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Abstract Beta cell deficiency underlies both type 1 and
type 2 diabetes, and restoration or replacement of beta cell
function is therefore the logical long-term solution to
therapy. This review sets out to describe the defects in beta
cell mass and function in both forms of diabetes, summa-
rises current understanding of the underlying causes of beta
cell death, and the methodological limitations of determin-
ing beta cell mass in vivo. Finally, the potential effects of
current and future treatment regimens on beta cell mass and
turnover are considered.
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Abbreviations
DPP-4 dipeptidylpeptidase 4
ER endoplasmatic reticulum

GLP-1 glucagon-like peptide 1

MRI magnetic resonance imaging
VMAT?2 vesicular amine transporter 2
Introduction

While it has long been held that type 1 diabetes results from
an irreversible loss of beta cells, and that type 2 diabetes is
primarily caused by impaired insulin action, there is now
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increasing evidence linking both types of diabetes to
defects in beta cell mass and insulin secretion. Furthermore,
the former dogma that postnatal beta cells are irreversibly
postmitotic and thus not capable of replicating during adult
life has been challenged over the past years. These
advances offer the potential of targeting beta cell regener-
ation as a future treatment of diabetes. In this review we
will describe the defects in beta cell mass and function in
both type 1 and type 2 diabetes, summarise the underlying
causes of beta cell death, and evaluate the methodological
limitations of determining beta cell mass in vivo. Finally,
we will discuss the potential effects of current and future
glucose-lowering treatment regimens on beta cell mass and
turnover in patients with diabetes.

Beta cell mass in diabetes

Both type 1 and type 2 diabetes are characterised by deficits
in beta cell mass (~99% deficit in long-standing type 1
diabetes [1, 2], ~65% deficit in long-standing type 2
diabetes [3]; Fig. 1). While there is little doubt regarding
the importance of increased autoimmune-mediated beta cell
death in type 1 diabetes [2], recent studies suggest that the
frequency of beta cell apoptosis is also significantly
increased in type 2 diabetes [3], although other factors,
such as the failure of beta cell mass to expand adequately in
response to rising secretory demands, cannot be excluded.
This loss of beta cells in both types of diabetes implies that
restoration of endogenous insulin secretion and normal-
isation of hyperglycaemia in such patients might be
accomplished through the replacement or regeneration of
islet cells [4]. Indeed, hyperglycaemia in both types of
diabetes is reversed by pancreas transplantation [5], and
intraportal transplantation of isolated islets temporarily
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Fig. 1 Fractional beta cell area in the pancreas of obese non-diabetic
individuals, individuals with impaired fasting glucose, patients with type
2 diabetes and patients with type 1 diabetes. Modified from [3] and [2]

restores glucose control [6]. Unfortunately, replacement of
beta cell mass by islet or pancreas transplantation is
associated with both surgical morbidity and the adverse
effects of chronic immunosuppression [7]. Moreover, there
is an insufficient supply of pancreases available for the
increasing number of people with diabetes, thus preventing
the widespread implementation of this intervention [7].
There is therefore a need for alternative approaches for
restoring functional beta cell mass in patients with diabetes.

Both type 1 and type 2 diabetes are characterised by a significant
deficit in beta cell mass, presumably caused by beta cell
apoptosis.

Type 2 diabetes

Type 2 diabetes is characterised by a combination of insulin
resistance and beta cell dysfunction [8, 9]. The risk of
developing type 2 diabetes rises exponentially with increas-
ing obesity and insulin resistance. Temporary restoration of
glucose control in patients with type 2 diabetes is often
achieved through weight loss and increased physical
activity. These observations have led to the misconception
that insulin resistance is the primary defect underlying the
development of type 2 diabetes [9]; however, a number of
points argue against such reasoning. First, even though the
risk of developing diabetes is increased in obesity, ~80% of
obese individuals remain non-diabetic [10]. Likewise, even
severe insulin resistance, such as that induced by glucocor-
ticoid therapy or pregnancy, leads to the development of
diabetes only in small percentage of patients. Second, the
maximal insulin secretory responses to intravenous glucose,
arginine and other secretagogues are greatly diminished in
patients with type 2 diabetes [11-13]. In particular, the
pulsatile pattern of prehepatic insulin release is abnormal in
type 2 diabetes. Defects in insulin secretion have also been
described in certain populations at high risk of developing
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type 2 diabetes (e.g. individuals with impaired glucose
tolerance, first-degree relatives of diabetic patients), even
though the interpretation of some of these studies is hampered
by the potential dampening of insulin responses by the
different baseline glucose levels [14]. Based on such cross-
sectional studies, defects in insulin secretion appear to even
precede the development of insulin resistance [14]. Third,
insulin resistance is found not only in type 2 diabetes, but
also in type 1 diabetes, presumably as a consequence of
impaired insulin secretion [15]. Fourth, as mentioned above,
there is a beta cell deficit in patients with long-standing type
2 diabetes (~65% beta cell loss), and this is also seen in
individuals with impaired fasting glucose (~50% beta cell
loss; Fig. 1) [3]. Fifth, a similar 50% experimental or
surgical reduction of beta cell mass leads to the development
of diabetes in various animal models as well as in humans
[16-18]. Sixth, the typical metabolic defects of type 2
diabetes (impaired insulin secretion, hepatic insulin resis-
tance, hyperglucagonaemia) can be mimicked in animals
with a progressive beta cell loss reminiscent of that in
patients with type 2 diabetes [19]. Seventh, despite the overt
presence of insulin resistance, hyperglycaemia in type 2
diabetes can be offset by restoration of beta cell mass
through pancreas transplantation [20, 21]. Taken together,
these studies support the postulate that the clinical syndrome
of hyperglycaemia develops in both type 1 and 2 diabetes in
large part as a consequence of a deficit in beta cell mass.

Potential causes of beta cell loss in type 2 diabetes The
beta cell loss in type 2 diabetes is accompanied by a marked
increase in beta cell apoptosis, as shown in human pancreas
autopsy specimens and in isolated islets [3, 22]. Several
mechanisms have been proposed as triggers for the increased
beta cell loss in type 2 diabetes (Fig. 2). These include high
concentrations of glucose (‘glucose toxicity’) [23] and NEFA
(‘lipotoxicity’) [23, 24]. However, to a large extent, the
studies in this field have been carried out in vitro and in
rodent models and are therefore not generalisable to humans.
In fact, in humans, prolonged exposure to high lipid concen-
trations has even resulted in an increased insulin secretory
response [25]. Other potential factors leading to beta cell
death in type 2 diabetes are toxic oligomers of human islet
amyloid polypeptide [26], reactive oxygen species [27],
endoplasmatic reticulum (ER) stress [28], and inflammatory
cytokines such as IL-1$ [29]. In reality, the clinical
syndrome of type 2 diabetes is likely the consequence of
more than one cause, and loss of beta cells probably involves
more than one mechanism. Based on cross-sectional studies,
normoglycaemia can be maintained until ~50% of beta cell
mass is lost [30], with greater losses typically resulting in
deterioration of glucose control [3, 17, 30]. However, the
wide range of beta cell mass in non-diabetic individuals
suggests that the timing of diabetes onset at a given degree
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Fig. 2 Different factors induc-
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of beta cell loss varies from person to person and is
influenced by other factors such as insulin sensitivity [3].

Type 1 diabetes

In type 1 diabetes, beta cell loss occurs as a consequence of
immune-mediated beta cell destruction [1, 2, 31] (Fig. 2),
although the trigger(s) for this process remains unknown.
This depletion within the islet is beta cell-specific, perhaps
mediated through insulin serving as an antigen attracting
auto-reactive T lymphocytes and macrophages. Similar to
the pathogenesis of type 2 diabetes, the destruction of beta
cells in patients with type 1 diabetes seems to precede the
clinical manifestation of the disease, and impaired insulin
secretion can be detected several years prior to the onset of
hyperglycaemia [32]. Based on histological studies of
pancreas specimens from patients with new-onset type 1
diabetes, beta cell mass is reduced by ~80-90% at this time
[1, 33-35]. Interestingly, the degree of beta cell dysfunction
at this time often exceeds the percentage beta cell loss [36—
38], suggesting additional functional impairment in insulin
secretion in these patients. Both beta cell mass and function
further decline with increasing diabetes duration [33, 37,
39], but preserved C-peptide responses have been reported
even after several years of type 1 diabetes [40, 41]. While it
has long been held that the beta cell loss in type 1 diabetes
is a finite and irreversible process, there is now evidence
from several lines of research that some beta cell regenera-
tion may occur even in patients with long-term type 1
diabetes [2]. Thus, even though beta cell mass is markedly
diminished in the pancreas of patients with long-standing
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type 1 diabetes, some beta cells can be detected several
decades after the onset the disease [1, 2]. These cells are
often associated with T lymphocytes and macrophages, and
have an increased frequency of apoptosis, implying that
concomitant beta cell formation must be occurring even
after several years of type 1 diabetes [2]. This hypothesis
has been supported by reports of restoration of beta cell
mass after the onset of hyperglycaemia in NOD mice [42],
and of a marked increase in beta cell replication at the time
of diabetes onset in mice and in humans [36, 38].

The potential for restoration of beta cell mass

The beta cell deficit in both type 1 and type 2 diabetes
provides a rationale for novel therapeutic strategies aimed at
restoring (or at least preventing further loss of) beta cell mass.
In fact, enhancement of endogenous insulin secretion may
theoretically provide several advantages over the administra-
tion of exogenous insulin: (1) the kinetics of endogenous
insulin secretion are much faster than those of subcutaneously
administered insulin [43, 44]; (2) under physiological
circumstances, insulin is secreted in distinct pulses occurring
at ~4-5 min intervals [45], and endogenous insulin secretion
is regulated in a strictly glucose-dependent manner [46]; (3)
alpha cell secretion is controlled by the pulsatile release of
insulin from islet beta cells [18, 47]; (4) endogenous
pulsatile insulin secretion has a direct effect on hepatic
glucose metabolism, whereas exogenous insulin replace-
ment primarily acts on peripheral insulin-sensitive tissues.
The hypothetical consequences that might arise from
restoration of beta cell mass for glucose control in patients
with diabetes have been summarised in Fig. 3.
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Fig. 3 Hypothetical diagram il-
lustrating the potential conse-
quences of beta cell regeneration
for glucose metabolism. Theo-
retically, beta cell regeneration
will lead to restoration of beta
cell mass, which in turn will
restore a physiological, pulsatile
pattern of insulin secretion. Im-
proved insulin secretion will
subsequently lead to intra-islet
suppression of alpha cell secre-
tion and, in concert with lower
glucagon levels, suppress the
excessive hepatic glucose pro-
duction. Finally, insulin action
in muscle and adipose tissue
will improve secondary to in-
creased insulin secretion and
reduced hepatic glucose output.
Collectively, these changes may
restore normoglycaemia in
patients with diabetes l

Restoration of beta cell mass

Restoration of (pulsatile) insulin
secretion

Suppression of glucagon secretion

Reduction of hepatic glucose
production

Improvement in peripheral
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Strategies for beta cell regeneration

Embryonic stem cells One potential way of replenishing
beta cell mass is the ex vivo generation of insulin-secreting
cells from embryonic stem cells through directed differen-
tiation [4]. Indeed, this field has advanced over recent
years, in particular as a result of the development of more
specific incubation regimens, allowing for a coordinated
differentiation of human embryonic stem cells through
different stages resembling definitive endoderm, gut tube
endoderm, pancreatic endoderm and endocrine precursor
cells [48]. Such human embryonic stem cell-derived
preparations have been shown to release insulin upon
challenge by different secretagogues, but reported to be
particularly unresponsive to glucose stimulation [48]. In
addition to this lack of glucose responsiveness, ethical
hurdles associated with the generation of insulin-secreting
cells from human embryos complicate the further develop-
ment of this approach. Moreover, under physiological
conditions, beta cells are embedded into the complex
structure of the islet, which allows for the multi-modal
control of insulin secretion through neural (e.g. sympathetic
nerve fibres) [49], endocrine (e.g. intraislet glucagon) [18,
47, 50] and paracrine (e.g. somatostatin) [50] mechanisms.
Given the technical difficulties associated with the gener-
ation of a single cell type, it seems unlikely that the
complex organisation of the pancreatic islet can be
replicated through targeted differentiation of embryonic
stem cells. On the other hand, the importance of non-beta
cells for glucose control following islet transplantation has
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been challenged by recent experiments in rats [S1]. Finally,
it is as yet impossible to control the proliferative activity of
such cells, which poses a risk for tumour formation [4].

New beta cells derived from embryonic stem cells may be an
interesting future strategy for the treatment of diabetes, but this
approach appears to be far from ready for clinical application.

Extrapancreatic stem cells Not only human embryonic stem
cells, but also mature cells of different origin, including liver,
spleen, bone marrow and exocrine pancreas, have been
reported to generate insulin-producing cells [4]. However,
the overall plasticity of such differentiated cells appears to
be even lower than that of human embryonic stem cells,
and such cells typically lack other important beta cell
components required for a coordinated mode of insulin
secretion, such as glucokinase and GLUT-2.

Beta cell replication and islet neogenesis An alternative
strategy for the restoration of beta cell mass in patients with
diabetes is to foster beta cell regeneration from endogenous
sources [4]. Some evidence suggests that beta cell mass is
dynamic and capable of undergoing adaptive changes in
response to different secretory demands [52]. In humans,
beta cell mass increases by ~50% in obesity [3], and both
insulin secretion and beta cell mass have been shown to
increase in pregnant women [53, 54]. Likewise, beta cell
mass in rodents increases by ~2.5-fold towards the end of
pregnancy, and is rapidly decreased through increased
apoptosis and reduced replication postpartum [52, 55, 56].
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There is ongoing debate as to the potential origin of new
beta cells in adults, and two major pathways have been
proposed. On the one hand, replication of pre-existing beta
cells in the pancreas has been convincingly demonstrated in
adult mice [57, 58], rats [59, 60] and humans [3, 36, 61, 62]
(Fig. 4), and recent lineage tracing studies indicated that
new beta cell formation in postnatal mice exclusively
results from the replication of existing beta cells [57]. On
the other hand, the close association between exocrine
ducts and beta cells has been interpreted as evidence that
beta cells might also arise from stem cells residing in the
ductal epithelium [63, 64] (Fig. 4). However, since it is as
yet impossible to determine the exact origin of mature beta
cells in cross-sectional studies, the importance of this
pathway has not been convincingly proven. In the absence
of a reliable beta cell precursor marker, the percentage of
ductal cells producing insulin has often been used as a
surrogate marker for this ductal neogenesis [65], and
significant increases have been described in rodents after
partial pancreatectomy [63, 66] and after prolonged hyper-
glycaemia or glucagon-like peptide 1 (GLP-1) treatment
[67, 68]. Beta cells have been observed to be colocalised
with exocrine ducts in human embryonic tissue [69] and in
adult human pancreas specimens from individuals with or
without diabetes [2, 3] (Fig. 4). Despite this obvious
association between exocrine ducts and beta cells, the
possibility remains that this phenomenon merely represents
a residuum of fetal pancreas development and that the
observed increases in the number of these insulin-positive
cells within or adjacent to exocrine ducts relate more to a
general expansion of beta cell mass, without a causal
relationship to the ductal epithelium.

While the presence and quantitative significance of new
beta cell formation from exocrine ducts remains to be
proven, there is little doubt that beta cell replication
continues over a lifetime (see above). However, the overall
frequency of beta cell replication is extremely low in the
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Fig. 4 Potential sources of new beta cell formation in adult human
pancreas. Pancreatic sections were stained for insulin (red) and Ki67
(brown) and imaged at x400 magnification. a A pair of replicating
beta cells positive for Ki67 (arrow). b Multiple beta cells within or
adjacent to exocrine ducts. This finding has often been interpreted as

adult pancreas, thereby complicating its quantitative assess-
ment [59]. The rate of beta cell replication in adult rats was
recently estimated to be ~0.07% per day using BrdU
labelling [59], but subsequent studies have cautioned
against the use of this technique, since prolonged infusion
of BrdU may independently suppress cell proliferation [70].

Despite the slow rate of beta cell turnover under normal
steady-state conditions, there appears to be a remarkable
capacity for increased proliferation in situations of high
secretory demand. In rodents, beta cell replication increases
by approximately five- to tenfold after partial pancreatectomy,
during pregnancy, during chronic glucose infusion and after
treatment with GLP-1 analogues [63, 66], thereby illustrating
the remarkable plasticity of the endocrine pancreas in
rodents. In humans, the overall capacity for beta cell
replication is much lower than in rodents, and very few
replicating beta cells (one cell in ~50 islets of ~100 beta cells
each per cross-section) can be found in adult human pancreas
[3]. There is, however, a capacity for increased beta cell
replication in humans. Beta cell replication has been reported
to be more than ten times higher in human pancreas adjacent
to gastrin-producing tumours [62] and in the pancreas of a
patient presenting with the recent-onset type 1 diabetes [36].

The different turnover rates of beta cells in rodents and
in humans have important implications for interpreting
studies designed to replenish beta cell mass.

A number of recent studies have suggested that human beta cells
maintain some capacity for regeneration even very late in life.

Detection of beta cell mass

Determination of the success of therapeutic strategies
designed to enhance beta cell regeneration requires reliable
methods for the assessment of beta cell mass. In animal
models, beta cell mass can be easily calculated as the product

- R -
euw e
W 5 age et

evidence of new islet formation from ductal progenitor cells. ¢ Two
single beta cells in the exocrine parenchyma. Beta cells are often seen
scattered throughout this tissue, a finding often interpreted as
indicating transdifferentiation of exocrine cells into beta cells
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of pancreatic weight and the fractional beta cell area in cross-
sections from different regions of the pancreas [19, 58].
However, in light of the obvious inaccessibility of the human
pancreas for repeated biopsy sampling, non-invasive proce-
dures are warranted to quantify beta cell mass in vivo. Two
different approaches have been used to determine the
functional beta cell mass in living humans, described below.

Imaging strategies to determine beta cell mass

While the volume of endocrine organs such as the thyroid
gland or adrenal gland can be calculated with a reasonable
accuracy using common imaging techniques such as
ultrasonography, computed tomography or magnetic reso-
nance imaging (MRI), the scattered distribution and
relatively small size (~200 m in diameter) of islets have
so far hampered the reliable quantification of beta cell
mass. Furthermore, the differences in density and echoge-
neity between exocrine and endocrine pancreatic tissue are
relatively minor. Alternative approaches have relied on the
specific labelling of beta cells using enzymes, cell receptors
or surface structures that are predominantly or exclusively
expressed on beta cells. Tags such as these can be detected
by positron emission spectroscopy, MRI, or single photon
emission computed tomography. However, since the beta
cells occupy only ~1-2% of the total pancreatic mass, any
putative beta cell marker would be required to be at least
100:1 times more specific for beta cells than exocrine cells
to give a labelling specificity of 50%. To date, a number of
different beta cell structures, including GLP-1 receptors,
sulfonylurea receptors, vesicular amine transporter 2
(VMAT?2) and gangliosides, have been used as targets for
these labels. In addition, the IC2 antibody and antibodies
directed against D-mannoheptulose and alloxan have been
used because of their specific uptake by, or binding to,
pancreatic beta cells. These studies have recently been
summarised elsewhere [71]. However, to date, none of these
markers has provided approximations of beta cell mass with
sufficient sensitivity and specificity to justify their routine
application in humans. Ongoing clinical trials are using
VMAT?2 as a surrogate marker of insulin production and the
radioligand ''C-labelled dihydrotetrabenazine for the deter-
mination of beta cell mass in type 1 diabetic patients and
controls. The final results of these trials are awaited.

Functional assessment of beta cell mass In the absence of a
reliable imaging test to determine beta cell mass in humans
in vivo, functional tests of insulin secretion have been
applied. These tests are based on the assumption that the
amount of insulin secreted in response to a secretagogue is
proportional to the number of beta cells present in the
pancreas. However, some theoretical caveats should be kept
in mind with respect to the interpretation of such tests.

@ Springer

Insulin secretion may well change independently from beta
cell mass. In fact, insulin secretion in obese individuals can
be increased by a factor of five to ten [72], whereas beta
cell mass has been shown to be only ~50% higher in obese
compared with lean individuals [3]. In line with this, a
linear relationship has been observed between the mean
nuclear diameter of beta cells and BMI, suggesting that the
transcriptional activity of beta cells increases with higher
insulin demands [61]. Furthermore, glucose-induced insulin
secretion is subject to considerable day to day variation,
and can be modulated to a large extent by pharmacological
interventions, such as an overnight infusion of a GLP-1
analogue [73], temporary inhibition of insulin secretion [74]
or prolonged glucose normalisation by the administration of
exogenous insulin [75]. Most likely, these differences relate
to differences in beta cell granule content, which determines
subsequent insulin secretory responses. The second potential
caveat relates to the different volumes of distribution
between lean and obese individuals—the secretion of a
certain number of insulin molecules in an obese individual
with a large plasma volume will produce a lower plasma
concentration than the secretion of the same number of
molecules in a lean individual. Finally, differences in hepatic
insulin clearance may alter systemic insulin levels [72, 76].

Despite the theoretical concerns, indirect testing of beta
cell function currently represents the most reliable method
of estimating beta cell mass in humans. The relationship
between different indices derived from metabolic tests and
the actual beta cell mass has recently been summarised
elsewhere [77]. Generally, the closest correlation with beta
cell mass has been obtained for arginine-induced insulin
secretion and for glucose potentiation of arginine-induced
insulin secretion (~70% accuracy) [78, 79]. It is also
important to note that the assessment of glucose-induced
insulin secretion will only provide reliable results when
individuals are tested at similar glucose concentrations [12].

Given the lack of reliable routine methods to determine beta cell
mass in humans in vivo, functional tests of insulin secretion may
be a suitable alternative.

Therapeutic strategies to maintain or restore beta cell
mass in diabetes

As aresult of the growing interest in beta cell regeneration as
a potential cure for diabetes, a number of different treatment
strategies aimed at increasing beta cell mass have been
evaluated. Owing to the limitations of directly quantifying
beta cell mass in humans in vivo, different surrogates for beta
cell regeneration have been used. These include (1)
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inhibition of beta cell apoptosis and/or stimulation of beta
cell regeneration in beta cell lines and/or isolated (human)
islets in vitro; (2) increasing beta cell mass in animal models
(primarily rats and mice) in vivo; and (3) functional
improvements (or at least preservation) of insulin secretion
in long-term studies in patients with diabetes in vivo. The
effects of various current and future pharmacotherapies for
type 1 and type 2 diabetes on beta cell mass and turnover at
these experimental levels have been summarised in the
Table 1.

Importance of beta cell rest and exhaustion
for diabetes therapy

When evaluating the effects of glucose-lowering treatment
regimens on beta cell turnover, one key aspect determining

the fate of the beta cells may be the individual’s demand for
insulin secretion. There is some evidence from in vitro
studies that constant stimulation of insulin secretion by
either prolonged high glucose exposure or sulfonylurea
treatment (particularly glibenclamide, known as glyburide
in the USA and Canada) may result in beta cell degranu-
lation and the induction of cell death [80, 81]. These
potentially detrimental effects of sulfonylureas may serve to
explain the relatively high rates of beta cell failure during
sulfonylurea therapy in the a Diabetes Outcome Progression
Trial (ADOPT), even though the rate of beta cell failure in
sulfonylurea-treated patients was not increased in the UK
Prospective Diabetes Study (UKPDS) [82, 83]. Insulino-
tropic agents with a shorter duration of action (e.g.
repaglinide, nateglinide) or glucose-dependent properties
(e.g. GLP-1, gastric inhibitory polypeptide) have been

Table 1 Therapeutic strategies with a potential direct effect on beta cell mass and turnover in different experimental models

Treatment Effects on beta cell Effects on beta cell mass in Long-term effects on beta cell function ~ References
turnover in vitro rodents in vivo in humans
Type 1 diabetes
Anti-CD3 antisera No direct effect Prevention and reversal of Preservation of beta cell function [42, 88]
diabetes in NOD mice in new-onset type 1 diabetes
Cyclosporin Beta cell apoptosis 1 Prevention of diabetes in NOD  Preservation of beta cell function [89]
mice in new-onset type 1 diabetes
Nicotinamide Beta cell apoptosis | Prevention of diabetes in NOD  No prevention of type 1 diabetes [90]
mice in high-risk subjects
No preservation of beta cell function
in new-onset type 1 diabetes
Potassium channel Beta cell apoptosis | Not examined Preservation of beta cell function [85, 91]
openers (e.g. Replenishment of insulin in new-onset type 1 diabetes
diazoxide) granules
Type 2 diabetes
GLP-1 analogues Beta cell proliferation 1 Increase in beta cell mass in Stable glucose control over 52 weeks  [68, 84,
diabetic rats and mice of treatment 92, 93]
Beta cell apoptosis | No prolongation of islet graft survival
after transplantation
No long-term studies available
DPP-4 inhibitors No direct effect (indirect Increase in beta cell mass in Stable glucose control over 52 weeks [94, 95]
action via GLP-1 and diabetic rats and mice of treatment
GIP) No long-term studies available
Metformin Beta cell apoptosis | No direct effect on beta cell Slow rate of deterioration of glucose [22, 83,
Markers of oxidative mass control (ADOPT trial) 96]
stress |
Glitazones Beta cell apoptosis | No direct effect on beta cell Slow rate of deterioration of glucose [83, 96,
mass control (ADOPT trial) 97]
Sulfonylureas Beta cell apoptosis 1 Modest and transient increase in ~ Progressive deterioration of glucose [80, 82]
beta cell mass (shown in one control over prolonged treatment
study only) periods in the ADOPT trial
No increased rate of deterioration
of beta cell function in the UKPDS
ACE inhibitors Beta cell apoptosis | Increase in beta cell mass No significant effect on diabetes [98, 99]

Markers of oxidative
stress |

(e.g. ramipril)

incidence in randomised prospective
trials

ADOPT, a Diabetes Outcome Progression Trial; GIP, gastric inhibitory polypeptide; UKPDS, UK Prospective Diabetes Study
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shown to be less detrimental, or even protective, under in
vitro conditions [81, 84]. While beta cell exhaustion may
potentially accelerate the loss of beta cells in type 2
diabetes, induction of beta cell rest, i.e. the temporary
inhibition of insulin secretion, appears to confer a certain
degree of beta cell protection. In isolated human islets,
temporary inhibition of insulin secretion using potassium
channel openers has led to subsequent improvement of
glucose-induced insulin secretion, increased islet insulin
content, and inhibition of beta cell apoptosis [29, 85].

The mechanisms linking beta cell exhaustion to the
induction of cell death have not been elucidated in detail,
but many studies have suggested a key role of oxidative
stress. There is accumulating evidence that beta cell insulin
depletion leading to an increasing demand for proinsulin
biosynthesis eventually results in the induction of ER
stress, which in turn leads to the initiation of apoptosis.
Consistent with this hypothesis, recent studies have found
increased levels of ER stress markers in the islets of
patients with type 2 diabetes [86].

From a clinical point of view, the simplest way of
inducing beta cell rest is to reduce the peripheral insulin
demand by either improving insulin sensitivity (e.g.
through physical activity or pharmacologically, using
metformin or glitazones) or by lowering blood glucose
levels through the administration of exogenous insulin. In a
prospective trial on patients with type 2 diabetes, induction
of beta cell rest induced by bedtime administration of NPH
insulin resulted in significant improvements in endogenous
insulin secretion in response to glucose [75]. Likewise, in a
study that compared insulin with glibenclamide over
2 years, recently diagnosed patients with type 2 diabetes
treated with insulin exhibited a significantly greater
endogenous insulin secretory response and a lower proin-
sulin:insulin ratio [87]. Nevertheless, as yet, there is no
direct evidence for the induction of beta cell apoptosis by
sulfonylurea drugs or for the preservation of beta cell mass
by either metformin, glitazones or exogenous insulin in
patients with type 2 diabetes in vivo.

A number of glucose-lowering agents (e.g. incretin mimetics,
dipeptidylpeptidase 4 [DPP-4] inhibitors) have been suggested
to prevent beta cell apoptosis, but their long-term effects on beta
cell mass in patients with diabetes remain to be elucidated.

Outlook

In response to the increased recognition of the important role
of beta cell mass in the development of diabetes interest has
grown in targeting beta cell mass for the treatment for
diabetes. A number of recent studies have suggested that beta
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cell mass might be restored by fostering endogenous beta
cell replication, combined with concomitant inhibition of
apoptosis. However, our current understanding of postnatal
beta cell turnover is primarily based on experiments
performed under in vitro conditions or in rodent models,
the results of which are not fully generalisable to the
situation in humans in vivo. Debate is ongoing as to the
potential effects of various glucose-lowering treatments on
beta cell death and proliferation, and some drugs have been
proposed to accelerate beta cell loss (e.g. glibenclamide),
whilst others have been suggested to be somewhat protective
(e.g. GLP-1 receptor agonists, DPP-4 inhibitors). However,
before any of these treatment regimens can be accepted as
safely modulating beta cell turnover, changes in beta cell
mass need to be demonstrated in patients with diabetes in
vivo. In light of the absence of direct imaging methods to
quantify beta cell mass in living humans, functional indices
of insulin secretion derived from metabolic tests appear to
provide the most meaningful estimates of beta cell mass. It is
hoped that future long-term trials involving metabolic testing
in patients with diabetes will determine changes in beta cell
mass in response to various glucose-lowering treatment
regimens. Such information will enable physicians to not
only focus on glucose control, but perhaps also to modulate
the natural progression of diabetes.
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