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Abstract Increased arterial stiffness associated with diabe-
tes and the metabolic syndrome may in part explain the
increased cardiovascular disease risk observed in these
conditions. Arterial stiffness can be estimated by quantify-
ing pulse pressure but is better described by distensibility
and compliance coefficients, pulse wave velocity and wave
reflection. The most common non-invasive methodologies
used to quantify these estimates of arterial stiffness (e.g.
ultrasonography and applanation tonometry) are also
described. We then review and summarise the current data
on the associations between diabetes, the metabolic
syndrome and insulin resistance on the one hand and
greater arterial stiffness on the other, and identify and
discuss some unresolved issues such as differential stiffen-
ing of central vs peripheral arterial segments, the impact of
sex, and the pathobiology of increased arterial stiffness in
diabetes and the metabolic syndrome. Finally, some con-
siderations with regard to treatment options are presented.

At present the most powerful therapy available for reducing
arterial stiffness is to vigorously treat hypertension using
pharmacological agents. New pharmacological strategies to
reduce arterial stiffness are likely to be especially relevant
to individuals with diabetes.
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Introduction

Cardiovascular disease is the main cause of death in both
type 1 and type 2 diabetes mellitus [1]. The pathophysio-
logical mechanisms underlying these associations are
incompletely understood. Increased arterial stiffness may
be one important pathway linking diabetes to the increased
cardiovascular risk, as it commonly occurs in these
conditions [2]. Indeed, increased arterial stiffness predicts
the development of cardiovascular disease and mortality in
the general population [3] and in type 2 diabetes [4].

To illustrate the problem of arterial stiffness in the
context of clinical practice we introduce a clinical case (see
text box: Arterial stiffness—the clinical problem). Mrs T’s
main problem was not obesity or poor glycaemic control,
but, rather, severe systolic hypertension and relatively low
diastolic blood pressure (i.e. elevated pulse pressure). We
explain below that Mrs T’s underlying cause of death may
have been arterial stiffening.
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Arterial stiffness—why is it important?

Pulse pressure is now recognised as a strong predictor of
cardiovascular disease, particularly in older people. This is
illustrated by data from the Framingham Heart Study showing
that the risk of coronary heart disease increasedwith increasing
levels of systolic blood pressure, but, and at the same time, for
each level of systolic blood pressure the risk was actually
higher at the lowest levels of diastolic pressure (i.e. at the
widest pulse pressure) [5] (Fig. 1). Pulse pressure depends on
the stroke volume ejected by the left ventricle, the cushioning
capacity of the arterial system (i.e. the ability of arteries,
mainly the aorta, to smooth flow pulsations imposed by the
intermittent contracting heart so that the blood is directed
through the organs and tissues in an almost steady stream),
and the amplitude and timing of arterial wave reflection
[6, 7]. Arterial stiffness (i.e. impairment of the cushioning
capacity) leads to an increase in systolic blood pressure
because hearts ejecting into a stiffer arterial bed must generate

higher end-systolic pressures for the same net stroke volume.
This leads to increased decay of arterial pressure and volume
during systole, causing a reduced arterial volume at the onset
of diastole, which in turn causes an enhanced fall in diastolic
blood pressure [8]. Greater arterial stiffness also increases
systolic and decreases diastolic pressure through increasing
pulse wave velocity and through arterial wave reflection (see
below). The direct clinical consequences of increased arterial
stiffness are an increased risk of stroke as a result of increased
systolic pressure; the development of left ventricular hyper-
trophy as a result of increased cardiac afterload; and a
decrease in coronary perfusion and heart failure owing to the
decrease in diastolic blood pressure.

Systolic blood pressure increases progressively with increas-
ing age, whereas a decrease in diastolic blood pressure is
observed particularly from the 5th decade onwards [9]. Because
ventricular ejection decreases with age, arterial stiffness
assumes a critical role in the explanation of the age-related

Fig. 1 Coronary heart disease (CHD) risk according to systolic,
diastolic and pulse pressure in the Framingham Heart Study. The
figure depicts that any increase in systolic blood pressure (SBP) is
associated with an increase in CHD risk; however, and at the same
time, for each SBP the highest CHD risk is actually observed at the
lowest DBP level, i.e. at the highest pulse pressure (PP) level.
Reproduced with permission from Lippincott Williams & Wilkins [5]

Arterial stiffness—the clinical problem 

Mrs T 
At the age of 70 years: 

. duration of diabetes 12 years 

. BMI 28 kg/m2

. HbA1c 7.1% 

. blood pressure 186/68 mmHg 

. five antihypertensives 

At the age of 72:  myocardial infarction and heart failure
At the age of 74:  death from stroke

Late reflection
auguments diastolic
pressure

Healthy

P2 (Systolic BP)

Early reflection
auguments systolic
pressure

P1

PP

Diabetes/metabolic syndrome

Fig. 2 Illustration of the combination of forward (red line) and the
sum of many reflected waves (green line) and its impact on the
measured pulse wave (blue line). In elastic vessels (e.g. healthy
individuals) reflection occurs during diastole (a), whereas in stiff
vessels (e.g. diabetes and the metabolic syndrome) wave reflection
occurs during systole leading to an amplification of the systolic BP
and pulse pressure (PP) (b). P1, systolic peak of the forward (first)
wave; P2, systolic peak of the augmented (measured) wave. Adapted
from [11]
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increases in systolic and pulse pressure and related mortality,
and this therefore explains why brachial pulse pressure is
commonly used as a marker of arterial stiffness [7].

Despite their utility in clinical practice, cuff sphygmoma-
nometer measures of blood pressure are not sufficient to
understand the underlying processes explaining the increase in
pulse pressure for two main reasons: first, they do not depict
the phenomenon of arterial wave reflection, and second, they
are not appropriate for the detection of artery stiffening in
early stages because of the phenomenon of pulse pressure
amplification between central and peripheral arteries observed
in young individuals [10]. As the pressure wave generated by
cardiac ejection is transmitted forward from the central aorta
to the periphery and is reflected back from any point of
impedance discontinuity (e.g. arterial branching and arterial–
arteriolar junctions), the arterial pressure waveform recorded
in any arterial site (e.g. the ascending aorta or brachial artery)
is thus the result of the summation of the forward and
backward pressure waves at that specific site. In elastic arteries,
reflected waves arrive at the aorta during diastole, as usually
observed in young and healthy subjects, whereas in stiff
arteries the reflected pressure wave returns during early
systole, adding to the forward wave and augmenting the
systolic and pulse pressure, as usually observed in the elderly

and in hypertensive individuals [11] (Fig. 2). In addition,
elastic properties of large conduit arteries vary along the
arterial tree, owing to cellular and histological differences in
the structure of the arterial wall): proximal arteries (e.g. aorta)
are more elastic and distal arteries (e.g. brachial or femoral)
are stiffer. This heterogeneity is important because the
pressure wave propagated along the arterial tree is progres-
sively amplified from central to peripheral arteries as a result
of wave reflections. In peripheral arteries, wave reflection can
amplify pressure because the reflection sites are closer than in
central arteries, which explains why, particularly in young
individuals, brachial pulse pressure is higher than aortic pulse
pressure. However, because ageing stiffens central arteries to
a greater extent than peripheral arteries, the amplification
between central and peripheral arteries is attenuated. There-
fore, in the young, the use of brachial pulse pressure as a
marker of arterial stiffness is not appropriate [7].

Estimates of arterial stiffness

An overview of methods and calculation details is shown in
the text box ‘Definitions of the most commonly used indices
of arterial stiffness’. Arterial stiffness can either be estimated
locally at specific arterial sites (e.g. carotid, radial, brachial

Fig. 3 Ultrasound-derived arterial properties to determine local arterial stiffness. The two thick blue lines represent the vessel wall movement
during the cardiac cycle
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and femoral) or regionally over a given arterial segment length
(e.g. the aorta or the upper or lower limb) [3]. Local estimates
of arterial stiffness are most often described in terms of
compliance and distensibility coefficients, and are usually
obtained through measurement of arterial changes in diameter
or area and local distending pressure by means of ultrasound
imaging (Fig. 3). Regional estimates of arterial stiffness are
obtained through measurement of the speed of pulse pressure
wave propagation, i.e. pulse wave velocity along an arterial
segment. Pressure sensors (i.e. mechanotransducers or
applanation tonometers) are applied at two arterial sites to
record pressure waveforms and the transit time that the
pressure wave took to travel between the two arterial sites;
pulse wave velocity is then calculated as the distance/travel
time. Pulse wave velocity measured along the aorto–iliac
pathway, i.e. carotid–femoral pulse wave velocity, is the
most commonly used measure of arterial stiffness, given its
proven value as a predictor of cardiovascular disease and
mortality. The local and regional stiffness estimates de-
scribed above are, however, closely related conceptually.
This is illustrated by the fact that if arterial diameter falls
while distending pressure is kept constant (i.e. an increase in
stiffness), the speed with which the pressure wave travels
increases [3]. In addition, analysis of the arterial pulse
waveform using applanation tonometry is used to measure
the augmentation in pulse pressure that is due to pulse wave
reflection. Good quality registration of the arterial pressure
waveform is obtained by applanating (flattening) a superfi-
cial artery (usually the radial) supported by bone using an
external tonometer. This peripheral pressure waveform is
then transformed, usually with the use of a transfer function,
into a central arterial shape, i.e. that of the ascending aorta,
which represents the true load imposed to the left ventricle.
Analysis of this central waveform identifies the systolic peak
of the forward wave and the systolic peak of the augmented
wave; the difference between these two values expressed
relative to pulse pressure represents the augmentation of the
pulse pressure due to wave reflection [3] (Fig. 2).

The stiffness of an arterial site or segment is dependent on
its background level of distending pressure, i.e. mean arterial
pressure—a greater recruitment of relatively inelastic colla-
gen fibres occurs with increasing distending pressures,
enhancing stiffness. Therefore, to fully appreciate arterial
stiffness estimates in clinical studies, adjustment for mean
arterial pressure levels is imperative so that the distending
pressure effects can be differentiated from true differences in
viscoelastic properties of the arterial wall [12].

For an extensive theoretical review of the haemodynamic
principles and models underlying the definitions and assess-
ment methods of the arterial stiffness estimates described
above, the reader is referred to the recent Expert Consensus
document on arterial stiffness recently published by Laurent et
al. [3], as this is beyond the scope of this review.

Arterial stiffness in diabetes and the metabolic syndrome:
the evidence

As the literature up to 1999 has been extensively reviewed
[13], we shall focus on recent developments. In addition,
and in the context of type 2 diabetes, we also review the
evidence with regard to the association between the
metabolic syndrome and arterial stiffness, as clustering of
cardiovascular risk factors precedes the development of
diabetes [14, 15], and understanding their impact on arterial
stiffness may be critical for the primary prevention of
diabetes-related macrovascular disease. Finally, we discuss
the evidence with regard to the role of insulin resistance.

Type 1 diabetes mellitus A large body of evidence supports
the concept of increased arterial stiffness in type 1 diabetes
[16–26] [Electronic supplementary material (ESM) Table 1].
This is an early phenomenon that occurs before the onset of
clinically overt micro- or macrovascular disease [17, 18, 22,
24, 26–29], and arterial stiffness is further enhanced in the
presence of microvascular complications (e.g. nephropathy,
microalbuminuria or retinopathy) [17, 25, 30]. Similar findings
have been reported with regard to pulse pressure: in individuals
with type 1 diabetes an increase in pulse pressure can be
detected as early as the third and fourth decade of life, i.e. there
is accelerated arterial ageing, and the age–pulse pressure
relationship is even steeper in the presence of microvascular
complications [31, 32] (Fig. 4). It is, however, not clear
whether increased arterial stiffness is a cause (because greater
arterial stiffness is associated with greater pressures in small
arteries and capillaries) or a consequence (because microvas-
cular dropout will increase wave reflection and thus increase
pulse pressure [33]) of microangiopathy, or alternatively, that
both phenomena derive from a common antecedent (e.g.
endothelial dysfunction or inflammation) [34, 35]. Importantly,
greater pulse pressure in type 1 diabetic patients is associated
with incident cardiovascular mortality [32]. Taken together,
these data support the concept of accelerated arterial ageing in
type 1 diabetes and may explain, at least in part, the increased
cardiovascular risk in these patients.

Type 2 diabetes mellitus Similar to type 1 diabetes, a large
body of evidence supports the concept of increased arterial
stiffness in type 2 diabetes [36–53] (ESM Table 2). This again
is an early phenomenon as much already occurs in the
impaired glucose metabolism state (i.e. impaired fasting
glucose and/or impaired glucose tolerance) [42, 44, 48, 53,
54] (Fig. 5). These findings support the so-called ‘common
soil’ or ‘ticking clock’ hypothesis, which suggests that
macrovascular disease associated with type 2 diabetes begins
in the pre-diabetic state [15, 55]. In addition, the presence of
micro- and macrovascular complications in type 2 diabetes is
associated with a further increase in arterial stiffness [37, 41,

530 Diabetologia (2008) 51:527–539



Diabetologia (2008) 51:527–539 531



50, 56–59]. Furthermore, as in type 1 diabetes, the age-
related increase in arterial stiffness is steeper in individuals
with type 2 diabetes than in their non-diabetic counterparts
[36, 40, 43, 46]. This is consistent with observations of
steeper increases in pulse pressure with ageing in these
patients [60] (Fig. 6): these increases are further amplified in
the presence of micro- and macrovascular complications
[61–63]. Importantly, the increased pulse pressure observed
in type 2 diabetic patients has been found to be predictive of
future cardiovascular mortality [60, 64].

Metabolic syndrome Studies investigating the association
between the metabolic syndrome and arterial stiffness have

consistently shown increased arterial stiffness in individuals
with the metabolic syndrome or with increasing number of
traits of the metabolic syndrome [45, 65–87] (ESM Table 3).
Importantly, such deleterious arterial changes have been
shown at a very young age (e.g. in obese [78] and apparently
healthy adolescents [76] and young adults [70, 71, 84])
(Fig. 7). The increased stiffness in the metabolic syndrome
thus appears to be caused by subtle metabolic abnormalities
(and not by fully developed diabetes), which supports the
ticking clock hypothesis mentioned above. In addition,
prospective studies have shown that the increase in arterial
stiffness with age is greater in individuals with the metabolic
syndrome as compared with those without [66, 81]. Impor-
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Fig. 5 Relative changes in peripheral arterial stiffness (local arterial
distensibility coefficients [DC] of the brachial, femoral and carotid
arteries) (a), and central arterial stiffness (systemic compliance,
carotid–femoral transit time and aortic augmentation index) (b) in
individuals with type 2 diabetes and impaired glucose metabolism

compared with those with normal glucose metabolism (the Hoorn
Study). Yellow bars, impaired glucose metabolism, red bars, type 2
diabetes. NGM, normal glucose metabolism. Reproduced with
permission from Lippincott Williams & Wilkins [48]

Fig. 4 The association of pulse pressure with age among type 1
patients is stronger in the presence of micro- or macroalbuminuria (a)
or proliferative or proliferative retinopathy (b) than in their absence
(The EURODIAB Study). Green boxes, normoalbuminuria; yellow
boxes, microalbuminuria; red boxes, macroalbuminuria; hatched green

boxes, no retinopathy; hatched yellow boxes, non-proliferative
retinopathy; hatched red boxes, proliferative retinopathy. The box
plots show the median, interquartile range and standard error.
Reproduced from [32] with the permission of Lippincott Williams &
Wilkins
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tantly, individuals whose metabolic syndrome status has
regressed or remained negative over time show lower rates
of increase in arterial stiffness [82].

Taken together, these data support the concept of increased
arterial stiffness in the metabolic syndrome, whichmay explain,
at least in part, the increased cardiovascular risk in these
individuals, and emphasise the importance of primary preven-
tion. It is important to stress that the association between (traits
of) the metabolic syndrome and arterial stiffness is not only
related to higher blood pressure; in addition to (and indepen-
dently of) blood pressure, (central) obesity and increased fasting
glucose levels were the traits consistently associated with
arterial stiffness, whereas dyslipidaemia was less so. These are
the three traits that are most often observed in combination, and
this clustering is associated with the greatest mortality risk [88].
Analyses of the metabolic syndrome traits and their clustering
expressed as a continuous score and the close examination of
each trait (and/or combination of traits) in relation to increased
arterial stiffness may therefore be a more appropriate approach
in aetiological studies (for an example, see [84]).

The role of insulin resistance Insulin resistance usually
precedes the development of type 2 diabetes and is often
accompanied by a clustering of the risk factors characteristic of
the metabolic syndrome. Recent mechanistic studies performed
in humans have suggested that increased stiffness could be yet
another feature of insulin resistance [89]. Insulin, at physio-
logical concentrations, has acute vasodilatory effects that lead
to increased arterial distensibility; however, these beneficial
effects are blunted in insulin-resistant states such as obesity/
the metabolic syndrome and type 1 diabetes and type 2 dia-
betes, and are closely related to whole-body glucose uptake

[89]. The chronic effects of insulin resistance on arterial
stiffness have also been examined. In healthy individuals, a
positive association between insulin-mediated glucose uptake
and arterial distensibility was observed, although this effect
was confined to the femoral artery and was more pronounced
in women [90]. In a large population-based study, insulin
concentrations (a more indirect measure of insulin sensitivity)
were associated with carotid artery stiffness, and this
association was also stronger in women than in men [91].
Also in diabetic patients, inverse associations were observed
between clamp-measured insulin sensitivity and arterial
stiffness in the carotid [92, 93] and femoral [93] arteries.
Importantly, because arterial stiffness is highly dependent on
blood pressure and hypertension itself affects the stimulation
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of glucose uptake by insulin, it is noteworthy that the studies
mentioned above have shown insulin resistance to be
associated with estimates of arterial stiffness even after
adjustments for mean arterial pressure levels. In this respect,
recent studies have shown additive adverse effects of insulin
resistance on arterial stiffness in the context of hypertension
[94, 95]. Notably, in the only longitudinal study that has
addressed the individual and combined effects of raised blood
pressure and raised glucose levels on the progression of
arterial stiffness, the estimated rate of increase in arterial
stiffness was higher in individuals with both abnormalities
than in those with either abnormality alone [96]. Most
importantly, persistence of both abnormalities synergistically
accelerated the rate of increase in arterial stiffness such that it
was three times higher than in those who persisted with
elevated levels of blood pressure or glucose alone. In
conclusion, insulin resistance contributes to increased arterial
stiffness independently of blood pressure in type 2 diabetic
patients but also in apparently healthy individuals.

Unresolved issues in diabetes- and metabolic
syndrome-related arterial stiffening

Preferential stiffening of peripheral over central arteries?
One important issue is whether the association between
diabetes (or the metabolic syndrome) and arterial stiffening
differs between central and peripheral arteries. This question
has been raised by the conflicting results published by the
relatively few studies examining arterial stiffness in several
arterial territories within the same individual. Discrepancies

detected may be due to the use of different methods (i.e.
regionally or locally) in the assessment of estimates of arterial
stiffness and/or the different histological features (i.e. the
elastin to collagen ratio that decreases from proximal to distal
sites) of the arterial tree, which may have different suscepti-
bilities to risk factors.

Studies in which regional stiffness estimates have been
compared in different arterial segments have shown diabetes or
the metabolic syndrome to preferentially affect the central
rather than the peripheral part of the arterial tree [43, 50, 73] or
to have a similar impact on the stiffness of central and
peripheral segments [47, 51, 84]. In contrast, in studies where
stiffness estimates have been assessed locally at different
(mainly peripheral) arterial sites, the deleterious effects of
diabetes or the metabolic syndrome were stronger at the more
muscular (i.e. radial, brachial and femoral) rather than the
more elastic (i.e. the carotid) arteries [17, 42, 48, 70, 90].
However, preferential stiffness of elastic over muscular arteries
has also been shown [21, 97]. Because most of the studies
reviewed herein have investigated one particular vascular
territory only (see ESM Tables 1, 2, 3), no consistent picture
has as yet emerged with regard to preferential central or
peripheral stiffening in either diabetes or the metabolic
syndrome, which hampers pathophysiological interpretation
of these data. Preferential stiffness of peripheral arterial
segments or sites would suggest that the cushioning function
of the central circulatory system would be relatively preserved
over the peripheral conduit function, which would facilitate
cardiac stroke volume expulsion into a circulatory system that
increasingly stiffens with age.

Arterial stiffness in diabetes and the metabolic syndrome—review of the evidence 

.  Arterial stiffness is increased in type 1 diabetes 

—this is an early phenomenon that occurs before the onset of clinically overt micro- or macrovascular 

complications 

.  Arterial stiffness is increased in type 2 diabetes 

—this is an early phenomenon, as much occurs in the impaired glucose metabolism state 

—the presence of micro- and macrovascular complications is associated with a further increase in 

arterial stiffness 

.  Arterial stiffness is also increased in the metabolic syndrome and in insulin-resistant states 

—subtle changes in metabolic variables (not fully developed diabetes) affect arterial stiffness from an 

early age 

Diabetes is a disease of accelerated arterial ageing, as shown by stiffer arteries and consequent 

steeper increases in pulse pressure with age in these subjects 
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Central vs peripheral stiffness as cardiovascular risk
factor Studies demonstrating the prognostic value of arterial
stiffness in the prediction of cardiovascular events have been
almost all confined to estimates of stiffness of elastic arterial
segments or sites (i.e. aortic pulse wave velocity and carotid
distensibility) [3]. Whether stiffness of muscular segments or
sites has the same predictive value is largely unknown. So
far, this has been investigated in one study only, where
central but not peripheral arterial stiffness was an inde-
pendent predictor of death in a cohort of haemodialysis
patients [98]. Similarly, a recent study showed that central
rather than peripheral arterial stiffness was elevated in type 2
diabetes patients with ischaemic heart disease [99]; however,
its cross-sectional design does not allow the conclusion of a
greater prognostic value of central over peripheral stiffness in
the diabetic population. Nevertheless, peripheral arterial
stiffness may be clinically relevant as it has been shown to
be closely associated with prevalent peripheral vascular
disease [100, 101], which is a clinically important outcome
in the (pre-)diabetic population. Additional studies to clarify
these issues are needed.

The impact of sex Several studies suggest that the cardiovas-
cular morbidity associated with diabetes [102, 103], like that
associated with the metabolic syndrome [104, 105], is greater
in women than in men. Moreover, unlike men with diabetes,
it seems that women with this disease have not experienced a
decline in coronary heart disease mortality [106]. Potentially,
this discrepancy could be explained by greater arterial
stiffness in women with diabetes or the metabolic syndrome,
although this is not clear from the current literature. The
majority of previous studies have either undertaken sex-
adjusted analyses or have been performed in single-sex
cohorts (ESM Tables 1, 2, 3). Studies that have examined the
strength of the associations between diabetes or the
metabolic syndrome and arterial stiffness in men and women
separately have disclosed no sex differences [21, 72, 83] or
have shown these associations to be somewhat stronger in
women than in men [23, 46, 67, 71, 80, 84, 85, 97]. Overall,
these findings suggest that analyses of data in men and
women separately may be more appropriate.

The pathobiology of increased arterial stiffness in diabetes
and the metabolic syndrome

Increased arterial stiffness is primarily determined by the
properties of the extracellular matrix (elastin, collagen) and
vascular smooth muscular cell function [107, 108]. These
variables are strongly affected by aging and blood pressure,
which cause repetitive pulsatile stress upon the arterial wall,
leading to both structural and functional disruption of the
arterial pressure load-bearing elastin–collagen network with-
in the media (e.g. fracturing of elastin fibres resulting from
mechanical fatigue and altered pressure-dependent recruit-
ment of [excessive] collagen fibres) [11]. How arterial
stiffness is increased in diabetes and the metabolic syndrome
is largely unknown [11, 34, 108, 109]. One of the main
mechanisms thought to be involved, particularly in diabetic
individuals, is the formation of advanced glycation end-
products (AGEs) on the arterial wall, causing cross-linking
of collagen molecules, which may lead to loss of collagen
elasticity and a subsequent increase in arterial stiffness [110].
Indeed, AGEs have been associated with greater stiffness in
diabetic patients [111, 112], and cross-link breakers have
been demonstrated to decrease arterial stiffness in humans
[113]. Chronic hyperglycaemia and hyperinsulinaemia
also increase the local activity of the renin–angiotensin–
aldosterone system and expression of angiotensin type I
receptor in vascular tissue, promoting development of wall
hypertrophy and fibrosis [109]. In addition, low-grade
inflammation and endothelial dysfunction, which are inter-
related, may also explain, at least in part, the increases in
arterial stiffness related to diabetes and the metabolic
syndrome [75, 84, 114]. Indeed, low-grade inflammation
and endothelial dysfunction are common in diabetes and the
metabolic syndrome [34, 35, 109] and partially explain the
increased cardiovascular risk in these conditions [115, 116].
Endothelial dysfunction may lead to functional stiffening of
large arteries as the reduced availability of nitric oxide and
increased activity of vasoconstrictors such as endothelin-1
affect vascular smooth muscle cell tone [117–119]. In
addition, endothelial dysfunction may lead to smooth muscle
cell proliferation and increased synthesis of structural

Arterial stiffness—unsolved issues and questions for the future 

• Does diabetes preferentially affect the stiffness of peripheral over central arteries (or vice versa)? 

• What is the prognostic value of an increased peripheral arterial stiffness observed in diabetes? 

• Is the diabetes-related increase in arterial stiffness more pronounced in women?  

• What are the pathophysiological mechanisms that underlie the associations between diabetes and 

metabolic syndrome and arterial stiffness?
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proteins such as collagen. Low-grade inflammation impairs
endothelial function, which may therefore result in increased
arterial stiffness [120]. However, prospective data to test the
mediating role of endothelial dysfunction and/or inflamma-
tion on the metabolic syndrome and diabetes-related arterial
stiffening are still lacking.

Treatment

At present the most powerful therapy to reduce arterial
stiffness is vigorous treatment of hypertension with pharma-
cological agents. Indeed, many, but not all, of the current
pharmacological strategies reduce arterial stiffness, but this is
an indirect effect resulting from lowering of mean arterial
pressure (for review see [121]). In fact, because anti-
hypertensive drugs were primarily designed to reduce
peripheral resistance, they may not alter the pathological
process of arterial stiffening itself or electively reduce
systolic blood pressure. This may explain why isolated
systolic hypertension is so often resistant to pharmacological
intervention. Whether some anti-hypertensives are more
effective than others in this respect constitutes a current
important area of investigation (cf. the Conduit Artery
Function Evaluation [CAFÉ] study [122] and Regression of
Arterial Stiffness in a Controlled Double-Blind Study
[REASON] [123]). In addition, new strategies to reduce
arterial stiffness [e.g. so-called AGE breakers such as
Alagebrium (ALT 711)] are in development and are likely
to be especially relevant to individuals with diabetes [124].
These pharmacological agents break down established AGE
cross-links between proteins within the arterial wall, thereby
reducing arterial stiffness [113], but more evidence is
necessary to establish the clinical relevance of such drugs.
Alternative strategies to reduce arterial stiffness may involve
enhancing NO release from endothelial cells (e.g. by the use
of 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors),
and/or changes in lifestyle patterns with the aim of increasing
dietary intake of n-3 fatty acids and decreasing salt intake,
increasing aerobic physical activity levels, and reducing
body fatness [108, 125]. None of these strategies, however,
has unequivocally been shown to reduce arterial stiffness in
diabetes or the metabolic syndrome, and more study of these
issues is needed.

Conclusion

There is convincing evidence that diabetes and the
metabolic syndrome are associated with greater arterial
stiffness. The underlying pathobiology is complex and
remains to be fully elucidated. However, greater arterial
stiffness may, at least in part, explain the increased
cardiovascular risk in individuals with diabetes and the

metabolic syndrome. For the clinician, it is important to
realise that greater brachial pulse pressure, particularly in
middle-aged and older individuals but even in relatively
young type 1 diabetic individuals, is a marker of greater
arterial stiffening and thus a marker of greater cardiovas-
cular risk. However, whether other estimates of arterial
stiffness (e.g. aortic pulse wave velocity) can improve risk
stratification in diabetes or the metabolic syndrome remains
to be shown.
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