that
the HCN channel in alpha cells may function as a negative
feedback modulator to prevent an ‘overshooting’ of
glucagon secretion under glucagon-stimulatory conditions,
hence to maintain the hormone at appropriate levels.

It now remains to be seen how HCN channel activation
is affected under physiological conditions. Our experiments
have shown that the increase of intracellular cAMP only
caused a 3 mV right shift of the voltage activation curve for
HCN channels in alpha-TC6 cells (data not shown), and it
appears that cAMP has less effect in modulating the activity
of HCN channels in alpha-TC6 cells. Considering the
recent report that phosphatidylinositol 4,5-bisphosphate
activates HCN channels in Xenopus oocytes via a cAMP-
independent pathway [41], and that elevation of cAMP
initiatesmultiple pathways with divergent components, further
investigations to determine the precise molecular mechanism
that underlies HCN channel regulation in alpha cells are
required and will provide new information and potential
therapeutic targets to optimise the treatment of diabetes.
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